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Abstract
Unsupervised/self-supervised pre-training methods for graph
representation learning have recently attracted increasing re-
search interests, and they can be generalized to various down-
stream applications. Yet, the adversarial robustness of such
pre-trained graph learningmodels remains largely unexplored.
More importantly, most existing defense techniques for end-
to-end graph representation learning methods require pre-
specified label definitions, and thus cannot be directly ap-
plied to the pre-training methods. In this paper, we propose
an unsupervised defense technique to robustify pre-trained
deep graph models, so that the perturbations on the input
graph can be successfully identified and blocked before the
model is applied to different downstream tasks. Specifically,
we introduce a mutual information-based measure, graph rep-
resentation vulnerability (GRV), to quantify the robustness of
graph encoders on the representation space.We then formulate
an optimization problem to learn the graph representation by
carefully balancing the trade-off between the expressive power
and the robustness (i.e., GRV) of the graph encoder. The dis-
crete nature of graph topology and the joint space of graph data
make the optimization problem intractable to solve. To handle
the above difficulty and to reduce computational expense, we
further relax the problem and thus provide an approximate
solution. Additionally, we explore a provable connection be-
tween the robustness of the unsupervised graph encoder and
that of models on downstream tasks. Extensive experiments
demonstrate that even without access to labels and tasks, our
model is still able to enhance robustness against adversarial
attacks on three downstream tasks (i.e., node classification,
link prediction, and community detection) by an average of
+16.5% compared with existing methods.

1 Introduction
Graphs, a common mathematical abstraction for modeling
pairwise interactions between objects, are widely applied
in numerous domains, including bioinformatics, social net-
works, and finance. Owing to their prevalence, deep learning
on graphs, such as graph neural networks (GNNs) (Kipf et al.
2017; Hamilton et al. 2017), have recently undergone rapid
development, and made major progress in various analytical
tasks, including node classification (Kipf et al. 2017; Hamil-
ton et al. 2017), link prediction (Kipf et al. 2016), and graph
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Figure 1: Overview of a graph pre-training pipeline under
adversarial attacks. If the graph encoder is vulnerable to
the attacks, the adversarial risk would propagate to every
downstream task via the perturbed graph representation.

classification (Xu et al. 2019b). However, most deep learn-
ing models on graphs are trained with task-specific labels in
an end-to-end manner for a particular task. This motivates
some recent efforts to pre-train an expressive graph encoder
on unlabeled data and further feed the learned representations
to (supervised/unsupervised) off-the-shelf machine learning
models for relevant downstream tasks (Hu et al. 2019, 2020;
Qiu et al. 2020). The pre-training models on graphs enable
the learned representations to be directly applicable to dif-
ferent applications with a simple and inexpensive machine
learning model attached after the encoded representations.

Despite the promising results achieved by deep learning
models on graphs, recent studies have shown that these mod-
els are vulnerable to adversarial attacks (Dai et al. 2018;
Zügner et al. 2019a; Bojchevski et al. 2019a; Xu et al. 2020b;
Zheng et al. 2021). In other words, even imperceptible per-
turbations on graph topology and node attributes can sig-
nificantly affect the learned graph representation, thereby
degrading the performance of downstream tasks (Chen et al.
2020; Xu et al. 2020c). This so-called adversarial vulnera-
bility has given rise to tremendous concerns regarding the
utilization of deep learning models on graphs, especially in
security-critical applications such as drug discovery (Gilmer
et al. 2017) and financial surveillance (Yang et al. 2019,
2021). However, the adversarial vulnerability of pre-training
models on graphs is far overlooked. In this work, we show
that graph pre-training models also suffer from the adver-
sarial vulnerability problem. Actually, owing to the compli-
cated and deep structure, the graph encoder is more vulner-



able to adversarial attacks than the simple machine learning
models used for downstream tasks in a graph pre-training
pipeline (Tanay et al. 2016). As Figure 1 shows, once the
graph encoder is vulnerable to adversarial attacks, the adver-
sarial risk would propagate to every task via the perturbed
representations.

