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Users with demographic profiles in social networks offer the potential to understand the social principles
that underpin our highly connected world, from individuals, to groups, to societies. In this paper, we har-
ness the power of network and data sciences to model the interplay between user demographics and social
behavior, and further study to what extent users’ demographic profiles can be inferred from their mobile
communication behaviors. By modeling over 7 million users and 1 billion mobile communication records, we
find that during the active dating period (i.e., 18 – 35 years old), users are active in broadening social con-
nections with males and females alike, while after reaching 35 years of age people tend to keep small, closed,
and same-gender social circles. Further, we formalize the demographic prediction problem of inferring users’
gender and age simultaneously. We propose a factor graph-based WhoAmI method to address the problem
by leveraging not only the correlations between network features and users’ gender/age, but also the inter-
relations between gender and age. In addition, we identify a new problem—coupled network demographic
prediction across multiple mobile operators—and present a coupled variant of the WhoAmI method to ad-
dress its unique challenges. Our extensive experiments demonstrate both the effectiveness, scalability, and
applicability of the WhoAmI methods. Finally, our study finds a greater than 80% potential predictability for
inferring users’ gender from phone call behavior and 73% for users’ age from text messaging interactions.
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1. INTRODUCTION
As of 2016, the number of mobile users is 4.611 billion, corresponding to a global pen-
etration of 62%; The number of mobile subscriptions across the globe reaches 7.377
billion in 2016, which is approximately the same with the world population, from a
recent report by the International Telecommunications Union (ITU). On average, each
mobile user makes, receives or avoids 22 phone calls and sends or receives text mes-
sages 23 times, and checks their phones up to 150 times a day1. These mobile devices
record huge amounts of user behavioral data, in particular users’ daily communica-
tions with others. This provides us with an unprecedented opportunity to study how
people build and maintain connections in mobile communication networks.

Previous work on mobile communication networks mainly focused on macro-level
models, like network distributions [Onnela et al. 2007], scale free [Du et al. 2009],
duration distributions [Dong et al. 2013; Seshadri et al. 2008], and mobility model-
ing [Gonzalez et al. 2008; Wang et al. 2011; Dong et al. 2015a]. Recently, however, re-
searchers have started to pay more attention to the micro-level analysis of the mobile
networks. For example, Eagle et al. [Eagle et al. 2009] studied the friendship network
of 100 specific mobile users (students or faculties at MIT). They investigated human
interactions (what people do, where they go, and with whom they communicate) based
on the machine-sensed environmental data collected by mobile devices. Meng et al.
[Meng et al. 2016] studied the mobile communication networks of 200 students at the
University of Notre Dame. They explored the interplay between individuals’ evolving
interaction patterns and traits. However, these work did not consider the interplay be-
tween user demographics and communication behavior. More recently, Nokia Research
organized the 2012 Mobile Data Challenge to infer mobile user demographics by us-
ing communication records of 200 users [Ying et al. 2012; Mo et al. 2012]. However, the
scale of the network is very limited. In this paper, we leverage a large-scale mobile net-
work to study how users’ communication behaviors correlate with their demographic
attributes.
Contributions. We employ a real-world large mobile network comprised of more than
7,000,000 users and over 1,000,000,000 communication records (voice phone call and
short text messaging) as the basis of our study, which we use to systematically in-
vestigate the interplay of user communication behavior and demographic information.
Through the study, we first unveil several intriguing social strategies that users of dif-
ferent age and gender use to meet their social needs, i.e., building new connections
and maintaining existing relationships. Simultaneously, we examine the differences
between people’s phone call and text messaging behavior. Based on the discoveries, we
then develop a unified probabilistic model—WhoAmI—to predict users’ demographic
profiles based on their communication behaviors. To the best of our knowledge, we are
the first to study the problem of inferring user demographics and social strategies in
such a real-world large mobile network.

This work expands on our previous work [Dong et al. 2014] in following ways. First,
we investigate social strategies from not only the voice phone call network but also
the short text messaging network and further conclude the networking differences
and similarities between human phone call and text messaging behaviors. Second,
we propose to use a null model to validate the statistical significance of social strate-
gies observed from network structures. Third, we generalize the previous prediction
model, which can only handle two dependent variables, to support multiple dependent
variables, enabling the simultaneous inference of any number of interrelated node at-
tributes. Fourth, we identify a new problem—coupled network demographic prediction

1http://www.dailymail.co.uk/news/article-2276752/Mobile-users-leave-phone-minutes-check-150-times-day.html
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Fig. 1. Evolution of demographic-based social strategies in human communication.

across two mobile operators. To solve the unique challenges raised in coupled networks,
we propose a variant version of the WhoAmI method—CoupledMFG. In order to han-
dle large-scale (coupled) networks, we further present a distributed learning algorithm
accompanying with the models. Finally, in addition to the prediction experiments in
[Dong et al. 2014], we demonstrate two real-world telecommunication applications:
one for the normal demographic prediction problem, that is, the prediction of one mo-
bile operator’s prepaid users’ demographics by the machine learning model trained on
its postpaid users, and the other one for the coupled network demographic prediction,
that is, the inference of competitors’ user profiles by using the model trained on one
operator’s own users.
Key Findings. Our study unveils the significant social strategies and their evolu-
tion across the lifespan in human communication, which are highlighted in Figure
1. Specifically, we discover that younger people are very active in broadening their
social circles, while older people tend to maintain smaller but more closed connec-
tions. We find that the communications between two younger opposite-gender users
are more frequent than those between same-gender users. We also observe frequent
cross-generation interactions that are essential for bridging age gaps in family, work-
place, education, and human society as a whole [Mead 1970]. We unveil that people
expand both same-gender and opposite-gender connections during their active dat-
ing period (18 – 34 years old), while they maintain only same-gender social groups
in mobile communication after 35 years of age. Finally, our analysis shows strong in-
terrelations between users’ age and gender. For example, a 20-year-old female’s social
networking behavior is distinct from not only a 20-year-old male’s, but also from a
50-year-old female’s.
Demographic Prediction. Based on these interesting discoveries, we further study
to what extent users’ demographic information can be inferred by mobile social net-
works. We formally define a double-label classification problem. The objective is to
simultaneously infer users’ gender and age by leveraging their interrelations. This
problem is different from traditional classification problems, where only the correla-
tions between the dependent variable Y and feature vector X are considered. In this
problem, we are given two dependent variables Y (gender) and Z (age), and feature
vector X. We aim to capture the correlations between X and Y , X and Z, and the inter-
relations between Y and Z to simultaneously infer Y and Z. To address this problem,
we present the WhoAmI method, whereby the interrelations between multiple depen-
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Fig. 2. Demographic prediction performance. (Cf. §7 for details of the comparison methods).

dent variables can be modeled. The WhoAmI method is able to simultaneously infer
users’ gender and age. The experiments demonstrate that the proposed method can
achieve an accuracy of 80% for predicting users’ gender and 73% for predicting users’
age according to daily mobile communication patterns, significantly outperforming (by
up to 10% in terms of F1-Measure shown in Figure 2) several alternative methods (Cf.
§7 for details of the comparison methods). To scale up the proposed method to handle
large-scale networks, we further develop a distributed learning algorithm, which can
reduce the computational time to sub-linear speedup (9 – 10× with 16 CPU cores) by
leveraging parallel computing.

We further demonstrate one application scenario of demographic prediction in
telecommunication industry. In real world, there are two kinds of mobile subscriptions
of a mobile operator: postpaid2 and prepaid3. Specifically, a postpaid mobile user is re-
quired to create an account by providing detailed demographic information (e.g., name,
age, gender, etc.). However, a recent ITU report indicates that there is still a large por-
tion of prepaid users (also commonly referred to as pay-as-you-go) who are required to
purchase credit in advance of service use. Statistics show that 95% of mobile users in
India are prepaid, 80% in Latin America, 70% in China, 65% in Europe, and 33% in the
United States. Even in the U.S., the switch to prepaid plans was accelerating during
the economic recession from 2008. Prepaid services allow the users to be anonymous—
no need to provide any user-specific information. In this sense, mobile operators are
highly motivated to infer their prepaid users’ demographic profiles. We take one case
study to demonstrate the effectiveness of our discoveries and methodologies on this
real-world application of demographic prediction for prepaid users.
Coupled Network Demographic Prediction. In addition to its prepaid users, a
mobile operator also does not have the demographic information of users of another
operator. For example, in Figure 3 a mobile operator O1 could have the communication
logs of two O1 users, and one O1 user and one user of another operator O2 [Dong et al.
2015]. In real world, O1 does not have the access to the demographic profiles of its
competitor O2’s users. However, it is critical for mobile service providers to build the

2http://en.wikipedia.org/wiki/Postpaid mobile phone
3http://en.wikipedia.org/wiki/Prepaid mobile phone
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Fig. 3. An illustrative example of coupled networks across two mobile operators. The source net-
work is mobile operator O1 ’s network. O1 could also have the demographic information of its own users
(postpaid). The objective is to predict the demographic profiles of users in its competitor O2 ’s network.

demographic profiles of its competitors’ customers. This can help them make better
marketing strategies (e.g., identifying potential customers and preventing customer
churning). Moreover, by using demographic information, service providers can supply
users with more personalized services and focus on enhancing the communication ex-
perience.

