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Time2Graph+: Bridging Time Series and Graph
Representation Learning via Multiple Attentions

Zigiang Cheng, Yang Yang*, Shuo Jiang, Wenjie Hu, Zhangchi Ying, Ziwei Chai, Chunping Wang

Abstract—Time series modeling has attracted great research interests in the last decades. Among the literature, shapelet-based models
aim to extract representative subsequences, and could offer explanatory insights in the downstream tasks. But most of those works
ignore the seasonal effects on the subsequences, as well as the evolutionary characteristics of shapelets. In order to capture the shapelet
dynamics and evolutions, in this paper, we propose a novel framework of bridging time series representation learning and graph modeling,
with two different implementations. We first formulate the process of extracting time-aware shapelets by directly adding time-level
attentions, then introduce the key idea of transforming time series data into shapelet evolution graphs, to model the shapelet evolutionary
patterns. A straightforward solution is to enumerate all possible shapelet transitions among adjacent time series segments, and apply a
random-walk-based graph embedding algorithm to learn time series representations ( Time2Graph). We further extend Time2Graph by
adopting graph attention mechanism to refine the procedure of modeling shapelet evolutions, namely Time2Graph+. Specifically, we
transform each time series data into a unique unweighted shapelet graph, and use GAT to automatically capture the correlations between
shapelets. Experimental results on three real-world datasets show the significant improvements of Time2Graph+ over Time2Graph and
17 baseline methods, and observational analysis demonstrates the effectiveness and interpretability brought by both time-level and
graph-level attentions. Furthermore, the success of online deployment of Time2Graph+ model in State Grid of China validates the whole

framework in the real-world application. Codes and documentations are available at https://github.com/petecheng/Time2GraphPlus.

Index Terms—Time Series Modeling, Time-Aware Shapelets, Graph Neural Networks, Graph Attention Networks

1 INTRODUCTION

Time series representation learning has attracted great
research efforts in the last decades, and has been applied
in many real-world applications [1, 2, 3, 4]. Those works
aim to discover the temporal relationships within chrono-
logically arranged data, and the key issue is how to extract
representative features from time series. In the literature,
related works can be categorized into feature engineering,
kernel-based time series embedding [5], and deep sequence
models [6, 7]. While these methods have achieved good
performance under various scenarios [8, 9], some of them
have also been subject to criticism regarding their drawbacks,
i.e., feature engineering methods may need sufficient expert
knowledge and are not generalizable across different data
domains, and deep sequence models may raise concerns due
to their lack of interpretability, etc.

To better understand the intrinsic properties of time series,
shapelet-based models are proposed to unearth the repeated
or important sequential patterns. Shapelets, the representative
subsequences that may reflect the characteristics of the key
waveforms [10], are expected to offer directly interpretable
and explanatory insights behind the time series data, and
shapelet-based frameworks have proven to be promising in
various practical domains [11, 12, 13]. For example, under the

o Zigiang Cheng, Yang Yang, Wenjie Hu and Ziwei Chai were with the
College of Computer Science and Technology, Zhejiang University, China.

o Yang Yang was the corresponding author. E-mail: yangya@zju.edu.cn.

o Shuo Jiang and Zhangchi Ying were with the State Grid Zhejiang Electric
Power Corporation, China.

o Chunping Wang was with FinVolution Group, China.

Manuscript received Nov. 2020; revised Apr. 2021.

scenario of the empty-nest elderly! recognition in State Grid?,
the target is to recognize empty-nest elderly based on users’
electricity usage during a period of time, where shapelets of
the electricity consumption records can potentially capture
the individual electrical power consuming patterns. Most
existing works considered shapelets as static [10, 15, 16, 17,
18], however, representative subsequences are often dynamic,
which is reflected in two respects:

« First, the same shapelet appearing at different time slices
may have different impacts. For instance, the empty-nest
elderly may use air conditions less frequently when it is
very hot or cold than others due to their frugal lifestyles,
so a user who has lower electricity consumptions during
this period is more likely to be the elderly; but the same
pattern appearing at spring or autumn may not be able to
distinguish these two groups of people, since it would be
common for all users. We refer to the subsequences of a
time series that are able to reflect their representativeness
at different time slices as time-aware shapelets.

e Second, the way in which the shapelets evolve over time
is also vital to fully understand the time series data. In
fact, shapelets with small values at a particular time can
hardly distinguish an elderly from a common user who
indeed consumes a low level of electrical power during
that period. It is more reasonable to analyze the electricity

IRefers to those elderly with no children or whose children have all
lived away from township, left them staying alone. It may raise public
safety concerns. since the empty-nest elderly could probably misuse
the electrical appliances, or are unable to deal with electricity-related
emergencies. As reported in 2013 [14], in China, about 50% (over 100
million) of the total elderly population were the empty-nest.

2A Chinese state-owned electric utility corporation, and the largest
utility company in the world.
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(a) electricity usage record of elderly #44
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(b) shapelet evolution graph for #44
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Fig. 1: Illustration of Time2Graph+ framework in the scenario of user electricity consuming. (a) shows a one-year electricity
consumption of an empty-nest elderly user, along with the assigned shapelet #40. After time-aware shapelets being extracted, it
constructs the shapelet graph for each single sequence, and captures the evolutionary patterns of shapelets using graph attention
networks (b), and (c) visualizes one typical shapelet #34 and its time-level attentions. Note that in (b), the node size is proportional
to its in-degree, from which the node color is mapped; and the edge width is proportional to the attention score between two nodes.

consuming behavior over a long range of time, to check
whether the user actually has a habit of using less electrical
power. In other words, an important clue here is, how the
subsequence patterns evolve over time.
Motivated by the abovementioned intuitions, we propose
a novel framework, Time2Graph [19], to model shapelet dy-
namics . It first extracts parameterized time-aware shapelets
from a large pool of candidates under a specific criterion,
by introducing timing factors when defining the distance
between sequences; then constructs the shapelet evolution
graph, in which nodes denote the extracted shapelets, and
edges reflect the transition relationships between vertices.
Finally, Time2Graph deploys Deepwalk to learn the hidden
features of shapelets from shapelet evolution graph, and
concatenates or aggregates those shapelet embeddings to
obtain the time series representations which can be applied
in various downstream tasks. Although some previous
works [20, 21, 22, 23] have proposed to convert time series
data into various graphs, Time2Graph is believed to be the
pioneer work to study “shapelet dynamics” of time series
from the perspective of graphs; and intuitively translates the
problem of time series representation learning into graph
embedding. Experimental results on several benchmark and
real-world datasets demonstrate its effectiveness, but there
are several limitations on the implementation of Time2Graph:
e L1: In the process of constructing the shapelet evolution
graph, it first conducts segmentations, assign “similar”
shapelets to each segment, and recognizes adjacent ap-
pearances of shapelet pairs as their “possible transitions”.
Since we would never know the ground truth of which
shapelets should be assigned to each segment, the dynamic
transitions between adjacent shapelets may be incorrectly
counted, and be biased on the observed time series data.
o L2: Another disadvantage of Time2Graph is that, some weak
transitions between shapelets might be magnified, since it
simply sums up all the counted weighted edges over the
entire set of time series, and noisy connections between
some pairs of vertices are probably much stronger than
they should be after the normalization on edge weights.
o L3: Last but not least, Time2Graph only constructs a uniform

shapelet evolution graph from all time series data to extract
frequent shapelet transitions, while infrequent ones may
reflect unique transition patterns of a time series.

