
A Unified Network Embedding Algorithm for Multi-type
Similarity Measures

Rui Feng1, Yang Yang1, Yizhou Sun2, Chunping Wang3
1Zhejiang University

2University of California, Los Angeles, 3PPDAI Group Inc.

ABSTRACT
Traditional network embedding aims to learn representations by
capturing a predefined vertex-to-vertex similarity measure. How-
ever, in practice, there are different types of similarity measures
(e.g., connectivity and structural similarity), which are appropri-
ate for different downstream applications. Meanwhile, it is hard
to select the “best” similarity measure that can mostly benefit the
application, considering the required domain knowledge of both
application scenario and network science. It sometimes requires to
cooperate these similarity measures with each other for achieving
better performance. Therefore, automatically integrate multiple
types of similarity measures into a uniform network embedding
framework is critical to obtain effective vertex representations for
a downstream application.

In this paper, we address the above problem in social networks,
and propose a semi-supervised representation learning algorithm.
The general idea of our approach is to impose social influence, which
occurs when one’s opinions, emotions, or behaviors are affected by
others in a social network. Particularly, we build the connection
between a user’s representation vector and the probability of her
being influenced by another user to have a particular label (e.g.,
fraud, personal interest, etc.). We conduct efficient experiments
based on six real-world datasets and find a clear improvement of
our approach comparing with several state-of-the-art baselines.

KEYWORDS
Network embedding, Social network, Probabilistic influence model

1 INTRODUCTION
Network embedding has turned to be an effective methodology to
represent graph structure data. Its basic idea is to project vertices
into a low-dimensional latent space and keep similar vertices close
to each other. The learned vector representations can be incor-
porated into feature-based machine learning algorithms, and then
easily applied for downstream applications like vertex classification,
link prediction, and many other network analysis tasks.

How to model multiple types of similarity measures in a uniform
framework and learn effective node representations for a given
application task? This is the major question we aim to answer.

In this paper, we consider the above question on networks where
only a small set of vertices are labeled, and the learned represen-
tations are expected to be applied on vertex classification tasks.
The application task is thus a typical problem of semi-supervised
learning on graph-structured data.

In order to mix different similarity measures in a principled
approach, we propose a probabilistic graph embedding framework

based on social influence between vertices. Social influence occurs
when one’s opinion, emotion, or behaviors are effected by others
in a social network. It provides a probabilistic interpretation of
the embedding, based on which we may leverage the Expectation-
Maximization approach to infer vertex labels and incorporate multi-
type similarity measures.

Essentially, our embedding algorithm is based on the assump-
tion that a vertex’s label is influenced by its neighbors. Since we
explicitly modeled the data generation mechanism, our approach
works well for any graph, such as citation networks, that satisfies
the assumption in addition to social networks.

There are some significant advantages of using our algorithm.
First, the model is derived based on some assumptions of the data
generation mechanism that are robust with the verification by by
many researchers on social networks. It is natural that on social net-
works and other graphs that satisfy the assumption, our approach
performs better than traditional algorithms who based their model
on loose assumptions about the smoothness of the latent vector
space. Second, leveraging different similarity measures together
makes our algorithm is able to learn from limited labels more ef-
fectively, which leads a clear improvement comparing with several
state-of-the-art semi-supervised classification methods on network.
Third, our method is interpretable for the classification results as
the social influence module provides a detailed who-influence-who
trace when a label is inferred.

It is worthwhile to summarize our contributions as follows:

• We propose a novel network representation learning algorithm
that is able to leverage multiple types of similarity measures in a
uniform framework.
• We explicitly models the data generation mechanism with a
probabilistic influence model.
• We conduct extensive experiments and find that our method
outperforms state-of-the-art baselines.

2 PRELIMINARIES
2.1 Problem Definition
We use a multi-view graph to represent different similarity mea-
sures on graphs. Specifically, we denote a multi-view graph as
G = (V ,E1, . . . ,EK ), where V = (v1, . . . ,vN ) is the set of vertices
(e.g., users in social networks) and each Ei is an edge set that repre-
sents a similarity measure on V . For each vertex i and a similarity
j , we denote the τ -order neighborhood of i in Ej as N τ

j (i ), which is
the set of τ -order neighbors of i when only edges in Ej is considered.
Thereby, each similarity induces a graph G = (V ,Ej ). In this paper,
we call it the similarity graph w.r.t. similarity j.

Each vertex vi corresponds to a discrete label yi ∈ {0, 1, . . . ,nk }
provided by the downstream application. yi is known for only



, , Rui Feng1, Yang Yang1, Yizhou Sun2, Chunping Wang3

1 ≤ i ≤ M and M ≪ N . Our goal is to infer the probability
distribution of unknown labels yj forM + 1 ≤ j ≤ N .