In light of the real scenario in telecommunication, we formalize the coupled network
demographic prediction problem, where we have the structure and user demographic
information of one (source) network GS (e.g., O1) and the interactions between this
network and another (target) network GT (e.g., O2). The goal is to predict the demo-
graphic attributes of users in the target network. This problem faces several unique
challenges, including the cold start of the target network structure and as a result,
the asymmetry of source and target users’ graph-based features. To address them,
we present a coupled version of the WhoAmI method. Our experiments over six pairs
of mobile operators demonstrate the predictability of competitors’ user demographics,
enabling the potential for business intelligence across mobile operators.
Organization. We introduce the mobile networks in Section 2. We report the social
strategies that are discovered from human mobile communication networks in Section
3 and propose a null model to validate their statistical significance in Section 4. We
formalize the demographic prediction problems in Section 5. We present our solutions
for inferring user demographics in Section 6. Prediction results are demonstrated in
Section 7. Finally, we summarize the related work in Section 8 and conclude this work
in Section 9.

2. MOBILE NETWORK DATA WITH DEMOGRAPHICS
The dataset used in this paper is extracted from a collection of more than 1 bil-
lion (1,000,229,603) phone call and text messaging events from an anonymous coun-
try [Gonzalez et al. 2008; Ercsey-Ravasz et al. 2012; Dong et al. 2014; Dong et al. 2015],
which spans from Aug. 2008 to Sep. 2008. Notice that we only consider the communica-
tions that were made between users within this country. We construct two undirected
and weighted mobile communication networks from the de-identified and anonymous
data: a phone call network (referred to as CALL) and a text messaging network (re-
ferred to as SMS). Specifically, we view each user as a node vi and create an edge eij
between two users vi and vj if and only if they made reciprocal calls or text messages
(vi called vj and also vj called vi for at least one time during the observation period).

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0, Publication date: 2017.
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Table I. The statistics of mobile networks.

networks #nodes #edges

CALL network with user demographics (CALLd) 7,440,123 32,445,941
SMS network with user demographics (SMSd) 4,505,958 10,913,601
Reciprocal CALL network (CALLr) 4,927,095 16,674,164
Reciprocal SMS network (SMSr) 3,104,853 7,602,830
Largest Connected Component of reciprocal CALL network (CALLrl) 4,295,638 15,787,538
Largest Connected Component of reciprocal SMS network (SMSrl) 2,369,078 6,660,172
CALLrl with user demographics (CALLrld / CALL) 4,292,227 15,765,196
SMSrl with user demographics (SMSrld / SMS) 2,064,898 5,689,696

Table II. The distribution of mobile users’ gender and age.

Young (18 – 24) Young-Adult (25 – 34) Middle-Age (35 – 49) Senior (> 49)

female 4.77% 13.52% 16.16% 10.84%
male 5.23% 15.96% 19.73% 13.66%

The strength wij of the edge is defined as the number of communications between vi
and vj per month. Then we extract the largest connected component from each net-
work as our experimental networks. We also generate the networks by filtering out
the nodes that don’t have demographic information. Table I lists the order and size of
the resultant CALL and SMS networks. The data does not contain any communication
content.

In this dataset, around 45% of the users are female and 55% are male. We com-
pare the demographic population distribution of mobile users with the 2008 world
population distribution, which was released by the U.S. Census Bureau international
database4. We find that both female and male users between the ages of 20 and 55 are
strongly overrepresented in the mobile population compared to the global population,
while teenagers (under 18 years old) and the elderly (aged 80 or over) are underrep-
resented. Thus in our study, we focus on users aged between 18 and 80 years old. To
simplify the notations, we use F and M to denote the female and male users, respec-
tively. Following [Hu et al. 2007; Bi et al. 2013], we also split users into four groups
according to their ages: Young (18 – 24), Young-Adult (25 – 34), Middle-Age (35 – 49),
and Senior (> 49). The distribution of users’ gender and age is listed in Table II.

3. SOCIAL STRATEGIES IN MOBILE COMMUNICATION
Social strategies are used by people to meet their social needs that is, together with
being, having, and doing, considered among the basic human needs [Max-Neef et al.
1992]. Meeting with new people and strengthening existing relationships belong to
the category of social needs. The mobile communication data provides rich informa-
tion for discovering and characterizing human social strategies by which people build
and maintain social connections. Previous studies [Palchykov et al. 2012] show that
the strategies by which social needs are satisfied change over time, although the needs
are constant across one’s lifetime. In this section, we show how people communicate
with each other across their respective lifetime. Specifically, we investigate the in-
terplay of human communication interactions and demographic characteristics in the
perspective of micro-level network structures, including ego networks, social ties, and
social triads. We also use a null model to simulate the observations by randomly shuf-

4http://www.census.gov/idb/worldpopinfo.html
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Fig. 4. Correlations between demographics and network characteristics. C means attributes ob-
served from the CALL network and S means the SMS network. F denotes female and M denotes male.

fling users’ demographic profiles and report the statistical significance of the results
in Section 4.

3.1. Social Strategies on Ego Networks
An ego network of one person is defined by viewing himself or herself as the central
node and his or her one-degree friends as surrounding nodes [Freeman 1982]. Clearly,
one’s ego network is a sub-network of the original network. Figure 1 presents an il-
lustrative example of the evolution of one’s ego network. We first examine the charac-
teristics of the central node (ego) and then the distributions of this ego’s friends (ego
network) with respect to their demographic profiles.
Ego. We present a basic correlation analysis between network characteristics and
user demographics to examine how an individual’s gender and age influence her or his
ego social networks. In particular, we consider the following network metrics:

— Degree Centrality: the number of edges incident upon a node in the network;
— Neighbor Connectivity: the average degree of neighbors of a specific user.
— Triadic Closure: the local clustering coefficient (cc) of each user;
— Embeddedness: the degree that people are enmeshed in networks [Granovetter 1985].

More accurately, a user u’s embeddedness is defined as 1
|Nu|

∑
v∈Nu

|Nu∩Nv|
|Nu∪Nv| , whereNu

is the neighbors of u.

Figure 4 plots the correlations between the four network metrics and the users’ age.
From sub-figures 4(a) – 4(b), we observe that the degree and neighbor connectivity of
both female and male users achieve peak values around 22 years old, then decrease
with valleys around 38 – 40 years old. An interesting phenomenon is that before this
valley, the males have clearly higher scores on both metrics (degree and neighbor con-
nectivity), while the situation is reversed after this point.

From sub-figures 4(c) – 4(d), we see that both triadic closure and embeddedness
increase when users become older. Similar to the first two metrics, there is also a
reverse phenomenon at age 38 – 40. The difference lies in that the male’s triadic closure
and embeddedness are at first smaller than the female’s, and then become larger after
the reversion point. All four network metrics are observed at a 95% confidence interval.
Ego Networks. With the ego network of each user, we study the demographic ho-
mophily on both gender and age. The principle of homophily suggests that people tend
to be connected with those who are similar to them [Lazarsfeld and Merton 1954]. It
has been extensively studied and verified in both online social networks [Leskovec and
Horvitz 2008; Lou et al. 2013] and mobile networks [Dong et al. 2013; Kovanen et al.
2013].
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Fig. 5. Friends’ demographic distribution in ego networks. X-axis: (a) the age of a female ego in
CALL; (b) the age of male ego in CALL; (c) the age of a female ego in SMS; (d) the age of a male ego in
SMS. Y-axis: the age of the ego’s friends (positive: female friends, negative: male friends). The spectrum
color represents the friends’ demographic distribution.

Figure 5 shows friends’ demographic distribution for female and male users of dif-
ferent age in the CALL and SMS networks. The X-axis represents a central user’ age
from 18 to 80 years old and the Y-axis represents the demographic distribution of that
central user’ friends, in which positive numbers denote female friends’ age and nega-
tive numbers denote male friends’. The spectrum color, which extends from dark blue
(low) to yellow (high), represents the probability of one’s friends belonging to the cor-
responding age (Y-axis) and gender (positive or negative). Interestingly, there exist
highlighted diagonal lines in each sub-figure, which suggests that people tend to com-
municate with others of similar age. In particular, the age homophily is much stronger
for people aged between 35 to 55 years old in the CALL network, and 40 to 50 years
old in the SMS network. Simultaneously, the highlighted diagonals appear in the same
gender range in both networks, i.e. females appear in the positive Y range (F) in Fig-
ures 5(a), 5(c) and males in the negative Y range (M) in Figures 5(b), 5(d), which shows
the existence of a high degree of gender homophily in mobile phone behavior.
Social Strategies. From a sociological perspective, the results in Figures 4 and 5
can be also explained by different social strategies that people use to maintain their
social connections. First, younger people (who have higher degree centrality) are very
active in broadening their social circles, while older people (who have higher triadic
closure centrality cc) tend to keep smaller but more stable connections. This finding
from large-scale networks coincides with previous survey studies that older people
have lower rates of contact than young people [Marsden 1987; Cornwell 2011]. Second,
people tend to communicate with others of similar gender and age, i.e., gender and
age homophily in mobile communications. Third, young people put increasing focus on
the same generation and decreasing focus on the older generation, and the middle-
age people devote more attention on the younger generation even at the cost of age
homophily.

3.2. Social Strategies on Interpersonal Ties
An interpersonal tie is viewed as the connection between two people, and its strength
represents the extent of closeness of social contacts [Onnela et al. 2007], such as strong
ties [Krackhardt 1992; Shi et al. 2007] and weak ties [Granovetter 1973]. In mobile
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Fig. 6. Strength of social ties in the CALL and SMS networks. XY-axis: age of users with specific
gender. The spectrum color represents the number of phone calls (text messages) per month. (a), (b), (c), (e),
(f), and (g) are symmetric.

communication networks, tie strength is defined as the frequency of communications
between each pair of users [Onnela et al. 2007; Palchykov et al. 2012].