After all, the way of constructing the shapelet evolution
graph in Time2Graph may bring several biases in learning
shapelet embeddings, and cause performance drops in the
downstream tasks. To address those potential shortcomings,
we then propose Time2Graph+, an extension of Time2Graph
that applies graph attention networks to model the shapelet
evolutions, where we learn the evolutionary patterns of
shapelets via graph attentions rather than approximately
counting on adjacent transitions. Specifically, instead of
constructing a uniform shapelet evolution graph for all time
series data, we first transform each time series into a unique
unweighted graph (L3), since different sequences may have
various evolutionary patterns, i.e., graph structures; then
apply graph attention mechanisms to capture the transition
patterns between shapelets, by assigning learnable dynamic
edge weights which can be naturally interpreted as the
shapelet transition probability (L1 and L2). We design an end-
to-end supervised framework to learn the global attention
parameters, by translating the original time series classifica-
tion problem into the graph-level classification (Sec. 4.3.2).
To validate the effectiveness of Time2Graph+ framework, we
conduct extensive experiments on both public and real-world
datasets: Time2Graph+ achieves competitive performance on
the benchmark datasets in UCR Time Series Archive, and
significantly outperforms Time2Graph in three real-wold
scenarios (averaged +3% in terms of F1), as well as 17 baseline
methods ranging from distance-based and shapelet-based
models to deep sequence models. In addition, visualizations
of time-level and graph-level attentions demonstrate the
interpretability of Time2Graph+, which can bring in extra
explanatory insights with the help of expert knowledge.

Fig. 1 gives an overview of Time2Graph+. Fig. 1a shows
a one-year electricity usage record of an empty-nest el-
derly user (#44), formally defined as “at most two people
at home with at least one person above 65 years old”. The
electricity consumption records are the typical time series
which are segmented by months, thus the original sequence
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is divided into twelve segments. Time2Graph+ model first
learns time-aware shapelets, and assigns each month with
several patterns that are close to the corresponding segment
under some threshold. For instance, we present the assigned
shapelet #40 for the subsequence marked by a red box, along
with its time-level attentions in the bottom of Fig. 1a, where
dark areas indicate that the corresponding time step is more
important compared to light areas. Time2Graph+ then aims
to model the shapelet evolutions via graphs (Fig. 1b,c):
it constructs the shapelet evolution graph for each time
series, and captures the individual shapelet evolutionary
patterns by applying graph attention mechanism. The graph
structure along with the attention scores on edges reveal
the shapelet evolutionary patterns, as shown in Fig. 1b:
there are several centered vertices with large degrees in
the graph, and the top-2 are shapelet-#34 and #40 (marked
with red circles); this means that for the elderly #44, the most
typical shapelet transition patterns are evolving from or into
these two centered shapelets. Furthermore, extra explanatory
insights could be inferred from constructed graphs and time-
level attentions with the help of expert domain knowledge,
as shown in Fig. 1c: shapelet #34 is the shape of a steep
fluctuation following by a very flat sequence; its time-level
attention matrix emphasizes that the steep fluctuation are
with large attention weights, and such shapes are much more
representative in spring and autumn (especially at Mar. and
Nov.). It might be a typical electricity consumption pattern
of the empty-nest elderly users who consumes an unstable
amount of electricity during the period of changes of seasons,
and then falls into a relatively flat state. More detailed case
studies can be referred in Sec. 5.5. Overall, Time2Graph+
is able to extract representative subsequences in the time
series data, and to mine their evolutionary patterns from the
perspective of graph modeling. Finally, we summarize our
contributions of this paper to the field as follows:

» We give an overview of bridging the domain of time series
representation learning and graph embedding, and the key
idea of transforming time series data into a shapelet graph
to model the subsequence dynamics.

o We illustrate two ways of constructing the shapelet evolu-
tion graph (Sec. 4): counting possible shapelet transitions
(Time2Graph, Sec. 4.2) and learning those transition patterns
via graph attentions (Time2Graph+, Sec. 4.3). We analyze
the potential biases of both methods, and compare them in
the downstream time series classification tasks.

« We validate the effectiveness of Time2Graph framework
based on three public and three real-world datasets. Exper-
imental results show that Time2Graph+ achieves notably
better performance when compared with 17 state-of-the-art
baselines, and visualizations of both time- and graph-level
attentions demonstrate the extra interpretability (Sec. 5).

o Furthermore, we deploy the Time2Graph+ model in a real-
world scenario: recognizing the empty-nest elderly in State
Grid of China, in Jinhua, Zhejiang province. The success
of model deployment and application again confirms the
validity of our proposed framework (Sec. 6).

2 RELATED WORKS

Time series modeling has attracted extensive research efforts
over a wide range of fields, such as image alignment [24],

speech recognition [25], and motion detection [26], etc. One

important technique is Dynamic Time Warping (DTW) [27],

which aims to find the appropriate warping path of align-

ments between time series data, and many applications have

been proposed based on this metric [28, 29].

Traditional time series classification models try to extract
efficient features from sequences and develop a well-trained
classifier, such as BoP [30], TSF [31], EE [32], etc. But the
major challenge is that there are often no explicit features
in sequences [33], then many works focused on time se-
ries representation learning [34]: models based on DTW
and traditional embedding techniques [5] aim to project
original time series data into feature-vector space; symbolic
representations (SR) [35, 36, 37] transform time series using
symbols such as characters from a given alphabet; shapelet-
discovery-based models [10, 17, 18, 38, 39], from another
perspective, try to find typical subsequences based on certain
criteria such as information gain. Since exploring significant
shapelets from many candidates is very time-consuming, [18]
proposed a fast shapelet discovery algorithm based on SR
and hashing. Inspired by the great advances in deep learning,
many deep sequential models have been proposed for time
series classification. Deep learning approaches for TSC often
adopt RNN-based and stacked CNN layers to extract time
series features, followed with an output layer for predictions.
They can be roughly categorized into two main groups [40]:
the generative [41, 42] and the discriminative [43, 44] models,
and many recent works also utilize unlabeled data under
semi-supervised setting [45, 46].