Most efforts targeted at this adversarial vulnerability prob-
lem focus on supervised, end-to-end models designed for a
particular application scenario (Zügner et al. 2019b; Bo-
jchevski et al. 2019b; Wang et al. 2019; Jin et al. 2020; Wang
et al. 2021; Xu et al. 2021). However, the dependency on the
supervised information largely limits the scope of their ap-
plication and usefulness. For example, these models do not
perform well on downstream tasks in which training labels
are missing, e.g., community detection in social networks. In
addition, training multiple models for different downstream
tasks is both costly and insecure (Feurer et al. 2015). In con-
trast, robust unsupervised pre-trainingmodels can easily han-
dle the above issues because adversarial attacks are identified
and blocked before propagating to downstream tasks. More-
over, these models are applicable to a more diverse group of
applications, including node classification, link prediction,
and community detection. Unfortunately, however, these ro-
bust pre-training models under the unsupervised setting still
remain largely unexplored.

There are many interesting yet challenging questions in
this new field of research. Conventionally, the robustness of
a model is defined based on the label space (Xu et al. 2020a;
Zügner et al. 2019b; Bojchevski et al. 2019b), which is not
the case in our setting. Thus the first difficulty we meet is to
quantify the robustness of an unsupervised model (without
the knowledge of the true or predicted labels).

To overcome the above challenge, in this paper, we first
introduce the graph representation vulnerability (GRV), an
information theoretic-based measure used to quantify the ro-
bustness of a graph encoder. We then formulate an optimiza-
tion problem to study the trade-off between the expressive
power of a graph encoder and its robustness to adversar-
ial attacks, measured in GRV. However, how to efficiently
compute or approximate the objective of the optimization
problem becomes the next issue. First, it remains a big prob-
lem on how to describe the ability of the attack strategies or
the boundary of perturbations, because adversarial attacks
on graphs perturb both the discrete graph topology and the
continuous node attributes. Second, the rigorous definition
of the objective is intractable.

To handle the above issues, we first quantify the ability of
adversarial attacks usingWasserstein distance between prob-
ability distributions, and provide a computationally efficient
approximation for it. We then adopt a variant of projected
gradient descent method to solve the proposed optimization
problem efficiently. A sub-optimal solution for the problem
gives us a well-qualified and robust graph encoder.

Last but not least, we explore several interesting theoretical
connections between the proposed measure of robustness
(GRV) and the classifier robustness based on the label space.
To show the practical usefulness of our model, we apply the
learned representations to three different downstream tasks.
Experimental results reveal that under adversarial attacks,

our model beats the best baseline by an average of +1.8%,
+1.8%, and +45.8% on node classification, link prediction,
and community detection task, respectively.

2 Preliminaries and Notations
In most cases, we use upper-case letters (e.g., - and . )
to denote random variables and calligraphic letters (e.g., X
and Y) to denote their support, while the corresponding
lower-case letters (e.g., x and y) indicate the realizations of
these variables. We denote the probability distributions of
the random variables using subscripts (e.g., `- and `. ) and
the corresponding empirical distributions with hat accents
(e.g., ˆ̀- and ˆ̀. ).We use bold upper-case letters to represent
matrices (e.g., A). When indexing the matrices, A8 9 denotes
the element at the 8-th row and the 9-th column, while A8
represents the vector at the 8-th row. Let (X, 3) denote the
metric space, where 3 :X × X → R is a distance function
on X. The set of all probability measures on X isM(X).