In Figure 6, we use heat maps to visualize the communication frequencies for differ-
ent demographics. Figures 6(a) and 6(e) report the average number of calls/messages
per month between two users. Figures 6(b) – 6(d) and 6(f) – 6(h) detail the analysis by
reporting the average numbers of calls/messages between two male users, two female
users, and one male and one female, respectively. Again, we discover highlighted diag-
onal lines in Figures 6(a) – 6(c), which correspond to the gender and age homophily. We
also notice that there are highlighted areas corresponding to cross-generation commu-
nications. In Figure 6(a), the color of cross-generation areas that extends from green
to yellow indicates that on average 13 calls per month have been made between people
aged 20 – 30 and those aged 40 – 50 years old. This potentially corresponds to phone
calls between parents and children, managers and subordinates, and advisors and ad-
visees, etc. These two discoveries can also be observed in Figures 6(e) – 6(g) in the SMS
network but not as obvious as in the CALL network.

In addition, we observe that the cross-generation phone call communications be-
tween female users seem to be much more frequent than those between male users (Cf.
Figures 6(b) and 6(c)). Moreover, from Figures 6(d) and 6(h), we observe a highlighted
yellow area between people aged 18-34 years old, which means that cross-gender com-
munications are more frequent than those between users of the same gender. A similar
observation has also been reported in the MSN network [Leskovec and Horvitz 2008].
Social Strategies. The social strategies unveiled from Figure 6 can be summarized as
follows. First, frequent cross-generation interactions are maintained to bridge age gaps
in both phone call and text messaging channels. Second, opposite-gender communica-
tion interactions among younger people are much more frequent than those between
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Fig. 7. Social triad distribution in the CALL and SMS networks. X-axis: the minimum age of three
users in a triad. Y-axis: the maximum age of three users. The spectrum color represents the distributions.

same-gender users. However, when people reach the 35 years of age, reversely, same-
gender interactions are more frequent than those between opposite-gender users.

3.3. Social Strategies on Triads
A triad is one of the simplest groupings of individuals in social networks [Easley and
Kleinberg 2010]. Three individuals form a triad if and only if each pair of them are
friends. Herein, we investigate how male and female users maintain their social triadic
relationships across their lifetime.

In Figure 7, the heat map visualizes the distribution of the minimum age (X-axis)
and maximum age (Y-axis) of three users in a closed social triad structure. Figures
7(a)/7(e) and 7(d)/7(h) show the same-gender triads: ‘FFF’ and ‘MMM’, and Figures
7(b)/7(f) and 7(c)/7(g) present the age distribution for users in opposite-gender triads:
‘FFM’ and ‘FMM’. Clearly, the triadic relationships are observed in all four kinds of
gender-triads (i.e., ‘FFF’, ‘MMM’, ‘FFM’ and ‘FMM’) among young people by high-
lighted yellow areas at the left-bottom corners of each sub-figure. When entering
middle-age (> 35 years old), people only maintain the same-gender triadic relation-
ships in mobile communications, which is revealed by the yellow diagonal lines in
Figures 7(a)/7(e) and 7(d)/7(h). The opposite-gender triadic relationships vanish when
people pass 35 years old observed in Figures 7(b)/7(f) and 7(c)/7(g). The instability of
opposite-gender triadic relationships and the persistence of same-gender triadic rela-
tionships across one’s lifetime are novel discoveries and reveal the dynamics of human
social strategies across their lifespan.

Furthermore, the cross-generation triadic relationships are found in the left-middle
light areas in each sub-figure. These left-middle light areas are almost isolated with
other highlighted areas in each sub-figure, then we are curious about the distribution
of the middle age of three users in one social triad. Our further study shows that the
middle age in these triads are similar to either the minimum age (60%) or the max-
imum age (40%) among them, which means there are around 60% cross-generation
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communication triads are composed of two youths and one middle-age people, for ex-
ample, 25-25-45 years old respectively in a triad, the remaining 40% are two middle-
age and one young people, for example, 20-40-40 years old, and no triads like 20-30-40
years old are observed in this nationwide communication networks.
Social Strategies. The dynamics of gender differences on social decisions indicate
the evolution of social strategies used by people to meet their social needs. People ex-
pand both the same-gender and opposite-gender social circles during the dating active
period. However, people’s attention to opposite-gender groups quickly disappears af-
ter entering into middle-age, and the insistence and social investment on same-gender
social groups last for a lifetime.

3.4. Summary
According to our comprehensive analysis on the interplay of demographic profiles and
mobile communications, we unveil striking gender- and age- based differences, which
reflect the dynamic social strategies that evolve as a function of the balance between
different social needs. In summary, we provide the following social phenomena relating
to mobile communications:

— Figure 4 demonstrates that younger people are active in broadening their social con-
nections, while older people have the tendency to maintain smaller but more closed
connections.

— Figure 5 confirms demographic homophily, that being said, people tend to interact
with others with similar gender and age in both phone call and text messaging chan-
nels.

— Figure 6 shows that the cross-gender social relationships exhibit more frequent com-
munications than the same-gender ones, and the cross-generation interactions are
maintained to pass the torch of family, workforce, and human knowledge from gen-
eration to generation in social society.

— Figure 7 unveils that people tend to expand their social connections with females
and males alike during younger and more dating-active period, and put more social
investment on maintaining same-gender social groups after entering into middle-age.

— In addition, the gap between the younger and older people in text-messaging channel
(e.g., Figure 7(e)) is larger than that in phone calls (Figure 7(a)), while the difference
between males and females (e.g., Figure 6(b) vs. 6(c)) in phone-call channel are more
significant than that in messaging communications (Figures 6(f) vs. 6(g)).

4. THE NULL MODEL IN NETWORKS
We validate the statistical significance of the social strategies observed in the CALL
and SMS networks in Section 3 by using a null model. The idea of the statistical test
is to compare the demographic-based observations x from empirical data to those {x̃}
provided by the null model, wherein the demographic profiles of users are randomly
shuffled [Kovanen et al. 2013; Dong et al. 2015b]. On the null model, we first ran-
domly assign the demographic profiles of the users on the underlying communication
networks, and then observe the social strategies that are derived from the randomly
allocated user demographics. We simulate the random process 10,000 times and get
the mean µ(x̃) and standard deviation σ(x̃) of the observations {x̃} on the null model.
For example, we use four data points selected from Figure 5 to illustrate the statistical
test, that is, two points (X=20, Y =60) and (X=20, Y =-20) from Figure 5(a) and 5(b),
respectively. Figure 8 reports the histograms of shuffled results {x̃} of the four points.
First, it is clear that the true values x (blue lines) observed from Figure 5 largely fall
out of the shuffled distributions (histogram plots). Further, we can see that the shuf-
fled distributions are close to the fitted normal distributions (red lines). Accordingly,
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Fig. 8. Illustrative cases of shuffled results and true value in CALL. We select two points from Figure
5(a) and two from Figure 5(b) to show the shuffled results. Blue line represents the true values from the data
(Figure 5); blue histograms plot the shuffled results; red line represents the fitted normal density curve.
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Fig. 9. Friends’ demographic distribution (shuffle). X-axis: (a) the age of a female ego in CALL; (b)
the age of male ego in CALL; (c) the age of a female ego in SMS; (d) the age of a male ego in SMS. Y-axis: the
age of the ego’s friends (positive: female friends, negative: male friends). The spectrum color represents the
friends’ demographic distribution.

we use z-score to examine the numerical gap between the empirical data x and the
randomly shuffled results {x̃} on the null model [Sprinthall 2011].

z(x) =
x− µ(x̃)

σ(x̃)

A z-score of 0 indicates that there exists no difference between empirical data and the
null model. A positive (negative) z-score represents that the empirical data is above
(below) the null model result. |z(x)| ≥ 3.3 (corresponding to p-value ≤ 0.001) represents
that the observation from the empirical data is extremely statistically significant.

The statistical tests are conducted for all the social strategies observed on ego net-
works, social ties, and social triads in mobile phone call and text messaging behavior.
We associate each observation figure of the social strategies presented in Section 3
with the shuffled results and z-score plots. Specifically, the results on ego networks
are shown in Figures 9 and 10. The shuffled results and z-scores on social ties in the
CALL and SMS networks can be found in Figures 11 and 12, respectively. Figures 13
and 14 present the values of shuffled means and z-scores of the social strategies on
social triad observed in both the CALL and SMS networks, respectively.

From the figures, we can see that there are large differences between the heatmaps
of the observations (data) and those of the means of 10,000 simulating results (shuffle).
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Fig. 10. Friends’ demographic distribution (z-score). X-axis: (a) the age of a female ego in CALL; (b)
the age of male ego in CALL; (c) the age of a female ego in SMS; (d) the age of a male ego in SMS. Y-axis: the
age of the ego’s friends (positive: female friends, negative: male friends). The spectrum color represents the
friends’ demographic distribution.
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Fig. 11. Strength of social ties in the CALL and SMS networks (shuffle). XY-axis: age of users with
specific gender. The spectrum color represents the number of calls (messages) per month. (a), (b), (c), (e), (f),
and (g) are symmetric.