Another relevant domain to this paper is graph represen-
tation learning (also known as graph or network embedding).
[47, 48] give detailed surveys of this literature, and categorize
graph embedding methodologies into three groups:

e Matrix factorization, that utilizes the adjacent or the
Laplacian matrix of the graph, to obtain the hidden feature
vectors of each row (entry) [49, 50].

o Random-walk-based frameworks generate node sequences
from graphs by random walks to capture local structural
information, e.g., DeepWalk [51], node2vec [52], and
DynamicTriad [53], etc. These works inherit the idea of
Word2Vec [54], regarding each node as a word, a node
sequence as a sentence, and learn the node representations
under the framework of CBOW or Skip-to-Gram.

e Deep learning models design DNNs to learn node fea-
tures. For example, SDNE [55] adopts auto-encoders to
optimize both 1- and 2-order proximity. Besides, DNNs
are specifically designed on graphs, which are widely
known as GNNs, among which convolutional GNNs are
the most popular [56]: they generalize the operation of
“convolution” from grid data to graphs, and consist of two
main directions: spectral- and spatial-based. Spectral-based
approaches formulate graph convolutions by introducing
graph convolution kernels from the view of graph signal
processing [57], such as ChebNet [58], GCN [59], etc., and
spatial-based models instead define graph convolutions
as information propagation between nodes, including
MPNN [60], GraphSAGE [61], etc. Motivated by the
attention mechanisms that are adopted in deep sequence
models [62], Graph Attention Networks (GAT) is proposed
to automatically learn the edge weights (attention scores)
between each pair of connected nodes [40].
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3 NOTATIONS AND PRELIMINARIES

A time series set T' = {t1,--- , 7|}, where each ¢ contains n
chronologically arranged elements , ie, t = {1, -+ ,x,}. A
segment s = {x;,--- ,x;} of t is a contiguous subsequence;
if £ can be divided into m segments of equal length [, then
we have sk = {{Zjc(k—1)+1," " s Ti(k—1)41}- We denote the
dissimilarity between two segments s; and s; as d(s;, s;),
and in time series modeling, time warping techniques are
often adopted to find an appropriate alignment for the given
pair of sequences, where an alignment is defined as

Definition 1. Alignment. Given two segments s; and s; with
length {; and [; respectively, an alignment a = (a1, a2) is
a pair of two index sequences of length p, satisfying that

1=ar(l) <--- <ai(p) =, ar(n+1) —ar(n) <1,

fork=id,j,and1 <n<p-1

We denote all possible alignments a for two segments s;
and s; as A(s;, s;), then one popular time-warping based
metric, DTW (Dynamic Time Warping), can be illustrated as
Eq. (1), where 7(s;, sj|a) is a predefined dissimilarity for
two sequences under the alignment a [27]. We refer to the
alignment achieving the minimum in Eq. (1) as a*.

)

We further measure the dissimilarity between a segment
s and a time series t = {s1 - - - S, }. Inspired by the literature
that we often say a segment s is close to ¢ if there exists some
segment s’ in ¢ between which the distance of s is rather
small, we define the distance between s and t as

dprw(si, 8;) = MilgeA(s;,s,) 7(si, 85|a)

@)

Based on these definitions, previous works have proposed
novel methods to extract typical subsequences, i.e., shapelets,
to distinguish the representative power of segments:

D(S, t) = minlgkgm d(s, Sk)

Definition 2. Shapelet. A shapelet v is a segment that is
representative of a certain class. It can separate 7" into
two disjoint subsets, one that is close to v and another
far from v by some specific criterion, such that positive
and negative time series samples can be put into different
groups. The criteria can be formulated as

L= —Q(Spos (v,T), Sheg (v,T)) 3

L measures the dissimilarity between positive and nega-
tive samples towards the shapelet v. S, (v, T') denotes the set
of distances with respect to a specific group 7, i.e., positive
or negative class; the function g takes two finite sets as input,
returns a scalar value to indicate how far these two sets
are, and it can be defined as information gain [10], or some
dissimilarity measurements on sets, i.e., KL divergence.

4 PROPOSED APPROACHES

In this section, we illustrate the general idea of Time2Graph,
a novel time series representation learning framework that
transforms time series data to graphs, with time-aware
shapelets as nodes and shapelet transitions as edges, and
discuss two different implementations in detail. After intro-
ducing the time-aware shapelets (Sec. 4.1), we first briefly

review Time2Graph [19] (Sec. 4.2), then propose an extension
of Time2Graph, namely Time2Graph+ (Sec. 4.3), that applies
the graph attention mechanism to model the relationships
between each pair of nodes in the shapelet evolution graph.

4.1

The previous definition of shapelets ignores that subse-
quences may have different representative powers at dif-
ferent time. For example, low consumption of electrical
power in spring is normal, whereas it is a strong signal
for identifying some specific group of users in summer,
when high temperatures often lead to high electricity usage.
Therefore, we consider time-aware shapelets in this paper.
We design time-level attentions for quantitatively measuring
the timing effects of shapelets at different scales. Specifically,
we introduce the local attention ws,, to denote the importance
of the k-th element of a particular shapelet, then the distance
between a shapelet v and a segment s is redefined as

Time-Aware Shapelet Extraction

~ p 1
d(v, slw) = (3, _ Way) - (Vaz () = Saz)*)? ()

The intuitive explanation of Eq. (4) is to project the weight w
onto the DTW alignment path. On the other hand, at a global
level, we aim to measure the timing effects across segments.It
is inspired by the fact that shapelets may represent different
meaning at different time steps, and it is straightforward to
measure such deviations by adding segment-level weights.
We set a global attention u,, to capture the cross-segments
influence, then the distance between a shapelet v and a time
series ¢ can be rewritten as

D(v, tlw,u) = minj<p<m Ui - d(v, sg|w)

©)

where t = {s1, -, 8 }. Eq. (5) denotes the two-level time-
aware distance between a shapelet v and a time series ¢, and
the parameters w, u associated with each specific shapelet
can be learned separately under some criteria. Given a
classification task, we establish a supervised learning method
to select the most important time-aware shapelets and to
learn their time-level attentions w; and u; for each shapelet
v;. In particular, we have a pool of segments as shapelet
candidates, and a set of time series T with labels. For each
shapelet candidate v, we modify Eq. (3) as

L = —9(Spos(9,T), Sneg(v, 7)) + Allw|| + e[[ul|  (6)

where A and € are the weight of 2-norm penalties. In
practice, g is set as the KL-divergence, because it intuitively
compares the similarity of two sets and is differentiable
while the commonly-used choice, information gain, is not.
We further assume that the given parameterized distance
sets both follow some particular distributions, e.g., Gaussian
Distribution; then g and its gradients can be easily computed
by a closed-form solution. After learning the time-level
attentions from shapelet candidates, we select the top K
shapelets with minimal loss in Eq. (6).