We assume a generic unsupervised graph representation
learning setup. In brief, we are provided with an undi-
rected and unweighted graph G = (V,E) with the node
set V = {E1, E2, ..., E |V |} and edge set E ⊆ V × V =

{41, 42, ..., 4 |E |}. We are also provided with the adjacency
matrix A ∈ {0, 1} |V |× |V | of the graph G, a symmetric matrix
with elements A8 9 = 1 if (E8 , E 9 ) ∈ E or 8 = 9 , and A8 9 = 0
otherwise. We augment G with the node attribute matrix
X ∈ R |V |×2 if nodes have attributes. Accordingly, we define
our input as s = (a, x) ∈ S; thus, we can conceive of x as the
attribute matrix and a as the adjacency matrix of G under
a transductive learning setting, while a and x are the adja-
cency matrix and attribute matrix respectively of a node’s
subgraph under an inductive learning setting. We define an
encoder 4 : S → Z, which maps an input s = (a, x) ∈ S to
a representation 4(a, x) ∈ Z, and a simple machine learning
model 5 : Z → Y that maps a representation z ∈ Z to
a label 5 (z) ∈ Y. We go on to define 6 = 5 ◦ 4 as their
composition, such that ( 5 ◦ 4) (a, x) = 5 (4(a, x)). The mu-
tual information between two random variables - and . is
denoted by I(-;. ). Specifically, it is defined as theKullback–
Leibler divergence between the joint distribution ?(x, y) and
the product of the marginal distributions ?(x)?(y).
Admissible perturbations on graphs. TheWasserstein dis-
tance can be conceptualized as an optimal transport problem:
wewish to transport themasswith probability distribution `(
into another distribution `(′ at the minimum cost. Formally,
the ?-th Wasserstein distance between `( and `(′ is

,? = (`( , `(′) =
(

inf
c∈Π(`( ,`(′ )

∫
S2
3 (s, s′) 3c(s, s′)

)1/?
,

where Π(`( , `(′) denotes the collection of all measures on
S × S with marginal `( and `(′ , respectively. The choice
of ∞-Wasserstein distance (i.e., ? = ∞) is conventional in
learning graph representations (Champion et al. 2008).
Based on ∞-Wasserstein distance, we can quantify the

ability of the adversarial attacks. An attack strategy is mod-
eled as a probability distribution close to that of ( = (�, -),
and all possible attack strategies stay in a ball around the



genuine distribution `( , with a pre-defined budget g > 0:

B∞ (`( , g) = {`(′ ∈ M(() : ,∞ (`( , `(′) ≤ g}.

3 Graphs Representations Robust to
Adversarial Attacks

In a widely adopted two-phase graph learning pipeline, the
first step is to pre-train a graph encoder 4 (without the knowl-
edge of any labels), which maps the joint input space S (i.e.,
the graph topologyA and node attributesX) into some, usu-
ally lower-dimensional, representation space Z. Then the
encoded representation is used to solve some target tasks.

In this section, we explain how to obtain a well-qualified
graph representation robust to adversarial attacks. We first
propose a measure to quantify the robustness without la-
bel information in §3.1. In §3.2, we formulate an optimiza-
tion problem to explore the trade-off between the expres-
sive power and the robustness of the graph encoder. We
then describe every component in the proposed optimization
problem, and explain how we obtain a sub-optimal solution
efficiently in §3.3.

3.1 Quantifying the Robustness of Graph
Representations

In this section, we propose the graph representation vul-
nerability (GRV) to quantify the robustness of an encoded
graph representation. Intuitively, the learned graph represen-
tation is robust if its quality does not deteriorate too much
under adversarial attacks. Now we introduce in detail how to
measure the quality of representations using MI, and how to
describe the difference of representation quality before and
after adversarial attacks.
The use of mutual information. A fundamental challenge
to achieving a qualified graph representation is the need to
find a suitable objective that guides the learning process of
the graph encoder. In the case of unsupervised graph rep-
resentation learning, the commonly used objectives are ran-
dom walk-based (Perozzi et al. 2014; Grover et al. 2016)
or reconstruction-based (Kipf et al. 2016). These objectives
impose an inductive bias that neighboring nodes have sim-
ilar representations. However, the inductive bias is easy to
break under adversarial attacks (Jin et al. 2020; Entezari
et al. 2020), because the connections among local neighbor-
hoods are prone to be broken under adversarial attacks. As
an alternative solution, we turn to maximize the MI between
the input attributed graph and the representation output by
the encoder, i.e., I((; 4(()), from a more global view. In our
case, maximizing the I((; 4(()) encourages the representa-
tions to be maximally informative about the input graph and
to avoid the above-mentioned inductive bias.
Graph representation vulnerability. In addition to the
measure of the quality of a graph representation, we also need
to describe the robustness of a representation. Intuitively, an
encoder is called robust if the value of the objective stays
relatively stable after tiny perturbations on the input. There-
fore, the encoder is robust if the MI before and after attack
are close to each other. Thus, we propose the graph repre-

sentation vulnerability (GRV) to quantify this difference:
GRVg (4) = I((; 4(()) − inf