Moreover, we find that the color of the areas we are interested in from each z-score plot
tells that |z(x)| ≥ 3.3. That being said, each social strategy we observed in the mobile
communication networks is (extremely) statistically significant.
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Fig. 12. Strength of social ties in the CALL and SMS networks (z-score). XY-axis: age of users with
specific gender. The spectrum color represents the number of calls (messages) per month. (a), (b), (c), (e), (f),
and (g) are symmetric.
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Fig. 13. Social triad distribution in the CALL and SMS networks (shuffle). X-axis: minimum age of
three users in a triad. Y-axis: maximum age of three users. The spectrum color represents the distributions.
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(d) Triad MMM in CALL
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(h) Triad MMM in SMS

Fig. 14. Social triad distribution in the CALL and SMS networks (z-score). X-axis: minimum age of
three users in a triad. Y-axis: maximum age of three users. The spectrum color represents the distributions.

5. DEMOGRAPHIC PREDICTION PROBLEMS
Let G = (V,E, Y, Z) denote the undirected and weighted mobile network, where V is a
set of |V | = N users and E ⊆ V × V is a set of communication edges (CALL or SMS)
between users. Each user vi ∈ V is associated with demographic information, i.e.,
Gender yi ∈ Y and Age zi ∈ Z. X is the attribute matrix, where each row xi represents
an |xi| dimensional feature vector for user vi. Given this, we formalize our problem as
follows.

PROBLEM 1. Demographic Prediction: Given a partially labeled network G =
(V L, V U , E, Y L, ZL) and the attribute matrix X, where V L is a set of users with labeled
demographic information Y L and ZL, and V U is a set of unlabeled users, the objective
is to learn a function

f : G = (V L, V U , E, Y L, ZL),X→ (Y U , ZU )

to simultaneously predict users’ gender and age, where Y U , ZU are the demographic
information for the unlabeled users V U .

Different from previous work on demographic prediction [Bi et al. 2013; Hu et al.
2007], where users’ gender and age are inferred by modeling P (Y |X) and P (Z|X) sepa-
rately (see Figure 15), our problem here is to model P (Y,Z|G,X) for the joint inference
of users’ gender and age. Specifically, we leverage not only the correlations between X
and Y /Z but also the structural correlations among nodes and interrelations between
gender Y and age Z. The motivation here comes from the fact that there exist strong
netowrk effects and demographic interrelations in human communication behavior,
which was demonstrated in Section 3. For example, a 20-year-old female’s behavior is
distinct from not only a 20-year-old male’s, but also from a 50-year-old female’s.

In addition, there are usually multiple mobile operators in telecommunication
market—for example, the two mobile operators in Figure 3. A mobile operator O1 could
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Fig. 15. An illustration of the proposed demographic prediction problem. In addition to model the
correlations between labels (Y or Z) and features (X) of each node, we propose to further model the structural
correlations among different nodes (G) as well as the interrelations between one node’s two labels, that is,
Y and Z.

have the communication records of its users and also the communication logs between
its users and users of another operator O2 [Dong et al. 2015]. It would be very useful
for the operator O1 to have the demographic profiles of users of its competitor O2 for
business intelligence and precision marketing, such as acquiring new users from and
preventing customer churning to competitors.

To solve this problem, we define the concept of coupled networks and formulate the
problem of coupled network demographic prediction across multiple operators in mo-
bile communication.

Definition 5.1. Coupled Networks: Given a source network GS = (V S , ES) and
a target network GT = (V T , ET ), they compose coupled networks if there exists a
cross link eij with one node vi ∈ V S and the other node vj ∈ V T . The cross network
GC = (V C , EC) is a bipartite network containing all the cross links in the coupled
networks.

Figure 3 shows a typical example of coupled networks with the left network of mobile
operator O1 as the source network GS and the right network of another mobile oper-
ator O2 as the target network GT . The links between these two networks represent
the communications between users belonging to these two different mobile operators,
which, with their linked nodes in GS and GT , constitute the cross network GC .

PROBLEM 2. Coupled Network Demographic Prediction: Given the source net-
work GS with its users’ demographic profiles Y S , ZS and the cross network GC in cou-
pled networks G = (GS , GT , GC), the task is to find a predictive function:

f : GS = (V S , ES , Y S , ZS), GC = (V S , V T , EC)→ (Y T , ZT )

where Y T and ZT are the set of demographic labels—gender and age—of users V T in
the target network GT .

The difference between the coupled network demographic prediction and Problem
1 lies in the cold start of network structures between target users in Problem 2. For
example, in Figure 3, the triangle structures (v6, v7, v8), (v1, v6, v7) can not be observed
by the operator O1, making it impossible to leverage the correlations built upon these
structures in the prediction task. The real-world and yet challenging setting of the
coupled network demographic prediction can be directly applied by a mobile operator
to infer the demographic profiles of its competitors’ users, facilitating the acquirement
of new users from competitor operators.
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We infer users’ gender as a binary classification problem, i.e., Female or Male, and
infer users’ age as a four-class classification problem by splitting users’ age into the
four groups mentioned above [Hu et al. 2007; Bi et al. 2013], i.e., Young (18 – 24),
Young-Adult (25 – 34), Middle-Age (35 – 49), and Senior (> 49). The distribution of
users’ gender and age is listed in Table II.

6. THE WHOAMI FRAMEWORK
Leveraging the insights gleaned from our network analysis in Section 3, we develop
a unified model to capture not only the correlations between users’ communication
behaviors and demographic profiles but also the interrelations among users’ different
demographic attributes. In our previous work [Dong et al. 2014], the proposed DFG
(Double Label Factor Graph) model is only capable of handling the interrelations be-
tween two dependent variables (e.g., gender Y and age Z). In this extension, we gener-
alize the WhoAmI method to a Multiple Label Factor Graph Model (MFG). The MFG
is general to model the interrelations among multiple (more than two) dependent vari-
ables. To illustrate the way that MFG captures the interrelations between multiple
labels, we add a non-existing label S (e.g., social status) to a node, in addition to its
gender Y and age Z. However, notice that in the mobile data only two labels—gender
and age—are available. Therefore, in Section 7 we use the proposed approach to pre-
dict these two demographic attributes.

To infer users’ demographic attributes in coupled networks, we propose a variant of
the Multiple Label Factor Graph—CoupledMFG—that is able to address the unique
challenges presented in this task. To handle large-scale networks, we further develop
a distributed learning algorithm.

6.1. Multiple Label Factor Graph
We define an objective function by maximizing the conditional probability of users’
gender Y , age Z, and S given their corresponding attributes X and the input network
structure G, i.e., Pθ(Y,Z, S|G,X). The factor graph [Kschischang et al. 2001] provides a
way to factorize the “global” probability as a product of “local” factor functions, which
makes the maximization simple, i.e.,

P (Y, Z, S|G,X) =
P (X, G|Y,Z, S)P (Y, Z, S)

P (X, G)
∝ P (Y,Z, S|G)P (X|Y,Z, S) (1)

∝
∏
vi∈V

P (xi|yi, zi, si)
∏
c∈G

P (Yc, Zc, Sc)

where P (Yc, Zc, Sc) denotes the probability of labels given the network structure c and
P (xi|yi, zi, si) is the probability of users’ attributes xi given the labels yi, zi, and si.

Our proposed model consists of three kinds of factor functions. The first one is an
attribute factor f(yi, zi, si,xi) for capturing correlations between users’ demographics
and communication attributes. The second one is a dyadic factor g(ye, ze, se) for mod-
eling correlations between users’ demographics and their direct relationships in ego
networks, where Yc in Eq. 1 is represented as ye (yi and yj), Zc is denoted by ze (zi and
zj), and Sc by se (si and sj) iff eij ∈ E. The third one is a triadic factor h(yc, zc, sc) for
correlating users’ demographics and triadic relationships in their ego networks. Sim-
ilarly, yc refers to yi, yj , yk, while zc refers to zi, zj , zk, and sc is si, sj , sk when three
users vi, vj , vk form a closed triangle structure.

Therefore, the joint distribution can be further factorized as:

P (Y, Z, S|G,X) =
∏
vi∈V

f(yi, zi, si,xi)×
∏
eij∈E

[g(ye, ze, se)]×
∏

cijk∈G
[h(yc, zc, sc)] (2)
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Fig. 16. An illustration of the proposed model. y., z. and s. indicate the gender, age, and newly added
label of the user vi. xi denotes communication attributes of the user vi extracted from the mobile network
G. f(yi, zi, si,xi), g(ye, ze, se), and h(yc, zc, sc) respectively represent attribute factor, dyadic factor, and
triadic factor in the proposed model.