4.2 Basic model: Time2Graph
4.2.1 Shapelet Evolution Graph

After obtaining shapelets, many works use BoP [63] or similar
methods to represent the time series, but these algorithms
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ignore the correlations between shapelets. Therefore, we

propose the concept of Shapelet Evolution Graph as follows:

Definition 3. Shapelet Evolution Graph. It is a directed and
weighted graph G = (V,£) in which V consists of K
vertices, each denoting a shapelet, and each directed edge
e;j € & is associated with a weight w;;, indicating the
occurrence probability of shapelet v; € V followed by
another shapelet v; € V in the same time series.

Graph Construction. We assign each segment s; to several
shapelets that are the most closest to s; according to the time-
aware dissimilarity. Then a problem naturally rises as how
far the distance would be considered as closest? One simple
but effective solution is to predefine a threshold ¢ such that
distances less than ¢ are treated as close, and in practice, we
can determine § by experimental statistics on the training
dataset. For convenience, we denote those shapelets assigned
to segment s; as v; ., and say that v;; is the j-th assignment
of s;. For the purpose of measuring how reasonable our
assignment is, we standardize assignment probability p; ; as

max(d; . (vix, 8:)) — di j(vij, 8i)

Dij = ()

max(d; . (Vi ., 8;)) — min(d; . (vi., 8;))
where d; . (vi.,8;) = w.[i] * d(vi ., si|w.) (Eq. (4)), with
the constraint that d;* < 4. So the shapelets set v; . is
assigned to segment s; with probability p; ., and v; 1 « is
assigned to s;41 with probability p;; 1 . respectively, where
s; is followed by s; 1 in a single time series. Then, for each
pair (j,k), we create a weighted edge from shapelet v; ;
to v;11,x with weight p; ; - pi41,,. Finally, we merge all
duplicated edges as one by summing up their weights.

4.2.2 Representation Learning

Finally, we learn hidden representations for both shapelets
and time series based on shapelet evolution graph. We first
employ an existing graph embedding algorithm (DeepWalk)
to obtain vertex (shapelet) embeddings u € R, where B
is the embedding size. Note that a path in G intuitively
reflects possible transitions between shapelets. Next, for
a time series t with assigned shapelets {v{;... ;,,} «} and
corresponding assignment probabilities {py ... m},« }, We re-
trieve the embedding p(v; ;) of each shapelet v; ; multiplied
by assignment probability p; j, and sum them up for each
segment. If there exists a segment s that we cannot assign
any shapelets to it, the embeddings of s would be left as 0. It
is reasonable since shapelet embeddings are always non-zero
guaranteed by graph embedding models (embeddings are
often bound to be normalized), so segments without shapelet
assignments are distinguished by empty values. By far, we
get segment representations, and finally concatenate all those
m segment embeddings to obtain the representations @ for
time series t as ® = |2y 3=, p; j - 4(v; ;). The representation
vector of time series can then be applied as features for
various time series classification tasks, by the way of feeding
the embedding features into an outer classifier. The algorithm
and implementation details can be referred in [19].

4.3 Extension: Time2Graph+

Based on the time-aware shapelets (Sec. 4.1), here we propose
Time2Graph+, an extension of Time2Graph by utilizing graph
attentions to model shapelet evolutions.

4.3.1 Backgrounds and intuitions

In Time2Graph [19] (Sec. 4.2), we manually count all possible
shapelet transitions, and add edges (v;, v;) with the weight
as the product of shapelet assignment probabilities of node v;
and v; upon adjacent segments. Although this intuitive way
is expected to capture some transition paths or evolutionary
patterns of shapelets, there are several unavoidable flaws:
Biased transition probability estimation. Recall that we
regard normalized shapelet transition counts as shapelet tran-
sition probabilities: for all adjacent segments s; and s;11, we
add edges between each pair of assigned shapelets v; ; and
V41,5, wWith the weight as the product of their assignment
probability. But such edge weights are just estimations of
transition probabilities, which may be inaccurate due to the
limited observed data and the intuitive transition counting.
Magnified weak transitions. Another flaw of the way we
construct the shapelet evolution graph in Time2Graph is, some
weak transitions could be magnified if distance threshold ¢ is
not predefined appropriately. Note that there may exist some
“centered” shapelets which can be assigned to all segments
under the threshold §, then some shapelet pair, denoted
by (v¢,v;) which contains one of those centered shapelets
v, may repeat much more times during the enumeration.
Although the product of assignment probability of (v., v;)
on one single adjacent segment pair is rather small, once
we sum it over many times, it is more likely to be a strong
edge in the shapelet evolution graph. The magnified weak
transitions could be the significant noises in the graph, which
would affect learning the shapelet hidden representations,
and cause performance drops in the downstream tasks.
Inconsistent transition patterns. In Time2Graph, we con-
struct a uniform shapelet evolution graph from all time series
data to observe frequent shapelet transitions. But we ignore
the point that 1) some infrequent transitions may indeed
reflect the characteristics of some specific sequences, but
contribute little to the final embeddings in Time2Graph, and
2) shapelet transition probabilities may be different between
various time series. After all, shapelet transition patterns are
likely to be inconsistent across different samples.

4.3.2 Model specification

To address the abovementioned concerns, and motivated by
recent advances of GNNs and graph attention mechanism,
we apply graph attention networks (GAT) to model the
shapelet transitions. A straightforward motivation here is
that, the main drawbacks of the way we construct the
shapelet evolution graph in Time2Graph lies in the estimation
of transition probabilities, which is reflected by the edge
weights, while edge weights can be intuitively regarded as
learnable attention scores between node (shapelet) pairs. So
we do not need to count the estimated transitions; instead, we
can use graph attentions to model the shapelet evolutionary
patterns, and design an end-to-end framework to learn the
attention parameters. Besides, benefited from graph atten-
tions, we can initialize a unique shapelet evolution graph
for each time series data, which helps model “personalized”
transition patterns of different sequences.