`(′ ∈B∞ (`( ,g)
I((′; 4((′)), (1)

where ( = (�, -) is the random variable following the be-
nign data distribution, and (′ = (�′, - ′) follows the adver-
sarial distribution. The first term I((; 4(()) in (1) is the MI
between the benign graph data and the encoded represen-
tation, while the term I((′, 4((′)) uses the graph data after
attack. The attack strategy `(★ that results in the minimum
MI is called the worst-case attack, and is defined as

`(★ = argmin
`(′ ∈B∞ (`( ,g)

I((′; 4((′)).

Hence by definition, the graph representation vulnerability
(GRV) describes the difference of the encoder’s behavior
using benign data and under theworst-case adversarial attack.
A lower value of GRVg (4) implies a more robust encoder
to adversarial attacks. Formally, an encoder is called (g, W)-
robust if GRVg (4) ≤ W.

An analogy to the graph representation vulnerability
(GRV) has been studied in the image domain (Zhu et al.
2020). However, the extension of (Zhu et al. 2020) to the
graph domain requires nontrivial effort. An image is consid-
ered to be a single continuous space while a graph is a joint
space S = (A,X), consisting of a discrete graph-structure
space A and a continuous feature space X. Moreover, the
perturbation on the joint space (A,X) is difficult to track
because a minor change in the graph topology or node at-
tributes will propagate to other parts of the graph via edges.
This is different in the image domain, where the distribu-
tions of all the pixels are assumed to be i.i.d.. Therefore,
the discrete nature of graph topology and joint space (A,X)
make the worst-case adversarial attack extremely difficult to
estimate. Thus, the optimization method we apply is substan-
tially different from that in (Zhu et al. 2020); see §3.2 and
§3.3. Furthermore, more complicated analysis is needed to
verify our approach in theory; see §4 for details.

3.2 Optimization Problem
The trade-off between model robustness and the expressive
power of encoder has been well-studied (Tsipras et al. 2019;
Zhang et al. 2019). In our case, this trade-off can be readily
explored by the following optimization problem

maximize ℓ1 (Θ) = I((; 4(()) − VGRVg (4), (2)
where the optimization variable is the learnable parametersΘ
of the encoder 4, and V > 0 is a pre-defined parameter.

However, in practice, the “most robust” encoder is usually
not the desired one (as it sacrifices too much in the encoder’s
expressive power). An intuitive example for the “most ro-
bust” encoder is the constant map, which always outputs the
same representation whatever the input is. Hence, a “robust
enough” encoder would be sufficient, or even better. To this
end, we add a soft-margin W to GRV, and obtain the following
optimization problem
maximize ℓ2 (Θ) = I((; 4(()) − Vmax {GRVg (4), W}. (3)

The second term is positive if GRVg > W and constant other-
wise. As a result, when the encoder is sufficiently robust,



the second term in ℓ2 does no contribution, and thus Prob-
lem (3) turns to the standard MI maximization using benign
data. Furthermore, when V = 1, Problem (3) can be divided
into two simple sub-problems, depending on the value of
GRVg (4):

max
Θ

inf
`(′ ∈B∞ (`( ,g)

I((′; 4((′)), if GRVg > W

max
Θ

I((; 4(()), otherwise.
(4)

In this case (V = 1), when GRVg (4) > W, the problem max-
imizes the MI under the worst-case adversarial attack. In
other words, the robust encoder tries to maintain the mu-
tual dependence between the graph data and the encoded
representation, under all kinds of adversarial attacks. When
the encoder is sufficiently robust (i.e., GRVg (4) ≤ W), the
problem turns to maximize the encoder’s expressive power.
GNN as the parameterized encoder. GNN has been ex-
tensively used as an expressive function for parameterizing
the graph encoder (Kipf et al. 2016, 2017). In this paper,
we adopt a one-layer GNN: 4(A,X) = f(D̂−1/2ÂD̂−1/2XΘ),
where Â is the adjacency matrix with self-loops, D̂ is the
corresponding degree matrix, f is the ReLU function, andΘ
is the learnable parameters.