Figure 16 shows an illustration of our proposed model, which consists of two layers
of nodes. The bottom layer contains random variables and the upper layer contains
the three kinds of factors introduced above. The joint distribution over the whole set
of random variables can be factorized as the product of all factors. Specifically, we
instantiate the three factors as follows.
Attribute factor. We use this factor f(yi, zi, si,xi) to represent the correlation be-
tween user vi’s demographics and her/his network characteristics xi. More specifically,
we instantiate the factor by an exponential-linear function:

f(yi, zi, si,xi) =
1

Wv
exp{αyizisi · xi} (3)

where α is one parameter of the proposed model, and Wv is a normalization term. For
each (yi, zi, si), αyizisi is an |x|-length vector, where the k-th dimension indicates how
xik distributes over (yi, zi, si). For example, let’s say xik represents the degree of user
vi. This factor can capture the fact that people with different demographic profiles have
the different network properties shown in Figure 4. Traditional probabilistic graphical
models can only model the correlations between features and one single type of depen-
dent variable, while our proposed model captures how the features jointly distribute
over multiple dependent variables.
Dyadic factor. We next define the dyadic factor g(ye, ze, se), where eij ∈ E, to repre-
sent the correlation between user vi and vj ’s demographic information. Specifically, we
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have

g(ye, ze, se) =



1
We1

exp{β1 · g′1(yi, yj)}
1

We2
exp{β2 · g′2(yi, zi)}

· · ·
1

We14
exp{β14 · g′14(zj , si)}

1
We15

exp{β15 · g′15(si, sj)}

(4)

where βp is the model parameter for this type of factor, g′p(·) is defined as a vec-
tor of indicator functions, and Wep is the normalization term. We can enumerate
in total C2

6 = 15 different combinations of each pair of demographic variables from
(yi, yj , zi, zj , si, sj). The intuition behind this is that vi’s friends’ demographics dis-
tribute differently by varying either vi’s own age or gender or social status, as Figure 5
suggests.
Triadic factor. We finally define the triadic factor h(yc, zc, sc) to represent the cor-
relation among the demographics of social triads, where c = {vi, vj , vk|eij , ejk, eik ∈ E}
indicates the closed triangle structure in G. More specifically, we have

h(yc, zc, sc) =



1
Wc1

exp{γ1 · h′1(yi, yj , yk)}
1

Wc2
exp{γ2 · h′2(yi, yj , zi)}

· · ·
1

Wc83
exp{γ83 · h′83(si, sj , zk)}

1
Wc84

exp{γ84 · h′84(si, sj , sk)}

(5)

where h′q(·) is the vector of indicator functions and Wcq is the normalization term
similar with Wep . There are C3

9 different kinds of three-variable enumerations from
(yi, yj , yk, zi, zj , zk, si, sj , sk). We use these triadic factors to model the distributions of
user demographics within a social triangle. See details in Figure 7.

Finally, combining Eqs. 3, 4, 5 into Eq. 2, we define the objective function as the
log-likelihood of the proposed model as:

O(α, β, γ) =
∑
vi∈V

αyizisixi +
∑
eij∈E

15∑
p=1

βpg
′
p(·) +

∑
cijk∈G

84∑
q=1

γqh
′
q(·)− logW (6)

where W = WvWeWc is the global normalization term, We =
∏15
ep=1Wep , and Wc =∏84

cq=1Wcq .
The technical novelty of the proposed model is that it considers different types of

labels in a unified framework, which differentiates our model from traditional clas-
sification models. By considering three types of labels in this special case, the main
advantage is that our model can characterize the interrelations between different de-
mographic labels as well as the correlations between labels and features.

6.2. Feature Definition
Given a network with labeled and unlabeled users, the goal is to infer unlabeled users’
demographic information, which is in accordance with the real-world application sce-
narios. There are two types of features designed in our experiments, namely nonstruc-
tural attribute features and structural features. Specifically, given an ego network with
one central user v and her/his direct friends, we extract three kinds of attribute fea-
tures for this central user v as follows:
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Individual attributes are extracted based on the network topological properties dis-
cussed in Section 3.1. It includes the degree, neighbor connectivity, clustering coeffi-
cient, embeddedness, and weighted degree (#calls or #messages) of each node.

Friend attributes are used to model the demographic distribution of v’s direct friends
in her/his ego network, including the number of connections to female, male, young,
young-adult, middle-age, and senior friends. In the prediction setting, not all friends
of the central user v are labeled with gender or age information, so we extract the
friend attributes only based on her/his labeled friends.

Circle attributes refer to the triadic demographic distribution of v’s ego network.
Because we aim to infer the central user v’s demographics, we count the numbers of
different gender triads, i.e., ‘FF -v’, ‘FM -v’, ‘MM -v’, and different age-group triads.
Let A/B/C/D denote the young/young-adult/middle-age/senior age-groups, respectively.
There are in total ten kinds of triads based on age-groups: ‘AA-v’, ‘AB-v’, ‘AC-v’, ‘AD-v’,
‘BB-v’ ,‘BC-v’ ,‘BD-v’, ‘CC-v’, ‘CD-v’, ‘DD-v’.

Table III lists 24 nonstructural attribute features used in our models. Notice that
friend and circle attributes can only be extracted from v’s labeled friends. The three
types of attribute features—individual, friend, and circle attributes — are captured by
the attribute factor in our MFG model (Cf. Eq. 3).

In addition, the structural features, captured by the dyadic factor (Cf. Eq. 4) and
triadic factor (Cf. Eq. 5), are designed to model the demographic distributions over
edges and triangles with both labeled and unlabeled users, which forms one of the
advantages of the proposed factor graph-based model. Together with nonstructural
friend attributes, structural features covered by dyadic factors form friend features.
Similarly, circle features are composed of nonstructural circle attributes and triadic
structural features.

6.3. WhoAmI Learning and Inference
The goal of learning the WhoAmI method is to find a configuration for the free param-
eters θ = {α, β, γ} that maximize the log-likelihood of the objective function O(θ) in
Eq. 6 given by the training set, i.e., θ? = arg maxO(θ).
Learning. We first introduce how we learn the model in a single-processor configura-
tion, and then explain how to extend the learning algorithm to a distributed one for
handling large-scale networks.

To solve the optimization problem, we adopt a gradient decent method (or a Newton-
Raphson method). Specifically, we derive the objective function with respect to each
parameter with regard to our objective function in Eq. 6.

∂O(θ)

∂α
= E[

∑
vi∈V

xi]−EPα(Y,Z,S|X)[
∑
vi∈V

xi]

∂O(θ)

∂β
= E[

∑
eij∈E

g′(·)]−EPβ(Y,Z,S|X,G)[
∑
eij∈E

g′(·)]

∂O(θ)

∂γ
= E[

∑
cijk∈G

h′(·)]−EPγ(Y,Z,S|X,G)[
∑

cijk∈G
h′(·)]

(7)

where in the first Equation of Eq. 7, E[
∑
vi∈V xi] is the expectation of the summation

of the attribute factor functions given the data distribution over Y , Z, S, and X in
the training set, and EPα(Y,Z,S|X)[

∑
vi∈V xi] is the expectation of the summation of the

attribute factor functions given by the estimated model. The other expectation terms
have similar meanings in the other two equations. As the network structure in the
real-world may contain cycles, it is intractable to estimate the marginal probability in
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Table III. Definition of nonstructural attribute features modeled by the attribute factor in Eq. 3.

Attribute Type Name Description

Individual attributes

degree number of contacts
neighbor connectivity average degree of neighbors
clustering coefficient local clustering coefficient
embeddedness the degree that people are embedded in networks
weighted degree number of communications (#calls or #messages)

Friend attributes

#female-friends number of female contacts
#male-friends number of male contacts
#young-friends number of young contacts
#young-adult-friends number of young-adult contacts
#middle-age-friends number of middle-age contacts
#senior-friends number of senior contacts

Circle attributes

#v-FF-triangles number of FF -v triangles in v’s ego network
#v-FM-triangles number of FM -v triangles in v’s ego network
#v-MM-triangles number of MM -v triangles in v’s ego network
#v-AA-triangles number of AA-v triangles in v’s ego network
#v-AB-triangles number of AB-v triangles in v’s ego network

A: young #v-AC-triangles number of AC-v triangles in v’s ego network
B: young-adult #v-AD-triangles number of AD-v triangles in v’s ego network
C: middle-age #v-BB-triangles number of BB-v triangles in v’s ego network
D: senior #v-BC-triangles number of BC-v triangles in v’s ego network

#v-BD-triangles number of BD-v triangles in v’s ego network
#v-CC-triangles number of CC-v triangles in v’s ego network
#v-CD-triangles number of CD-v triangles in v’s ego network
#v-DD-triangles number of DD-v triangles in v’s ego network

the second terms of Eq. 7. In this work, we adopt Loopy Belief Propagation (LBP) [Mur-
phy et al. 1999] to calculate the marginal probability of P (Y,Z, S) and compute the
expectation terms.

The learning process then can be described as an iterative algorithm. Each iteration
contains two steps: First, we call LBP to calculate marginal distributions of unknown
variables Pα(Y,Z, S|X). Second, we update α, β, and γ with the learning rate η by Eq.
8. The learning algorithm terminates when it reaches convergence.

θnew = θold + η · ∂O(θ)

∂θ
(8)

Prediction. With the estimated parameter θ, we can now assign the value of un-
known labels Y,Z, S by looking for a label configuration that will maximize the objec-
tive function, i.e. (Y ∗, Z∗, S∗) = arg max O(Y,Z, S|G,X, θ). In this paper, we use the
max-sum algorithm [Kschischang et al. 2001] to solve the above problem.
Complexity. The complexity of the learning algorithm at each iteration is O(|V | ·Q+
|E| · Q2 + |C| · Q3), where |V |, |E|, |C| are the numbers of users, edges, and triads in
the graph, respectively, and Q is the number of classes of multiple labels. Specifically,
Q = |Y | × |Z| × |S| in the presented model, where |Y | = 2 is the number of gender
labels—male and female, |Z| = 4 is the number of age labels—young, young-adult,
middle-age, and senior, and |S| is the number of religion labels (assumed). Therefore,
when learning over only gender and age in our prediction experiments, Q is equal to
|Y | × |Z|, that is 8.
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Fig. 17. An illustration of the master-slave learning scheme.

6.4. Distributed Learning
We further leverage a distributed framework [Tang et al. 2016; Tang et al. 2013] to
scale up our model to handle these large-scale mobile networks. Our distributed learn-
ing algorithm utilizes a Message Passing Interface (MPI) framework, by which we can
split the network into small parts and learn the parameters on different processors.
As most computing time is consumed in the first step of our learning algorithm intro-
duced above, we speed up this learning process by distributing multiple ‘slave’ com-
puting processors for this step. The second step is calculated in the ‘master’ processor
by collecting the results from all ‘slave’ processors on the first step. An illustrative flow
of the two steps can be found in Figure 17.