Definition 4. Parameterized Shapelet Evolution Graph. It
is a directed and unweighted graph G = (V, H, £|O©) pa-
rameterized by ©. V consists of K vertices, each denoting
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a time-aware shapelet; H = hyy ... |y|}, where h; € RIFI
is the initial feature of node v; with dimension as |F|.
Each directed edge e;; € & indicates the transition
relationships between v; and v;, and the weight w;; of e;;
is computed by f(i, j|H,E, ®), where f denotes a scalar
function based on the graph attention mechanism.

Graph Initialization. We first sum up the edge weights for
each time series sample rather than over the whole dataset,
since we want to construct a single graph for each time series.
Besides, we remove the global distance threshold J; instead,
count all possible transitions among assigned shapelets, and
use another hyper-parameter p (percentile) to conduct edge
pruning, i.e., removing edges whose weights are under p%
among all edges. There are two main reasons that we choose
percentile p rather than ¢: 1) global distance threshold may
not appropriate since the data scale may differ a lot across
samples; and 2) percentile directly controls the graph density
(p% edges are retained). Finally, we discard the edge weights
after pruning edges by percentile p, and only consider their
structural information as the unweighted edge set £.

As for the initial node features, since each node represent
a shapelet, the original shapelet sequence and some basic
statistics are the trivial choice. But it may not work in
our setting, because we represent each time series as an
independent graph with the same nodes and these features
are the same across different samples. A better solution is
to embed intrinsic information of the original time series
into the graph, thus we define the distance-based features of
shapelet v; for the time series t = {s1,-- , S} as

h; = concate(d(v;, s;)),1 <j <m (8)

Learning shapelet transitions via graph attentions. After
initializing the unweighted shapelet evolution graph for
each time series, we then apply Graph Attention Networks
(GAT) [40] to model the transition relationships between each
pair of nodes, and translate the time series classification to a
graph classification task to learn model parameters. Formally,
given a shapelet evolution graph G(V, H, £|©), the attention
score between the node pair v; and v; can be defined as

eij = LeakyReLU(a” [Wh;||W h;])
_ exp(ei;) )
> ken; expleir)

© = {W,a} is the parameter of self-attention mechanism
implemented by a single-layer FNN; e;; is the attention
coefficient that measures the importance of node v; to
v;, and normalized as «;; such that 1) comparable across
different nodes; 2) consistent with the scale of transition
probability, i.e., the sum of transition probabilities from node
v; to all nodes is equal to 1. We then conduct graph-level
classifications to learn the attention parameters as in [40]:

« we use multi-head attentions to model various transition
patterns, then node-level hidden features can be written as

hi = ||Z:10(Zj6Nz a?jwkhj) (10)

o the graph-level representation for a single time series is
the averaged node representations:

K
. 1 1,
H=3 hi=> Flicie(}.  asWhh) (1)

aij = softmax(e;)

o the predicted graph label can be obtained by adopting
a softmax and MLP layer on graph representations, and
finally we use cross-entropy loss to learn the attention
parameters: (with y as the time series label)

L = CrossEntropy(softmax(c(MLP(H))),y)  (12)

Besides, the graph representations of the original time series
can also be applied in various downstream tasks, by adopting
a well-trained outer-classifier as in Time2Graph.

5 EXPERIMENTS
5.1 Experimental Setup

We use three public datasets, Earthquakes (EQS), WormsT-
woClass (WTC) and Strawberry (STB) from the UCR Time Series
Archive [64], along with three real-world datasets, Electricity
Consumption Records (ECR) and Elderly Electricity Records
(EER) from State Grid of China, and Network Traffic Flow
(NTF) from China Telecom., to validate our proposed model.
Table 1 shows the overall statistics of those six datasets:

Dataset
W‘ EQS WTC STB ECR NTF EER

461 258 983 60,872 5950 4,807
253 422 643 23 6.4 233

#(time series)
positive ratio(%)

TABLE 1: Overall statistics of 5 datasets in the experiments.

The description of three public datasets can be found on
the UCR Archive [64], and here we briefly introduce the two
real-world datasets as follows:

Electricity Consumption Records (ECR). It is provided by
the State Grid Corporation of China and contains the daily
electricity consumption records (K-Wh) of 60,872 users over
the span of one year (2017). For every user, it records the
daily total, on-peak and off-peak electricity usage. Some users
(namely electricity theft) may take unauthorized actions on
the electricity meter or power supply lines to cut costs, and
there are a total of 1,433 (2.3%) users who have been manually
confirmed as having stolen electrical power. Given users and
their electricity consumption record, the task is to determine
which users have stolen electrical power during the year [65].
Network Traffic Flow (NTF). This dataset is provided by
China Telecom, the major mobile telecommunications service
provider in China. It consists of 5950 network traffic series,
each of which describes the hourly inflow and outflow of
different servers, from 6, April to 15, May in 2017. When an
abnormal flow goes through server ports and some process
is suddenly dead, an alarm state (label) is recorded by the
operating system; there are 383 (6.4%) servers with abnormal
flow series. The goal is to use the daily network traffic data
to detect whether there are abnormal flows.

Elderly Electricity Records (EER). This dataset is also
provided by the State Grid Corporation of China. It contains
daily electricity consumption records (K-Wh) of 4,807 citizen
users among the whole year of 2018, similar to the format
of ECR dataset. Besides, a large-scale on-site investigations
targeted on those users were conducted by staffs in State
Grid, from which we collected labels of whether each user
belongs to empty-nest elderly or not. Overall, the proportion
of elderly users is 23.3% (1,119 cases). Detailed descriptions
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Public Dataset Real-World Dataset
Datasets EQS WTC STB ECR NTF EER
Methods Accuracy Prec Recall Fy Prec Recall Fy Prec Recall Fy

NN-ED (13.67) 68.22 62.41 95.60 18.71 10.48 13.44 37.71 46.35 41.59 29.79 35.94 32.58
NN-DTW (12.67) 70.31 68.16 95.53 15.52 18.15 16.73 33.20 43.75 37.75 30.39 33.10 31.69
NN-WDTW (13.17) 69.50 67.74 95.44 15.52 18.15 16.73 35.29 46.86 40.27 30.39 33.10 31.69
NN-CID (14.17) 69.41 69.56 95.51 18.18 13.71 15.63 32.56 43.75 37.33 30.67 32.74 31.67
DDTW (12.67) 70.79 70.92 95.60 18.78 13.71 15.85 30.48 42.71 35.58 29.09 34.16 31.42
XGBoost (origin) (10.33) 74.82 62.34 95.92 38.36 19.48 25.86 71.43 17.86 28.57 33.45 34.88 34.15
XGBoost (feature) (7.67) 75.54 64.94 97.03 56.82 16.23 25.25 80.00 21.43 33.80 39.18 34.16 36.50