3.3 Approximate Solution
Although we formulate robust graph learning as an optimiza-
tion problem (4), this problem is still difficult to solve for sev-
eral reasons. First of all, the mutual information I((, 4(()) is
extremely hard to compute, mainly because ( = (�, -) is a
joint random variable involving a high-dimensional discrete
variable �. In addition, the search space of the adversar-
ial attacks, B∞ (`( , g), is intractable to quantify: There is no
conventional or well-behaved choice for the distancemetric 3
in such a complicated joint space. Even when we know the
metric, the distance between two random variables is difficult
to calculate. Apart from the above challenges, the classical,
well-known projected gradient descent algorithm does not
work in the joint space ( = (�, -), and thus the worst-case
adversarial attack `(★ is noway to find. Therefore, we further
address the above issues in detail.
MI estimation. Directly computing I((; 4(()) in Prob-
lem (4) is intractable, especially for a joint distribution
( = (�, -) which includes a high-dimensional discrete ran-
dom variable �. Some authors propose to maximize the av-
erage MI between a high-level “global” representation and
local input regions, and show significant improvement in
the quality of representations (Hjelm et al. 2019; Veličković
et al. 2019). Inspired by recent work Deep Graph Info-
max (Veličković et al. 2019), we use a noise-contrastive type
objective as an approximation of I((; 4(()):
ℓenc ((, 4) = E( [logD (z, zG)] + E(̃ [log (1 − D ( z̃, zG))] , (5)

where z denotes the local/node representation obtained from
a GNN encoder; zG = sigmoid (E( (z)) denotes the global/-
graph representation; (̃ is the random variable of negative
examples, and z̃ is the realization of 4((̃). The critic func-
tionD(z, zG) represents the score assigned to a pair of local
and global representations obtained from the natural samples

(i.e., the original graph), whileD( z̃, zG) is that obtained from
negative samples. We adopt DΦ = sigmoid(z)ΦzG), where
Φ is a learnable scoring matrix. Finally, in practice, the ex-
pectation over an underlying distribution is typically approxi-
mated by the mean of = independent samples {(a8 , x8)}8∈[=] .
Adversarial distribution estimation. Besides the estima-
tion ofMI, another challenge in solving Problem (4) is how to
find theworst-case adversarial distribution `(★ ∈ B∞ (`( , g).
Here, we elaborate the three difficulties in finding `(★ , and
explain in detail how we solve them one by one.

First, it is difficult to choose an appropriate metric 3 on
the joint space S = (A,X) that faithfully measures the
distance between each pair of point elements. An intuitive
choice for the distance between any pair of s1 = (a1, x1) and
s2 = (a2, x2) in the joint metric space (A, 3A) and (X, 3X)
would be the !?-norm ‖

(
3A (a1, a2), 3X (x1, x2)

)
‖ ? . How-

ever, this intuition fails in our case because the changes in
both the graph topology and the node attributes are not in
the same order of magnitude. Thereby, we have to consider
the perturbations in A and X separately. With a little abuse
of notation, we redefine the perturbation bound as follows:
B∞ (`�, `- , X, n) = {(`�′ , `- ′) ∈ M(A) ×M(X) |

,∞ (`�, `�′) ≤ X,,∞ (`- , `- ′) ≤ n},
where the small positive numbers X and n play the role of per-
turbation budget now. This is indeed a subset of the previous
search space B∞ (`( , g).