Specifically, the master-slave based distributed learning framework [Tang et al.
2016; Tang et al. 2013] can be described in two phases. At the first phase, the large-
scale network G is partitioned into K sub-networks G1, · · · , Gk, · · · , GK of balanced
size, and the K sub-networks are distributed to K ‘slave’ processors. At the second
phase, we iteratively learn the parameters in two steps. At each iteration i, first, each
processor can compute the local belief on its sub-network Gk according to Eq. 9.

Mk,i
t (χt) ∝ fk(χt, ·)

∏
u∈Γ(t)

mk,i
u→t(χt) (9)

where χt denotes the nodes in the local factor graph, Γ(t) denotes χt’s neighbors, and
mk,i
u→t denotes the belief (message) propagated from node χu to node χt, which is defined

as the following equation.

mk,i
u→t(χt) ∝

∑
χu

fk(χu, ·)gk(χu, χt)h
k(χu, χt, ·)

∏
s∈Γ(u)\t

mk,i−1
s→u (χu) (10)

wherein the message will be normalized. Second, the ‘master’ processor collects all
local results obtained from different subgraphs and computes the marginal probability
P (χt|·) according to Eq. 11, and updates the parameters according to Eqs. 7 and 8.

P i(χt|·) = σ

K∑
k=1

Mk,i
t (χt) (11)
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ALGORITHM 1: Distributed CoupledMFG Learning Algorithm.

Input: The source network GS , the cross network GC , the node set V T of the target network
GT , and the learning rate η

Output: Parameters θ = (αS , αT , β, γ)

Master initializes θ ← 0;
Master constructs the coupled factor graph according to Eq. 12 with GS , GC , V T ;
Master partitions the input mobile network into K subgraphs of relatively equal size;
Master completes the broken structural factors with virtual nodes;
Master forwards all subgraphs to slaves [Communication];
repeat

Master broadcasts θ to Slaves [Communication];
for k = 1→ K do

Slave k computes local belief according to Eqs. 9 and 10;
Slave k sends the local belief to Master [Communication];

end
Master calculates the marginal distribution for each variable according to Eq. 11;
Master calculates the gradient for each parameter according to Eq. 7;
Master updates the parameters according to Eq. 8;

until Convergence;

where σ is the normalization constant. This phase is repeated until convergence.
There are three notes for our model implementation. In order to achieve the balance

among different slaves, we partition the nationwide mobile network into K subgraphs
of roughly equal size. The second one is that we first extract all features for each user
from the original full network. We then split it into subgraphs that are handled by
each ‘slave’ processor.

The third point worth noting is that a structural factor has to be eliminated in the
distributed learning framework if it is defined over several nodes that belong to differ-
ent subgraphs—for example, the triangle structures (v1, v2, v3) and (v1, v3, v4) in Figure
17. To address this issue, we propose to use virtual nodes [Tang et al. 2016; Tang et al.
2013] to construct the broken structural factors. For example, to complete the triad
factor over the triangle (v1, v2, v3) that would be ignored in G1 in Figure 17, we design
a virtual node v′3 in G1. In doing so, the factor graph over G1 will capture the struc-
tural correlations of the three users’ demographic information. As the completion of
the triangle (v1, v2, v3) in G1, it will not be constructed in the other subgraph, that is,
G3. With that said, if three nodes of a triangle are distributed into three subgraphs,
such as (v1, v3, v4), one of the three involved subgraphs will be randomly selected to
complete the triangle and leave the other two ignored.

6.5. Coupled Network Learning
Finally, we design a variant of the WhoAmI method to address the challenges in cou-
pled network demographic prediction. As illustrated in Section 5, the problem faces
two unique challenges. First, the missing of the target network structure makes it im-
possible to define triad factors g(·) over three target users, such as the triangle struc-
ture (v6, v7, v8) in Figure 3. Second, users’ individual features across different mobile
operators are asymmetric, due to the sparsity of the target network. For example, the
connections between user v1 and users from both the same operator O1 (v2, v3, v4, v5)
and the other operator O2 (v6, v7) are observed for counting v1’s degree centrality, while
for user v6 in O2, the associations with O1’s users (v1, v4) can be observed, and those
with target users (v7, v8) are not observable. In this context, the individual features of

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0, Publication date: 2017.



0:24 Y. Dong et al.

source and target users follow different distributions, making it infeasible for a super-
vised learning framework.

In light of these issues and our previous work on coupled link prediction [Dong et al.
2015], we propose the coupled version of the WhoAmI method—CoupledMFG. By tak-
ing the coupled mobile networks as the input of a factor graph model, we have the
following joint distribution over it.

P (Y,Z, S|GS , GC ,X) =
∏

vi∈V S
fS(yi, zi, si,xi)×

∏
vi∈V T

fT (yi, zi, si,xi)

×
∏

eij∈ES
[gS(ye, ze, se)]×

∏
eij∈EC

[gC(ye, ze, se)] (12)

×
∏

cijk∈GS
[hS(yc, zc, sc)]×

∏
cijk∈GC

[hC(yc, zc, sc)]

This joint distribution factorizes all factors over the available structures in coupled
networks. The first two terms model the attribute factors for users in source and tar-
get networks, respectively. Recall that one of the challenges is the asymmetry of users’
individual attributes across these two networks, making it desired to separately model
these two groups of attribute factors fS(·) and fT (·). The remaining four terms cap-
ture the structural correlations in coupled networks. Specifically, the third and fourth
terms model the dyadic correlations, and the fifth and sixth terms model the triadic
correlations in the source and cross networks, respectively. Further, all the latent vari-
ables in gS(·) and hS(·) are labeled, while only partial of latent variables in gC(·) and
hC(·) are known to the model. Take the triad factor hC(·) over the triangle (v1, v4, v6)
in Figure 3 as an example, user v6’s demographic attributes are not available—in fact,
they are the objective of the prediction model—and the demographics of users v1 and
v4 are labeled for the learning algorithm.

One necessary question arises: Do the demographic correlations over edges g(·) and
triangles h(·) follow the same distribution in source and cross networks? Our examina-
tion shows that there exists no significant distinction on the demographic distributions
between source and cross networks. With that said, the semi-supervised nature of the
proposed WhoAmI method enables the joint modeling of structural factors (g(·) and
h(·)) across source and target networks. To do so, we model the structural factors into
the same parameter space. Specifically, we have the following log-likelihood objective
function for the CoupledMFG model.

O(α, β, γ) =
∑
vi∈V S

αSyizisix
S
i +

∑
vi∈V T

αTyizisix
T
i

+

15∑
p=1

βp
∑

eij∈ES∪EC
g′p(·) +

84∑
q=1

∑
cijk∈GS∪GC

γqh
′
q(·)− logW (13)

where the two different parameters αS and αT are designed to separately model the
attribute factors in source and target networks, and on the other hand, both the param-
eters β and γ are used to simultaneously model the dyadic and triadic factors across
source and cross networks. In doing so, the CoupledMFG model is enabled to handle
the two challenges in coupled network demographic prediction—the sparseness of the
target network and as a result, the asymmetry of individual features in source and
target networks.
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The distributed learning algorithm for CoupledMFG is presented in Algorithm 1.
In the algorithm, we also mark the communications between Master and Slaves. The
learning algorithm will assign the target users (unlabeled) with demographic labels
that maximize the marginal probabilities.

7. EXPERIMENTS
We present the effectiveness and efficiency of our proposed WhoAmI method on demo-
graphic prediction by various experiments. The code used in the experiment is publicly
available5.

7.1. Experiment Setup

Data and Evaluation. We use two large-scale mobile networks, CALL and SMS, to
infer users’ gender and age. Detailed data information is introduced in Section 2. To
infer user demographics effectively for mobile operators, we only consider active users
who have at least five contacts in two months. After filtering out non-active users, there
are 1.09 million and 304,000 active users in the CALL and SMS networks, respectively.
We repeat the prediction experiments ten times, and report the average performance in
terms of weighted Precision, Recall, and F1-Measure. We consider weighted evaluation
metrics because every class in female/male or young/young-adult/middle-age/senior is
as important as each other.

All code is implemented in C++, and prediction experiments are performed in a
server with four 16-core 2.4 GHz AMD Opteron processors with 256GB RAM. We use
the speedup metric with different numbers of computing cores (1-16) to evaluate the
scalability of our distributed learning algorithm.
Comparison methods. We compare our proposed WhoAmI method that can capture
the interrelation between two types of labels (gender and age) with different classifica-
tion algorithms, including Logistic Regression (LRC), Support Vector Machine (SVM),
Naive Bayes (NB), Random Forest (RF), Bagging (Bag), Gaussian Radial Basis Func-
tion Neural Network (RBF), and Factor Graph Model (FGM). For LRC, NB, RF, Bag,
RBF, we employ Weka6 and use the default setting and parameters. For SVM, we use
liblinear7. For FGM, the model proposed in [Lou et al. 2013] is used. Note that our
proposed WhoAmI method is equal to FGM if we do not consider the interrelations be-
tween gender and age. In addition, other types of models have been used for capturing
interaction effects from data, such as hierarchical multi-level models [Gelman and Hill
2006; Raudenbush and Bryk 2002]. However, rather than detecting and modeling the
nested structures, the goal of this work is to demonstrate the effects of dyadic and tri-
adic correlations between users’ demographic attributes. Therefore, those models are
not considered in the experiments.