BoP (9.5) 74.80 74.42 96.45 14.86 4.44 6.83 43.40 47.92 45.55 20.00 1.07 2.03
TSF (11.83) 74.67 68.51 96.27 | 26.32 2.02 3.75 57.52 33.85 42.62 43.94 10.32 16.71
EE (11.83) 73.50 71.74 95.88 10.18 33.47 15.62 42.98 27.08 33.23 31.40 32.74 32.06
SAXVSM (7.0) 73.76 72.10 96.97 | 21.59 42.74 28.69 30.19 50.00 37.65 29.22 38.79 33.33

LS (15.5) 74.22 7357 9249 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FS (11.83) 74.66 70.58 91.66 10.45 79.84 18.48 63.55 35.42 45.49 37.50 2.14 4.04
LPS (12.0) 66.78 74.26 96.35 17.00 24.19 19.97 2417 30.21 26.85 24.41 25.62 25.00
MLP (16.0) 70.29 59.86 96.58 0.00 0.00 0.00 0.00 0.00 0.00 25.42 32.38 28.48
LSTM (13.67) 7482  42.86 63.84 13.64 31.86 19.11 7.22 16.67 10.08 26.77 82.21 40.38
VAE (12.83) 71.22 62.34 71.35 19.02 14.11 16.20 59.79 30.21 40.14 27.05 82.21 40.70
Shapelet-Seq (14.33) 75.53 55.84 78.10 14.37 66.94 23.66 18.45 61.98 28.44 46.15 8.54 14.41
Time2Graph (2.67) 79.14 72.73 96.76 30.10 40.26 34.44 71.52 56.25 62.97 28.67 71.53 40.94
Time2Graph+-static (4.83) 76.98 70.13 95.95 27.30 50.00 35.32 75.00 53.57 62.50 30.65 73.31 43.23
Time2Graph+ (2.83) 77.70 71.43 96.49 35.94 44.81 39.88 97.62 48.81 65.08 32.80 66.19 43.87

TABLE 2: Comparison of classification performance on the public and real-world datasets (%). The best performance of each
dataset is bold and with an underline. Numbers following model names are the averaged rankings w.r.t accuracy or F1 scores.

of this dataset and the real-world application of empty-nest
elderly recognition can be referred in Sec. 6.

We compare our proposed Time2Graph+ model with
several groups of the state-of-the-art baselines:
Distance-based Models. Previous work has stated that in
most time series classification tasks, 1-NN-based methods are
hard to beat [34, 66]. As for the distance metric applied in 1-
NN, we use Euclidean Distance (ED), Dynamic Time Warping
(DTW), Weighted DTW (WDTW) [28], Complexity-Invariant
Distance (CID) [67] and Derivative DTW (DDTW) [29].
Feature-based Models. We extract some statistical features
(mean, standard deviation, etc.), or just take the raw time
series as input, and use the same outer classifier as which
Time2Graph+ uses (XGBoost (origin/feature)), to validate the
effectiveness of learned representations. Besides, several
feature-based algorithms have been proposed for time series
classifications. In this paper, we choose some typical algo-
rithms to compare with our model: Bag-of-Patterns (BoP) [30],
Time Series Forest (TSF) [31], Elastic Ensembles (EE) [32], and
Vector Space Model using SAX (SAXVSM) [68].
Shapelet-based Models. Another typical group of related
baselines extracts shapelets to capture the representative
patterns of the original time series data, including Learn
Time Series Shapelets (LS) [11], Fast Shapelets (FS) [18] and
Learned Pattern Similarity (LPS) [39].

Deep learning models. We consider three commonly-used
deep models, MLP, LSTM and VAE, due to their efficacy in
feature-representation tasks and processing time series data.
Time2Graph+ variants. We first compare Time2Graph+ with
Time2Graph, to check the validity of adopting graph atten-
tions; we then compare Time2Graph+ with its derivatives
by modifying some key components to see how they fare:
a) we sample the most possible shapelet sequence (each
segment is assigned with highest assignment probability)
for each time series, and use LSTM to conduct end-to-end
classifications, denoted as Shapelet-Seq; b) we learn shapelets

without considering timing factors, and embed them in the
same way of Time2Graph+, referred as Time2Graph+-static.
We use XGBoost [69] as the outer classifier, and 5-fold
nested cross-validation for fine-tuning on hyper-parameters.
For baselines, parameters are also tuned if we can easily
access the API from source codes; otherwise, we use the
default settings. Other implementation details are listed in
the corresponding project homepage: https:/ /github.com/
petecheng/Time2Graph (Time2Graph), and https:/ /github.
com/petecheng/Time2GraphPlus (Time2Graph+).

5.2 Comparison Results

Table 2 shows the comparison results for classification tasks.
All three public datasets from UCR Archive use accuracy
as evaluation metric since they are balanced, and for those
three real-world datasets, which are relatively imbalanced,
we show the prediction precision, recall and F1 score.

We conclude from Table 2 that Time2Graph+ achieves
competitive performances on all datasets with an averaged
ranking of 2.83 (rank 1 on all real-world datasets), and discuss
in detail by comparing with different groups of baselines.

o We first contrast Time2Graph+ with distance-based models
represented by NN-DTW. Previous works point out that
distance-based models are almost “hard to beat” on time
series classifications, but in our real-world scenarios, they
perform a little bit poorly due to the great complexity of
evolutionary patterns among those time series data.

« Secondly, performances of feature-based models are also of
great sense. It results from that time series of some specific
data sources are more sensitive to the statistical features,
up- or down-trend, etc., which could be well captured by
these feature-based models. As for the real-world datasets,
some feature-based baselines perform relatively better than
others, but Time2Graph+ always beats them all on the F1
score, since it not only considers statistical features, but also
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extracts intrinsic evolutionary patterns of time series data,
which is directly reflected from the comparison between
Time2Graph+ and XGBoost(features).

o Another important group of baselines is shapelet-based
model, and Table 2 shows that Time2Graph+ has absolute
advantage over shapelet-based models on the real-world
and most of the public datasets, where the extra predictive
power is brought by modeling the time-level dynamics
and evolution patterns of shapelets. Besides, we notice
that LS can not even recognize any positive samples in our
three real-world datasets due to the limited discriminative
power of its extracted subsequences. We then look into
the domain of deep learning, i.e., MLP, VAE and LSTM.
They do not perform well on public datasets because there
are few samples in these three UCR datasets to fit the
parameters of deep models, resulting in overfitting on the
training set; while for the real-world scenario, imbalanced
setting and complicated patterns of time series make those
shallow models difficult to work. Since it is not the point
of this paper to focus on designing deep neural networks
for time series modeling, we do not compare with some
complex deep sequential models in our experiments.