Moreover, although the search space has been restricted,
the ∞-Wasserstein constrained optimization problem re-
mains intractable: We still have no clue about the under-
lying probability distribution. Similar to what we did to es-
timate MI, we turn to replace the real data distribution with
an empirical one. Suppose we have a set of i.i.d. samples
{(a8 , x8)}8∈[=] (note that = = 1 under a transductive learn-
ing setting), based on which we can compute the empirical
distribution ( ˆ̀�, ˆ̀- ). The empirical search space is
B̂

(
{a8}=8=1, {x

8}=8=1, X, n
)

=

{
( ˆ̀�′ , ˆ̀- ′)

��� ‖a8 ′ − a8 ‖0 ≤ X, ‖x8
′ − x8 ‖∞ ≤ n, 8 ∈ [=]

}
,

where ˆ̀�′ and ˆ̀- ′ are the empirical distributions computed
from the perturbed samples {(a8 ′, x8 ′)}8∈[=] . Here we use
the cardinality (i.e., !0-norm) tomeasure the change in graph
topology, and the !∞-norm to measure the change in con-
tinuous node attributes (when node attributes are discrete,
or even binary, we can also use !0-norm for them). Finally,
we notice that the empirical space B̂

(
{a8}=

8=1, {x
8}=
8=1, X, n

)
is again a subset of B∞ ( ˆ̀�, ˆ̀- , X, n).

The remaining question is how to efficiently find the
worst-case adversarial attack. The classical choice for the
image domain, i.e., the projected gradient descent (PGD)
method (Madry et al. 2018), is no longer applicable in our
case, as the graph topology is a Boolean random matrix. As
a remedy for the discrete case, we adopt a projected gra-
dient descent topology attack for graph topology (Xu et al.
2019a). More specifically, we first find a convex hull of the
discrete feasible set, and apply the projected gradientmethod.
A binary sub-optimal solution of worst-case a′ is then recov-
ered using random sampling. This projected gradient descent



topology attack helps us identify the worst-case adversarial
example efficiently.

4 Theoretical Connection to Label Space
In this section, we examine the ability of the proposed ro-
bust graph encoder of blocking perturbation and benefiting
downstream tasks. To better understand the power of our ro-
bust model, we establish a theoretical connection between
the robustness of representations (measured by our proposed
GRV) and the robustness of the potentialmodel built upon the
representations. We take node classification as an example
task, and the result can be easily generalized to other classical
graph learning tasks. We first introduce the concept of adver-
sarial gap (AG) to measure the robustness of the downstream
node classifier, and then explore some interesting theoretical
connections between GRV and AG.
Adversarial gap. Adversarial gap (AG) is a classical mea-
sure of robustness for node classification in inductive learn-
ing. Let a and x be the adjacency matrix and the attribute
matrix of an induced subgraph. Denote by (S, 3) the input
metric space and Y the space of labels. For a node classifier
6 : S → Y, we define the adversarial risk of 6 with the
budget g ≥ 0 as
AdvRiskg (6)

= P
[
∃s′ = (a′, x′) ∈ B(s, g), s.t. 6(a′, x′) ≠ H

]
,

where B(x, g) = {x′ ∈ X | 3 (x′, x) ≤ g}. The adversarial
gap (AG) is then defined as

AGg (6) = AdvRiskg (6) − AdvRisk0 (6),
which measures the relative vulnerability of the given
model 6. Apparently from the definition, a smaller value
of AG (or AdvRisk) implies a more robust node classifier 6.
Table 1 briefly summarizes the robustness measures, in-

cluding AG, RV and GRV. The traditional model robust-
ness, adversarial gap (i.e., AGn (6) and AGg (6)), is based on
the label space Y, while the MI-based robustness measures
(i.e., RV∗ (4) and GRV∗ (4)) are built upon the representation
space Z. The prior work (Zhu et al. 2020), which defines
RVn (4) on a single input space X in the image domain, has
shown that RVn (4) has a clear connection with classifier
robustness. Comparatively, the graph representation vener-
ability GRVg (4) is defined on a joint input space (A,X)

Robustness
measure

Domain Input space Output
space

AGn (6) Image Single X Y
AGg (6) Graph Joint (A,X) Y
RVn (4) Image Single X Z
GRVg (4) Graph Joint (A,X) Z