Network embedding seeks to learn low-dimensional and dis-
tributed representation of vertices in the graph. Since our graph
contains multiple edge sets and thus represent different similarities
to be embedded into the low dimensional space, for each simi-
larity measure k corresponding to Ek , we are to find a mapping
Φk : V → Rm ,vi 7→ uki , where vi ∈ V and uki ∈ R

m . Φk is
parameterized by Θk , and we denote Θ as the union of {Θk }

K
k=1.

In the following of this paper, for simplicity of notations, we
may ignore indexes and use the notation Θ and N to represent
embedding parameters and neighborhood without causing any
confusion.

3 OUR APPROACH
In this section, first, we consider the estimation of yi using the
influence of the τ -order neighborhood; then, we integrate different
similarities into one estimator.

3.1 Social-influence-based Probabilistic
Network Embedding Framework

Modeling social influence. In this paper, we denote vj ⇝ vi as
“vj influences vi ” and formulate it in the probabilistic language:

P
(
yi = 1|vj ⇝ vi

)
= P
(
yj = 1

)
(1)

where wemay use embeddings to estimate the influence and assume
that

P
(
vj ⇝ vi |N

τ (i ),Θ
)
=

S (vi ,vj |Θ)∑
k ∈N τ (i ) S (vi ,vk |Θ)

(2)

where S (vi ,vj |Θ) is an embedding-dependent term.
To estimate yi , we need to rely on vi ’s neighborhood, N τ (i ).

Under mild assumptions we may derive that

P (yi = 1|N τ (i ),Θ)

=
∑

j ∈N τ (i )

P (vj ⇝ vi |N
τ (i ))P (yi = 1|vj ⇝ vi ,N

τ (i ))

=

∑
j ∈N τ (i ) S (vi ,vj |Θ)P (yj = 1)∑

k ∈N τ (i ) S (vi ,vk |Θ)
(3)

The embedding is used to approximate the influence. The em-
bedding is generated by a two-layer neural network, where the first
layer, called the embedding layer, is a linear layer whose weight
vectors ui are the embedding ofvi . The second hidden layer is com-
posed of a distinctive set of vectors u ′i , the weight corresponding
to vi . The influence is then computed as

S (vi ,vj |Θ) = σ (ui · u
′
j ) =

1
1 + exp (−ui · u ′j )

(4)

where ui is the embedding vector for vi and u ′j is the weight corre-
sponding to vj .
Training of the embedding. The local loss function for each
vertex pair vi ,vj is then:

− P (vj ⇝ vi |N
τ (i ),Θ)δ (i, j )

−
(
1 − P (vj ⇝ vi |N

τ (i ),Θ)
)
(1 − δ (i, j ))

(5)

which is the commonly used cross-entropy loss. Here, δ (i, j ) =∑
k yikyjk , where k is taken across all categories, which yields the

probability that yi = yj , and we use it as a surrogate of the ground-
truth probability that j influences i , which is hard to infer from a
static graph.

The objective is trained by stochastic gradient descent. Following
the procedure adopted by Perozzi et al. [5], we use random walks to
generate sequences of vertices called the “corpus”, and consequently
draw vertex pairs from the corpus to feed into the model. For each
vertex pair, a gradient step can be taken for the objective (5).
Local negative sampling. Inspired by the technique proposed
by Mikolov et al. [4] for efficient training of the language model,
we use local negative sampling to approximate the computation of
(2).

In practice, we draw Nk negative vertices, {vsi,r }
Nk
r=1 from the

neighborhood of vi ’s. Then, (2) is approximated by

log(σ (ui · u ′j )) −
Nk∑
r=1

log(σ (−ui · u ′si,r ))

Sampling negative vertices only from a vertex’s neighborhood fol-
lows from the formulation of (2).

3.2 Integrating Different Similarity Measures
Now suppose that we havemultiple similaritymeasures, E1, . . . ,EK ,
and for each Ek the embedding parameters are Θk . In this circum-
stance, we assume that

P (yi = 1|Θ) =
K∑
k=1

wkP (yi = 1|Θk ,N
τ
k (i )) (6)

With the constraint:
∑
k wk = 1.wk has a probabilistic interpreta-

tion: it is the probability that yi is determined by the kth similarity
measure.

The estimation of wk , which determines the influence of each
similarity, can be derived by taking the expectation:

E(wk ) =

∑
j ∈N τ

t (i ) S (i, j |Θk ) δ (i, j )∑
q
∑
j ∈N τ

q (i ) S
(
i, j |Θq

)
δ (i, j )

(7)

Though (7) gives an unbiased estimation, in practice, we only
estimate the weights for vertices with known labels, and use the
average of the estimated values as the weights for vertices with
unknown labels.