« Finally, we compare Time2Graph+ with its variants. As
mentioned in Sec. 1, Shapelet-Seq suffers from the size of
possible sequences, and when we only sample sequences
with the highest probability, its performance fails to match
many baselines, since a substantial amount of information
is lost during sequence sub-sampling. The performance
incrementation from Time2Graph+-Static to Time2Graph+
demonstrates the predictive power brought by time-aware
shapelets, and additional interpretability /insights derived
from time-level attentions are shown in Sec. 5.4. From
Table 2, we can see that the Time2Graph+ model performs
worse than Time2Graph (drop 1.2% of accuracy in average)
on the public datasets, but outperforms the Time2Graph
(+3% in terms of F1) on all real-world datasets. This may
be owing to the fact that Time2Graph+ is more complicated
than Time2Graph as it has much more learnable parameters,
then in those public datasets of limited amount of samples,
it is hard to fit Time2Graph+ well, and its performance gets
impaired. When it comes to the real-world datasets, as
the sample size increases (#(time series) is at least 4.8K),
Time2Graph+ significantly outperforms all baselines on F1
score. Even though some baseline methods achieve higher
precision or recall, all of them seem to encounter biases on
positive or negative samples.

In summary, Time2Graph+ is better at finding representa-
tive subsequence patterns, as well as capturing evolutionary
characteristics in the real-world time series data.

5.3 Parameter Analysis

We examine the sensitivities of three important hyperpa-
rameters in Time2Graph+: number of selected shapelets K,
segment length [ for time series segmentation, and percentile
p for graph construction. Due to space limitations, we only
present the results of EER dataset, as shown in Fig. 2:

e K should be large enough to capture a sufficient number
of evolutionary patterns; while when K is too large, it will
bring in less representative shapelets as noise (Fig. 2a).

o Another parameter that should be tuned is the segment
length [. Fig. 2b shows that it achieves the best perfor-
mances when [ is 30, which is exactly number of days in a
month. It seems not to be a coincidence that, in ECR dataset,
the best segment length is also 30, while the optimal choice
for NTF is 24, i.e.,, number of hours in a day. We conclude
that the segment length [ should be carefully selected based
on the physical characteristics of original data source.

« Fig. 2c illustrates how percentile p affect model perfor-
mances during graph constructions. As it controls the spar-
sity of shapelet evolution graphs, Time2Graph+ performs
poor when p is very small or large (the graphs are too
sparse or dense). Besides, the optimal value for p varies
across different datasets, i.e., 30 for EER, 80 for ECR, etc.
So percentile p should be fine-tuned since the sparsity of
shapelet graphs is a domain-specific property.

Note that number of shapelets K is linear to the model’s
time complexity, and segment length [ is quadratic. The
running time of Time2Graph+ actually is longer than most of
the baselines, while within a tolerable range (~2 hours for
EER dataset on a GeForce RTX 2080 with 12GB memory).

5.4 Case Study of Time-Aware Shapelets

In the following two sections, we are going to conduct
several case studies and show some exciting observations to
explore the interpretability of Time2Graph+, and we use EER
dataset as the example since we have deployed our proposed
framework in this real-world application, and much domain
knowledge is available here from experts.

The first question is, do the shapelets we extracted indeed
have varying levels of discriminatory power? As shown in
Fig. 3a, the training loss grows much slower at the right end,
and the KL divergence of distributions of distances between
positive and negative samples towards the top (rank 1-50)
shapelets on the test set is statistically significantly * larger
than that for the bottom (rank 51-100) shapelets (p = 7.9 *
1075). It reflects the effectiveness of these selected shapelets
to some extent. Furthermore, we show each shapelet’s mean
value and standard deviation (std) in Fig. 3b. Again, the
std of top shapelets are statistically significantly larger than
those of bottom ones (p = 3.8+ 1073), while the mean values
across shapelets exhibit very little difference; this suggests
that typical patterns intend to be unstable.

And to make further illustration, we compare the
top-1 shapelet extracted by LS (a popular baseline) and
Time2Graph+ in Fig. 4a, b. The scale and trends of these
two shapelets differ a lot, and Fig. 4b provides additional
information towards time-aware shapelets in Time2Graph+:
this particular shapelet matters in winter and summer (from
month-level time attentions, i.e., global timing factor), and
weights more especially at the peak and valley of time series
data during the month (from day-level attentions, i.e., local
timing factor). Along with the case study in Sec. 1 (Fig. 1),
we can conclude that such clue obtained from the shapelet
shape and time-level attentions is the distinct advantage of
our proposed model on the interpretability.

3We conduct the two-sided t-test experiments on two groups of
shapelets equally divided by their training loss (rank 1-50 and 51-100),
and the null hypothesis is that these two groups are expected to have
identical average of test loss (KL-divergence).



JOURNAL OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. *, NO. *, **

43.87

44 44 43.87 a4 43.87
435
CELEE 43.13
43.03 43
E 43 42.49 42 .54 LT 43 42.83 42.84 : 42.45

4227 42.54 42.07

42 203 424161 41.58 41.61
42 " 41.05

41

25 50 75 100 125 150 10 15 30 45 60 10 20 30 40 50 60 70 80 90100
(a) number of shapelets K (b) segment length { (c) percentile p

Fig. 2: Parameter analysis. Sensitivity of hyperparameters in Time2Graph+ on the EER dataset: (a) number of extracted
shapelets K, i.e., number of nodes in the shapelet evolution graph; (b) segment length [ and (c) percentile p% during the
process of graph construction. When focusing on the specific parameter, we fix others as the optimal values.

05 ) 3.0
= : KL.divergence 0.07 v std 7.0
S Training loss < 2.0
=15 g 0058 mean 5o
£ o ® 1.0 2
C =
‘©-2.5 0.033 3.0
= 2 0.0

0.01 1.0
3.5

0 20 40 60 80 100
shapelets(sorted by loss)

(a) loss vs. divergence

1.0 20 40 60 80 100
shapelets(sorted by loss)

(b) shapelet scale and std

Fig. 3: Shapelet analysis. (a) shows the training loss and KL-
divergence between positive and negative samples on test set;
(b) shows the mean and standard deviation (std) of shapelets.