Table 1: Summary of robustness measures. Adversarial gap
(AG) is built on the label space Y, while representation vul-
nerability (RV) and graph representation vulnerability (GRV)
are MI-based measures built on the representation spaceZ.
The subscript n denotes the perturbation budget of x (i.e., the
image) on the image domain, while the subscript g denotes
the perturbation budget of (a, x) on the graph domain.

in the graph domain. Thus the new definition is essentially
different from the one on the image domain due to the exis-
tence of both discrete and continuous input data structures.
In what follows, some interesting theoretic are presented to
show inherent relationship between the graph representation
vulnerability GRVg (4) and the adversarial gap AGg (6). We
first work on two special cases under each of the following
assumptions. Both assumptions are imposed on the statisti-
cal independence between the input random variables (i.e.,
� or -) and the output label . .
• Topology-aware: given - ⊥ . , ?(. |�, -) = ?(. |�)
• Attribute-aware: given � ⊥ . , ?(. |�, -) = ?(. |-)
Special cases. To obtain a tractable surrogate model,
we consider a simplified GNN-based encode architecture
z = a) x� (Wu et al. 2019a). Thus, the representation of
each node depends only on its one-hop neighbors, and then
the corresponding column of A can be used directly to com-
pute the representation for each node. Additionally, inspired
by (Miyato et al. 2017; Dai et al. 2019), in which pertur-
bation on intermediate representations is defined, we opt to
define the adversarial distribution w.r.t `�) - instead of that
w.r.t `� and `- respectively. This assumption is reasonable
owing to our focus on the robustness of our model rather than
the real attack strategies. Accordingly, we assume that the set
of adversarial distributions is
B∞ (`�) - , d)
= {`�′) - ′ ∈ M(H) : ,∞ (`�) - , `�′) - ′) ≤ d},

whereH = {a) x : ∀a ∈ A, x ∈ X}.
In Theorems 4.1 and 4.2, we denote by a ∈ {0, 1} |V | one

column in A and x = X. The subscript d of GRV, AdvRisk
and AG represents that they are defined via B∞ (`�) - , d),
while F = { 5 : I ↦→ H} denotes the set of non-trivial down-
stream classifiers, 5 ∗ = argmin 5 ∈F AdvRiskd ( 5 ◦ 4) is the
optimal classifier built upon 4, and �1 is the binary entropy
function. Moreover, when indexing a and x, a8 denotes the
8-th entry of a and x8 denotes the 8-th row of x.
Theorem 4.1 (Topology-aware) Let (A, ‖ · ‖0) and (X, ‖ ·
‖?) be the input metric spaces, Y = {−1, +1} be the label
space and Z = {−1, +1} be the representation space. The set
of encoders with Θ ∈ R |V | is as follows:
E = {4 : (a, x) ∈ S ↦→ sgn[a) x�] | ‖�‖2 = 1}. (6)

Assume that all samples (s, y) ∼ `(. are generated from
y
u.a.r.∼ *{−1, +1}, a8

i.i.d.∼ Bernoulli(0.5 + y · (? − 0.5)) and
x8
i.i.d.∼ N(0, f2O2) where 8 = 1, 2, . . . , |\ | and 0 < ? < 1.

Then, given d ≥ 0, for any 4 ∈ E, we obtain
GRVd (4) = 1 − �1 (0.5 + AGd ( 5 ∗ ◦ 4)).