The training process is summarized in Algorithm 1. Specifically,
in each iteration, we first optimize embeddings for each similar-
ity sufficiently and then we incorporate the prediction based on
different similarities by taking the expected value ofwk .

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
Datasets. We conduct experiments on the following six datasets:
• Agent, Debt. These data are provided by PPDai, the largest unse-
cured micro-credit loan platform in China. The vertices are the
users, and the edges are the call logs between them, weighted by
the number of calls. For Agent, each user is classified as having



A Unified Network Embedding Algorithm for Multi-type Similarity Measures , ,

Algorithm 1 The training process.
1: Nt is the number of iterations,Nb is the batch size for sampling,

Nk is the number of negative vertices in negative sampling.
2: for p in 1 . . . Nt do
3: Optimize embeddings.
4: for each similarity measure t do
5: repeat
6: Sample a batch of center-context pairs {vni ,vci }

Nb
i=1.

7: For vni , sample Nk negative vertices from N τ
t (i ).

8: Compute the loss by
∑Nb
i=1 ℓt (vi ,vj ) and its gradient,

and perform a step with Stochastic Gradient Descent.
9: until the convergence of Θt
10: end for
11: Estimate the similarity-specific values of y for unlabeled

vertices by (3).
12: Estimate similarity weight by (7) for labeled vertices.
13: Estimate the final value of y for unlabeled vertices by (6).
14: end for

Dataset Agent Debt Investor Cora Citeseer Wiki
Vertices 10678 25537 9953 2708 3312 2405
Edges 25944 26997 373923 5429 4732 17981
Categories 2 2 2 7 6 19

Table 1: Statistics of datasets.

defaulted for more than 90 days, while for Debt, each vertex is
classified as being a fraudulent user or not.
• Investor. This dataset is provided by PPDai. Each vertex represent
a registered investor in Shanghai, China, and edges represent the
geographical distances between them.
• Cora1 and Citeseer2. These are academic citation networks where
each vertex represent a paper and edges represent the citations
between them. Each paper is categorized into several classes
indicating their topic.
• Wikipedia3. This is extracted from Wikipedia containing web-
pages and edges represent references. This is a much denser
network than Cora and Citeseer.

Data statistics, including the number of vertices, edges, and cate-
gories, are listed in Table 1.
Similarity graphs. In application, we are in need of similarity
measures other than the one provided by the original graphs. For
example, vertices with structurally similar neighborhoods could
share similar virtues. For each graph in our experiment, we use
the method proposed by Ribeiro et al. [6] to generate a “structural
graph”, with the same set of vertices and edges representing the
structural similarity between them. The original graph, represent-
ing the connectivity between vertices, is called the “connectivity
graph”. Later on, we will use the integrate model mentioned before
to combine the prediction based on these two similarity graphs.

1We used the same dataset as preprocessed by Kipf and Welling [3], provided in
https://github.com/tkipf/pygcn/tree/master/data/cora.
2Aquired from http://csxstatic.ist.psu.edu/downloads/data.
3We used the same dataset used by Tu et al. [8], provided in
https://github.com/thunlp/MMDW.

Agent Debt Investor Cora Citeseer Wiki
Deepwalk 8.77 29.51 17.02 43.2 67.2 52.03
GreRep 10.28 22.69 23.68 74.79 50.97 55.16
GCN 12.21 33.20 25.01 70.65 53.02 50.72
Ours 10.01 35.40 23.57 75.32 57.39 57.49

Table 2: Performance of the influence model in terms of
Micro-F1.

Agent Debt Investor Cora Citeseer Wiki
N-GCN 22.35 33.17 23.90 72.54 55.11 52.70
Ours 30.19 35.81 25.12 76.28 57.56 55.23

Table 3: Performance of the intergrate model in terms of
Micro-F1.

Baseline methods. The following graph embedding algorithms
are compared to ours:
• Deepwalk [5], LINE [7], SDNE [9], GraRep [2]. These are unsuper-
vised graph embedding algorithms for social networks utilizing
different local and global information.
• GraRep [2]. This is an unsupervised graph embedding algorithms
for social networks utilizing different local and global informa-
tion.
• GCN4. It stands for the Graph Convolutional Network by [3].
It is a semi-supervised learning algorithm which provides both
vector representations and end-to-end classification results.
• N-GCN. It is an extension of GCN by Abu-El-Haija et al. [1] to
support multiview graphs. Specifically, they concatenated the
vector representations of each vertex learned by multiple GCNs
on different relational graphs, which is, in our language, graphs
induced by similarity measures.

4.2 Model Parameters
For all our experiments, the embedding dimension is 32. For Cora,
Citeseer and Wikipedia, we set τ , the order of neighborhood, as 2,
and for Agent, Debt, and Investor it is 4. For GCN and Deepwalk,
we used the model parameters recommended by the authors.