For all comparison methods, we use the same unstructured features (individual,
friend, and circle attributes) introduced in Feature Definition of Section 6.2. For the
graphical models, FGM and WhoAmI, the structure features (dyadic and triadic fac-
tors) are further used to model user demographics on network structure. The major
difference between our WhoAmI method and the FGM model is that WhoAmI can
capture not only the correlation between different users, but also the interrelation be-
tween two dependent variables of each user, i.e., gender and age.

5http://arnetminer.org/demographic
6http://www.cs.waikato.ac.nz/ml/weka/
7http://www.csie.ntu.edu.tw/ cjlin/liblinear/
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Table IV. Demographic prediction performance by weighted Precision, Recall, and F1-Measure.

Network Method
Gender Age

wPrecision wRecall wF1-Measure wPrecision wRecall wF1-Measure

CALL

LRC 0.7327 0.7289 0.7245 0.6350 0.6466 0.6337
SVM 0.7327 0.7287 0.7242 0.6369 0.6463 0.6273
NB 0.7222 0.7227 0.7222 0.6246 0.6224 0.6223
RF 0.7437 0.7310 0.7415 0.6382 0.6482 0.6388
Bag 0.7644 0.7648 0.7643 0.6607 0.6688 0.6592
RBF 0.7283 0.7275 0.7252 0.6194 0.6272 0.6218
FGM 0.7658 0.7662 0.7659 0.6998 0.6989 0.6935

WhoAmI 0.8088 0.8076 0.8063 0.7266 0.7140 0.7132

SMS

LRC 0.6766 0.6758 0.6689 0.6702 0.6890 0.6630
SVM 0.6749 0.6750 0.6690 0.6654 0.6884 0.6607
NB 0.6231 0.6655 0.6603 0.6563 0.6588 0.6570
RF 0.6399 0.6749 0.6757 0.6623 0.6775 0.6598
Bag 0.6905 0.6918 0.6901 0.6907 0.6987 0.6791
RBF 0.6712 0.6592 0.6468 0.6295 0.6640 0.6356
FGM 0.7132 0.7138 0.7133 0.7154 0.7154 0.7059

WhoAmI 0.7589 0.7549 0.7507 0.7409 0.7303 0.7337

7.2. Experiment Results
We report the demographic prediction performance for different methods in the CALL
and SMS networks. In prediction experiments, we use 50% of the labeled data in each
network as training set and the remaining 50% for testing.
Predictive performance. Table IV shows the prediction results of different algo-
rithms on the four prediction cases, i.e., gender and age predictions in the CALL and
SMS networks, respectively. Clearly our WhoAmI method yields better performance
than the other alternative methods in all four cases. The Bag method achieves the
best prediction results among all non-graphical methods. The FGM model outperforms
a series of non-graphical algorithms by modeling the correlations among structured
nodes via dyadic and triadic factors. The WhoAmI method outperforms FGM by fur-
ther leveraging the interrelations between users’ gender and age. In terms of weighted
Precision, Recall, and F1-Measure, WhoAmI achieves up to 10% improvements com-
pared with the baselines for the prediction of users’ gender and age. As for Accuracy,
the WhoAmI method can infer 80% of the users’ gender in the CALL network and 73%
of the users’ age in the SMS network correctly. Finally, we observe that the CALL net-
work can reveal more users’ gender information than the SMS network, as the overall
performance of gender prediction in CALL is about 5% higher than that in SMS. How-
ever, predicting age from text messaging behavior is relatively easier than predicting
it from phone call communications. The reason can be reasoned from the discoveries
in Section 3, where we find that the difference on the usage of text messages between
the young and senior people is more strong than that in phone call usage, resulting the
better performance in age prediction in SMS than CALL, while the gender homophily
in phone calls is more obvious than in messages, leading to the advantage when pre-
dicting gender from the CALL network.
Effects of demographic interrelation. We evaluate the effects of demographic
interrelation on the predictions. Without modeling the interrelation between gender
and age, our proposed WhoAmI method degenerates to a basic factor graph model
(FGM/WhoAmI-d). From Table IV, we clearly observe the 2% to 4% improvements
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Fig. 18. Feature Contribution Analysis. WhoAmI is the proposed model. WhoAmI-d is the basic version
of WhoAmI without modeling the correlation between gender and age. WhoAmI-df stands for further ignor-
ing friend features. WhoAmI-dc stands for further ignoring circle features. WhoAmI-dcf stands for ignoring
both friend and circle features.

achieved by WhoAmI to FGM on weighted F1-Measure. We further analyze feature
contributions for demographic prediction. Recall that in Feature Definition of Sec-
tion 6.2, besides the individual features, we introduced the friend features (friend
attributes and the dyadic factor) and circle features (circle attributes and the triadic
factor). By removing either friend or circle features, we evaluate the decrease in predic-
tive performance in terms of weighted F1-Measure, plotted in Figure 18. WhoAmI-df,
WhoAmI-dc, and WhoAmI-dfc stand for the removing of friend features, circle features,
and both of them, conditioned on WhoAmI-d without modeling gender and age inter-
relations. Clearly, we can see that for inferring gender, the performance when remov-
ing circle features drops more than when removing friend features, which indicates a
stronger contribution of circle features to gender prediction than friend features. How-
ever, for inferring users’ age, friend features are more telling than circle features. The
feature contribution analysis further validates our observations of demographic-based
social strategies, and demonstrates that the proposed model works well by capturing
the observed phenomena.
Scalability. We verify the distributed learning algorithm by partitioning the original
large-scale networks into multiple sub-networks based on users’ administrative areas.
Users’ areas are determined by their postal codes during subscription registration.
Each sub-network in one area is used as the input for a given core. By utilizing MPI,
our distributed algorithm can achieve 9-10× speedup with 16 cores with less than 2%
drop in performance. Basically, our learning algorithm can converge in 100 iterations,
and each iteration costs about 2 (SMS) or 5 minutes (CALL) for one single processor.
By leveraging a distributed learning algorithm, our WhoAmI model is efficient even
for large-scale networks with millions of nodes.
Application—predicting prepaid users. As introduced before, mobile operators
may not have demographic information of prepaid users, and the percentages of pre-
paid users in mobile operators of different countries are different, such as 95% in In-
dia, 80% in Latin America, 70% in China, 65% in Europe, and 33% in America. We
use different ratios of users as training data and the remaining as testing data. In this
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Fig. 19. Application. Performance of demographic prediction with different percentages of postpaid users.

way, we can simulate the effects of different percentages of prepaid users on predictive
performance. Figure 19 shows the prediction results when varying the percentage of
labeled users in the training set. Clearly, we can see rising trends as the training set
increases in Figure 19(a) and 19(b). This indicates the positive effects of training data
size on predicting the gender of mobile users. Specifically, we can see that in this sim-
ulation, the performance for predicting the gender of prepaid users can reach ∼70% in
India (5% users as training) in terms of weighted F1-Measure, ∼75% in China (30%
users as training), and ∼83% in America (67% users as training). The smooth lines in
Figure 19(c) and 19(d) reveal the limited contributions of training data size on predict-
ing age. We can see that in all cases, obvious improvements can be obtained by our
proposed WhoAmI method with different sizes of training data.

7.3. Coupled Network Demographic Prediction across Multiple Mobile Operators
We further study how the coupled variant of the WhoAmI method can be used by
a mobile operator to infer the demographic profiles of its competitors’ users. As the
example illustrated in Figure 3, a mobile operator O1 could have the communication
records of its users and also the communication logs between its users and users of
another operator O2 [Dong et al. 2015]. It would be very useful for the operator O1 to
have the demographic profiles of users of the competitor O2 for business intelligence.
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Table V. The number of active CALL users across different operators. #edges in Oi → Oi represents the number of edges between
two Oi users, and #edges in Oi → Oj represents the number of edges having one Oi endpoint and the other Oj endpoint.

O0 → O0 O0 → O1 O0 → O2 O1 → O1 O1 → O0 O1 → O2 O2 → O2 O2 → O0 O2 → O1

#users 608,589 608,589 608,589 292,848 292,848 292,848 183,893 183,893 183,893
#edges 1,291,086 534,064 342,845 424,394 534,064 205,487 208,452 342,845 205,487
degree 2.12 0.88 0.56 1.45 1.82 0.70 1.13 1.86 1.12

Table VI. The number of active SMS users across different operators. #edges in Oi → Oi represents the number of edges between
two Oi users, and #edges in Oi → Oj represents the number of edges having one Oi endpoint and the other Oj endpoint.

O0 → O0 O0 → O1 O0 → O2 O1 → O1 O1 → O0 O1 → O2 O2 → O2 O2 → O0 O2 → O1

#users 161,547 161,547 161,547 87,556 87,556 87,556 56,634 56,634 56,634
#edges 257,154 123,192 72,313 93,342 123,192 46,807 37,660 72,313 46,807
degree 1.59 0.76 0.45 1.06 1.41 0.53 0.66 1.28 0.83

In this mobile dataset, there are three major mobile operators. We denote each of
the three operators as O0, O1, and O2, respectively. Tables V and VI list the numbers
of active users in the CALL and SMS networks of each operator, and the numbers of
edges within and across different operators. We train the coupled WhoAmI model by
taking one operator’s network as the source network and another one’s as the target
network. In total, we construct six pairs of prediction cases in the CALL and SMS
networks, respectively, that is, O0 to O1, O0 to O2, O1 to O0, O1 to O2, O2 to O0, and O2

to O1.
Table VII shows the strong predictability of users’ demographic attributes across

each pair of mobile operators. In general we can see that the predictive performance
is very promising compared to the results in Table IV. Specifically, the results demon-
strate that the coupled WhoAmI method offers a 67% ∼ 80% predictability for infer-
ring competitor users’ gender and a greater than 65% potential for the inference of
their age. In other words, a mobile operator would know the demographic profiles of
as many as more than half of its competitors’ users, enabling the real-world applica-
tion of business intelligence in telecommunication, such as acquiring new users from
competitors through precision marketing.