N
wn

‘ TZG\:—_sha‘;‘JeIet .
LS_shapelet
0 10 20 30
index
(a) top-1 shapelet comparison
with Learning Shapelets (LS)

normalized elec
Lo
w o

0 1.0
l--‘ 0.8
8

> 12 IS | 0.6

S 1o e ——— 04
20
24i F . - -0.2
0 2 4 6 8 10
month

(b) time-level attention
scores of shapelet #0

Fig. 4: Shapelet analysis. (a) compares the rank-1 shapelet
between Learn Shapelets (LS) and Time2Graph+ (T2G+), and (b)
visualizes the timing factors of shapelet-#0 in the Time2Graph+.

5.5 Case Study of the Shapelet Evolution Graphs

We finally take a deeper look into the constructed shapelet
evolution graphs in Time2Graph+. It is important to unearth
the distinctive characteristics of those graphs, helping better
understand the evolutionary patterns of time series, as well
as the significant benefits brought by the way we transform
time series into graphs. We take a case study of an empty-
nest elderly user and a normal user, with the corresponding
user id as #44 and #5, as shown in Fig. 5. There are several
significant differences between these two users:

o The scales of the original electricity consumption curve
differ a lot; user-#44 has the peak of ~10 kW:h for a day,
while the highest record of the daily electricity usage of
user-#5 reaches ~80 kW-h.

o The constructed shapelet evolution graphs of these two
users have very different graph structures, as visualized by
the graph-level attentions. Although there are many similar
isolated nodes on the ring of the circles, the centered nodes

and their connected vertices are quite different (Sec. 1). For
example, centered nodes for the elderly-#44 are #40 and
#34, while #43, 94, 74 for the normal user-#5.

o Furthermore, the typical centered shapelets in the graph
may encode the individual time-level dynamics, according
to the shapelet shapes and its corresponding time attention
matrix. For example, the pattern of shapelet #34, that a
rapid rise and fall, following with a long time of flat value,
has a higher weight in January, March, September and
October, when the electricity curve of user #44 exactly ex-
hibits such kind of evolution. This may contribute to better
understand the habit of electrical power consuming of a
single user, which could help the downstream applications
such as the real-time electricity usage anomaly detections.

Overall, the proposed framework Time2Graph+ illustrated
in Fig. 5 is able to capture the representative subsequences
along with its time-level dynamics, as well as the shapelet
transitions and evolutions, which are reflected by the graph
attentions. Those characteristics of time series are expected
to be jointly modeled by graph attention networks (node
features and graph structures), and the graph-level repre-
sentations can be directly applied into various downstream
tasks. We will introduce a real-world application deployed
in State Grid of China in the following section, to further
demonstrate the effectiveness of Time2Graph+.

6 A REAL-WORLD APPLICATION

In the real-world scenario of citizens’ electricity consuming,
an important issue is that it may be very dangerous for some
specific groups of people to use electricity alone at home, due
to their limited behavioral capacity. One such kind of citizens
is the empty-nest elderly, since they are old and live alone,
usually have difficulty moving conveniently, and once there
are emergency cases related with electricity usage, they are
probably unable to properly handle with them. A commonly
applied solution is to monitor the electricity usage of those
elderly users in real-time, and if there are any abnormal
states among their electricity consuming, staffs would take
immediate actions to make sure their safety.

However, in practice only a small part of the empty-nest
elderly are recognized (labels are often provided by some
government departments during on-site investigations), and
staffs in State Grid almost have no idea about who are the
elderly among millions of users. Besides, it is very costly
and time-consuming to check on-site to obtain the labels of
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whether a user is the empty-nest elderly or not. So we deploy
our proposed Time2Graph+ model to automatically recognize
the empty-nest elderly users in the State Grid Jinhua Power
Supply Co. Ltd., a subsidiary of State Grid of China. Our
target is to find the elderly as precise as possible given users’
electricity consumption records over the past year.

To support some necessary observational studies and the
training, validation and evaluation for the model, we need
a large pool of labeled users. We first conduct a large-scale
on-site questionnaire over 10,000 users who are randomly
sampled, and collect ~6,600+ valid results to tell whether
each of them is the empty-nest elderly or not. In total,
there are 4,807 users who have continuous electricity-usage
records over the past year, and they are split into training
and validation sets during the process of model learning
(see experiments in Sec. 5). After that, we again randomly
sampled ~800 unlabeled users, among which Time2Graph+
predicts 39 samples as the empty-nest elderly . Note that
here we increase the classification threshold, i.e., predicting
less positive samples (the elderly), since in this real-world
scenario, precision is the more important metric. Then staffs
in the State Grid check those 39 users by on-site investigation,
and 25 of them are verified as the elderly, indicating that our
model achieves 75.8% in terms of precision. Our framework
has been deployed in the online platform in the State Grid
to automatically recognize the empty-nest elderly users, and
in the future, a complete electricity-usage-safety monitoring
system will be built based on these predicted labels.

7 CONCLUSIONS AND DISCUSSIONS

In this paper, we discuss the field of bridging the community
of time series modeling and graph representation learn-
ing. We focus on time series shapelets, i.e., representative
subsequences, and introduce the key idea of transform-
ing time series data into shapelet evolution graphs to

model the evolutionary dynamics. Based on extracting time-
aware shapelets that use time-level attentions to capture
the seasonal effects on subsequences, we then utilize the
shapelet evolution graphs to learn time series representations.
We propose two ways of constructing and modeling the
graphs, namely Time2Graph and Time2Graph+ respectively.
In Time2Graph, we construct a uniform shapelet evolution
graph for the whole time series set, and use a random-
walk-based graph embedding algorithm to learn shapelet
representations. While for Time2Graph+, we convert each
time series data into a unique unweighted shapelet graph,
then adopt graph attention networks to learn the self-
attention weights between each pair of connected nodes,
and interpret the normalized attention scores as the shapelet
transition probabilities. Moreover, weuse graph-level hidden
representations aggregated from GAT as the embeddings
for the original time series, which can be applied into
various downstream tasks. Experimental and observational
results on the three real-world datasets demonstrate the
improvements and extra interpretability of Time2Graph+. Last
but not least, we have deployed Time2Graph+ in State Grid of
China in Jinhua, Zhejiang Province, to recognize the empty-
nest elderly users. The success of the real-world application
furthermore validates the model effectiveness.
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