4.3 Comparison Results
Table 2 shows the classification results of baseline methods. In this
table, only the connectivity graph is used for prediction. In 5 out of
6 datasets, we’ve achieved the best performance. The performance
of GCN in this paper is worse compared to what was reported
by Kipf and Welling [3] It is because that, while GCN supports
vertex features, in our experiments, no vertex feature is used for
any method, including GCN, for the sake of fair comparison.

Table 3 shows the performance of the integrate model. We com-
pared our method with N-GCN, Abu-El-Haija et al. [1]’s extension
of GCN to multi-view graphs. We report that our method out-
performs N-GCN in most cases. Note that for Wiki dataset, the
combined model performs worse than only using the connectivity
graph.

4The implementation we used can be found in https://github.com/tkipf/pygcn



, , Rui Feng1, Yang Yang1, Yizhou Sun2, Chunping Wang3

Original M-(i) M-(ii) M-(iii) M-(iv) M-(v)
Candidate Models

0.00

0.05

0.10

0.15

0.20

0.25

0.30
F1

-s
co

re

Figure 1: Performance of candidate methods in terms of F1-
score on Agent.

5 10 15 20 25 30
Dimension

55
60
65
70
75

F1
 sc

or
e

Our Method Macro
Our Method Micro
GCN Macro
GCN Micro

(a) Dimension on Cora

5 10 15 20 25 30
Dimension

25
30
35
40
45
50
55

F1
 sc

or
e

Our Method Macro
Our Method Micro
GCN Macro
GCN Micro

(b) Dimension on Citeseer

0 2 4 6 8
Iteration

70
72
74
76
78
80
82

F1
 sc

or
e

10%
30%

(c) Training iteration on Cora

0 2 4 6 8 10 12 14
Iteration

50.0
52.5
55.0
57.5
60.0
62.5
65.0

F1
 sc

or
e

10%
30%

(d) Training iteration on Citeseer

Figure 2: Parameter analysis on dimension and ratio of la-
beled vertices. In (c) and (d), 10% and 30% are the ratio of the size
of the training set.

Table 2 shows the classification results in which we compared
our algorithm to other baseline methods.

4.4 Model Analysis
Deconstruction of the Model. In this section, we analyze why
our model works. By removing or replacing some components of
our model, we may see how each contributes to the whole model.
Therefore, we compare results with the following candidatemodels:

(i) Not optimizing embedding by (5), but instead, by the unsu-
pervised Skip-gram, as in [4] and [5];

(ii) Not using (3) to estimate yi , but instead, use a logistic regres-
sion on the learned representations instead;

(iii) Not using (7) to estimate weights between similarities, but
instead, use a logistic regression on the similarity-specific
yt,i ’s for the prediction of yi ;

(iv) Using only one of the similarity graphs;

(v) Negative sampling from the whole graph instead of the neigh-
borhood.

The performance of the candidate models are shown in Figure 1.
By substituting each component of the model, the performance
drops accordingly.
Parameter Analysis. In this section, we analyze the effect of em-
bedding dimension and the training iterations. Figure 2(a) and 2(b)
shows the effect of dimensionality on our method and GCN. Clearly,
the performance of our method is stable even when the dimension-
ality is low. In fact, when the embedding dimension is 2, our method
gives impressively 53% Macro-F1, while the GCN gives only 15.68%.
Our method is more efficient with limited dimensionality because
our model is meant to preserve only the local information and the
“influence” between vertices. Figure 2(c) and 2(d) shows the change
of Micro-F1 score when training. When the labels are scarer, it takes
longer iterations for the model to achieve its best performance.

5 CONCLUSION
In this paper, we propose to learn the graph embedding that handles
multi-type similarity measures for vertex. In particular, we impose
social influence in a probabilistic and semi-supervised framework.
Extensive experiments demonstrate that with the advantages of in-
corporating different similarity measures, our model achieves clear
improvement comparing with several state-of-the-art baselines.

REFERENCES
[1] Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. 2018. N-GCN:

Multi-scale Graph Convolution for Semi-supervised Node Classification. arXiv
preprint arXiv:1802.08888 (2018).

[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph rep-
resentations with global structural information. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management. ACM,
891–900.

[3] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[4] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[5] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[6] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec:
Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 385–394.

[7] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 1067–1077.

[8] Cunchao Tu, Weicheng Zhang, Zhiyuan Liu, Maosong Sun, et al. 2016. Max-
Margin DeepWalk: Discriminative Learning of Network Representation.. In IJCAI.
3889–3895.

[9] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embed-
ding. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 1225–1234.


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition

	3 Our Approach
	3.1 Social-influence-based Probabilistic Network Embedding Framework
	3.2 Integrating Different Similarity Measures

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Model Parameters
	4.3 Comparison Results
	4.4 Model Analysis

	5 Conclusion
	References