We also notice that the prediction cases with a larger mobile operator (more users)
as the training data and a smaller operator as the targeting data perform better than
those with them exchanged, i.e., the cases O0 to O1, O0 to O2, and O1 to O2 outperform
the cases O1 to O0, O2 to O0, and O2 to O1, where the size |O0| > |O1| > |O2|. Recall
that the coupled prediction task is set in real-world scenarios (Cf. Figure 3), that is, the
source operator can only observe partial information about the target network, making
it infeasible to compute the user distribution distances between its users and target
operator users. However, to reason about the outperformance when predicting from
Olarge to Osmall, we report the average number of connections of users from each oper-
ator in Tables V and VI. In a composite network of two operators, such as O0 (large)
and O1 (small), O1 users on average have more O0 connections than O1 connections
(1.82 vs. 1.45 in CALL and 1.41 vs. 1.06 in SMS). In other words, users in a small op-
erator associate more with users of a large operator than users of the same operator.
Not surprisingly, users in the large operator O0 have higher rates of same-operator
contacts than of O1 connections (2.12 vs. 0.88 in CALL and 1.59 vs. 0.76 in SMS). Con-
sequently, the large operator Olarge is able to collect rich structural information about
target users from its competitors Osmall who have smaller user base, due to those tar-
gets communicate more intensively with Olarge users than themselves — Osmall. This
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Table VII. Performance of coupled network demographic prediction across multiple mobile operators.

Network Method
Gender Age

wPrecision wRecall wF1-Measure wPrecision wRecall wF1-Measure

CALL

O0 to O1 0.7870 0.7800 0.7807 0.7075 0.7087 0.7039
O0 to O2 0.7936 0.7939 0.7818 0.7100 0.7140 0.7085
O1 to O0 0.7404 0.7403 0.7396 0.6986 0.6801 0.6696
O1 to O2 0.7986 0.7979 0.7982 0.7160 0.7167 0.7094
O2 to O0 0.7325 0.7282 0.7251 0.6900 0.6758 0.6622
O2 to O1 0.7810 0.7794 0.7768 0.7147 0.7090 0.6981

SMS

O0 to O1 0.7217 0.7222 0.7219 0.7172 0.7168 0.7049
O0 to O2 0.7329 0.7326 0.7327 0.7240 0.7259 0.7143
O1 to O0 0.6737 0.6713 0.6721 0.6897 0.6734 0.6540
O1 to O2 0.7347 0.7288 0.7285 0.7272 0.7245 0.7095
O2 to O0 0.6831 0.6846 0.6798 0.6885 0.6729 0.6497
O2 to O1 0.7232 0.7201 0.7143 0.7191 0.7152 0.6964

enables its advantage of more accurately inferring its competitors’ users, facilitating
its marketing strategies and outcomes.

8. RELATED WORK
The availability of mobile phone communication records has offered researchers many
ways to analyze mobile networks, greatly enhancing our understanding of human mo-
bile behavior [Saramaki and Moro 2015; Blondel et al. 2015].

To better model the macro properties of mobile communication networks, Onnela et
al. [Onnela et al. 2007] examine the local and global structure of a society-wide mo-
bile communication network. Hidalgo and Rodriguez-Sickert [Hidalgo and Rodriguez-
Sickert 2008] investigate the communication persistence in mobile phone networks.
Faloutsos et al. [Seshadri et al. 2008] first propose the double pareto-lognormal distri-
bution to model the macro properties in call networks, which is beyond power-law and
lognormal distributions. They further discover that not only the node properties but
also clique structures follow the power-law distribution in mobile networks [Du et al.
2009]. Recently, the emergence of work on human mobility [Gonzalez et al. 2008; Wang
et al. 2011; Dong et al. 2015a; Zheng 2015] and mobile communication networks [Ale-
davood et al. 2015; Stopczynski et al. 2014; Gao et al. 2013], where human activities
are tracked by mobile phones, provides us a means of understanding and predicting
mobile social behavior. Eagle et al. [Eagle et al. 2009] try to infer the friendship net-
work in mobile phone data. Tseng et al. [Shie et al. 2013] aim to discover the valu-
able user behavior patterns by mining in mobile commerce environments. Miritello et
al. [Miritello et al. 2013] discover that people follow underpinning strategies to interact
with each other due to limited communication capacity. Meng et al. [Meng et al. 2016]
study the correlations and differences between mobile and online networking behav-
ior. Calabrese and Blondel et al. [Calabrese et al. 2014; Blondel et al. 2015] surveys
the problems, techniques, and results by using mobile phones network data. However,
most previous work focuses on scaling the macroscopic properties of mobile networks,
while our work incorporates the micro-network structure to model human communi-
cation behavior in mobile networks.

Furthermore, there are several works on user demographic and profile modeling.
Existing works try to infer user demographics based on their online browsing [Hu
et al. 2007], gaming [Szell and Thurner 2013] and search [Bi et al. 2013] behaviors.
Herring surveys how online communications facilitate gender equality, in particular,
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empowering women to achieve social identity that are difficult in offline environment
[Herring 2003]. Leskovec and Horvitz [Leskovec and Horvitz 2008] examine the inter-
play of the MSN network and user demographic attributes. Mislove et al. study the
demogrpahics of Twitter users [Mislove et al. 2011]. Tang et al. extract and model the
researcher profiles in large-scale collaboration networks [Tang et al. 2008]. Matthew
and Macskassy [Michelson and Macskassy 2011] analyze both the text and the net-
work connectivity of the blogs to infer the demographics of bloggers. Dong et al. [Dong
et al. 2013] investigate the mobile call duration behavior in mobile social networks
and find that young females tend to make long phone calls [Smoreda and Licoppe
2000], in particular in the evening. Llimona et al.[Llimona et al. 2015] study the im-
pact of gender and call duration on self-reported customer satisfaction. Macskassy et
al. [Chakrabarti et al. 2014] also learn a label propagation model to infer users’ public
profiles in Facebook social network. Additionally, researchers have used network infor-
mation to identify user status differences in email [Dong et al. 2015c; Hu and Liu 2012]
and LinkedIn networks [Zhao et al. 2013]. Nokia research organized the 2012 Mobile
Data Challenge to infer mobile user demographics by using 200 individual communi-
cation records without network information [Mo et al. 2012; Ying et al. 2012]. Kovanen
et al. [Kovanen et al. 2013] utilize temporal motifs to reveal demographic homophily
in dynamic communication networks. The main difference between existing work and
our efforts lies in that existing work mainly analyzes demographics (gender, age, sta-
tus, etc.) separately, while our analysis and model consider the interrelation among
different demographic attributes.

9. CONCLUSION
In this paper, we model users’ social decisions on connecting and maintaining relation-
ships conditioned on their demographic profiles in large-scale mobile communication
networks. Significant social strategies are stemmed from the big mobile data. We find
young people put more focus on enlarging social circles; as they age, they have the ten-
dency to maintain small but closed social relationships. We also observe striking gen-
der differences in social triadic relationships across individuals’ lifespans. Specifically,
the relationships among three same-gender individuals are persistently maintained
over a lifetime, while the opposite-gender triadic relationships disappear when they
enter into their middle-age. Our null model demonstrates the statistical significance
of the evolution of social strategies in human communication. We further engage in an-
swering the question of to what extent user demographics can be revealed from mobile
communication interactions. We formalize a demographic prediction problem to simul-
taneously infer users’ gender and age, and further propose the WhoAmI method to
solve it. Experimental results in phone call and text messaging networks demonstrate
both the effectiveness and efficiency of our proposed model. Meanwhile, we identify a
new problem—coupled network demographic prediction across multiple mobile opera-
tors. To address the unique challenges in this task, we present a coupled variant of the
WhoAmI method. Our results unveil the predictability of user demographics across
competitor networks, enabling the real scenario of business intelligence in telecommu-
nication.

Despite the promising discoveries and predictive performance of the present work,
there is still large room left for future work. First, although we examine the social
strategies in two large-scale mobile networks with millions of users, the results are
limited to the data we used, that is, the mobile communications from one specific
country. On one hand, there may exist variances on social strategies used by people
across different cultural backgrounds, political systems, and geographical boundaries.
Therefore, it is natural to examine the observed results in other countries upon the
available data. On the other hand, although previous studies have demonstrated that
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mobile communications can be used as a proxy to represent human communications,
it would generalize our findings beyond mobile channels if online social networks with
demographic information could be investigated. Second, mobile communications are
associated with dynamic information, making it necessary to further couple our stud-
ies between network structures and user demographics with social dynamics. Third, in
addition to study phone calls and text messages separately, it would be interesting to
investigate social strategies and predict user demographics from the mobile network
as a whole by combining the phone call and text messaging networks into one net-
work. Finally, some other social strategies and theories can be explored and validated
for modeling user social networking behavior. In addition, examining how the inferred
demographics can help other topics in social network analysis, such as influence prop-
agation, community detection, and network evolution, would also be very meaningful.
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