Next, consider a simpler case in which y
u.a.r.∼ *{−1, +1}

and a8
i.i.d.∼ Bernoulli(0.5 + y · (? − 0.5)) hold, but x8 =

12 , 8 = 1, . . . , |\ | and the set of encoders follows such that
E = {4 : (a, x) ↦→ sgn[(a) x − 0.5|\ |1)2 )�] | ‖�‖2 = 1},
which can be regarded as the non-attribute case. Then, given
d ≥ 0, for any 4 ∈ E, we have

GRVd (4) ≥ 1 − �1
(
0.5 − 0.5AGd ( 5 ∗ ◦ 4)

)
(7a)

GRVd (4) ≤ 1 − �1
(
0.5 − AGd ( 5 ∗ ◦ 4)

)
(7b)



Theorem 4.1 reveals an explicit connection between
GRVd (4) and AGd ( 5 ∗ ◦ 4) achieved by the best classifier
in the topology-aware case. We note that �1 (\) is concave
on (0, 1) and that the maximum of �1 is attained uniquely
at \ = 0.5. Thus, a smaller GRV implies a smaller AG, and
vice versa.
Theorem 4.2 (Attribute-aware) Let (A, ‖·‖0) and (X, ‖·‖?)
be the input metric spaces, Y = {−1, +1} be the label space
and Z = {−1, +1} be the representation space. Suppose that
the set of encoders is as in (6). Assume that the samples
(s, y) ∼ `(. are generated from y

u.a.r.∼ *{−1, +1}, a8
i.i.d.∼

Bernoulli(0.5) and x8
i.i.d.∼ N(y ·-, f2�2) where 8 = 1, 2, . . . , |\ |.

Then, given d ≥ 0, for any 4 ∈ E, we have:

GRVd (4) = 1 − �1 ( 12 − AGd ( 5
∗ ◦ 4)). (8)

Next, consider a simpler case in which y
u.a.r.∼ *{−1, +1},

x8
i.i.d.∼ N(y · -, f2�2) but a ∈ {0, 1} |\ | , ∑ |\ |

8=1 a8 = =0 + =1,
where =0 = |\ |/4 + y · (? − |\ |/4), =1 = |\ |/4 + y · (@ − |\ |/4)
and ? + @ = |\ |/2, 0 ≤ ?, @ ≤ |\ |/2, ?, @ ∈ Z; that is, a) x will
aggregate =0 samples with y = +1 and =1 samples with y = −1.
Further suppose that the set of encoders is as presented in (6).
Then, given d ≥ 0, (7) also holds for any 4 ∈ E.
Similarly, we have GRVd ∝ AGd in Theorem 4.2. Note that
Theorems 4.1 and 4.2 still hold when a contains self-loops.
General case. We illustrate a more general case in which .
is dependent on both � and - . In the general case, we can
extend (Zhu et al. 2020, Theorem 3.4) to the graph domain.
Regardless of the encoder, the theorem below provides a
general lower bound of adversarial risk over any downstream
classifiers that involves both MI and GRV.
Theorem 4.3 (Zhu et al. 2020). Let (S, 3) be the input metric
space, Z be the representation space and Y be the label
space. Assume that the distribution of labels `. over Y is
uniform and ( is the random variable following the joint
distribution of inputs `�- . Further suppose that F is the set
of downstream classifiers. Given g ≥ 0,

inf
5 ∈F
AdvRiskg ( 5 ◦ 4) ≥ 1 −

� ((; 4(()) − GRVg (4) + log 2
log |Y|

holds for any encoder 4.
Theorem 4.3 suggests that lower adversarial risk over all
downstream classifiers cannot be achieved without either
lower GRV or higher MI between ( and 4((). It turns out
that jointly maximizing � ((; 4(()) and minimizing GRVg (4)
enables the learning of robust representations. Note that The-
orem 4.3 also holds in the graph classification task.

5 Experiments
In the experiments, we train ourmodel in a fully unsupervised
manner, and then apply the output representations to three
graph learning tasks. Compared with non-robust and other
robust graph representation models, the proposedmodel pro-
duces more robust representations to defend adversarial at-
tacks. Furthermore, the superiority of our model still holds
under different strengths of attacks and under various attack
strategies.

5.1 Experimental Setup
For evaluation, we use three datasets, Cora, Citeseer and Pol-
blogs, and compare our model with the following baselines.
• Non-robust graph representation learning: 1) Raw: con-
catenating graph topology and node attributes (only graph
topology for Polblogs); 2) DeepWalk (Perozzi et al. 2014):
a random walk-based unsupervised graph model; 3) Deep-
Walk+X: concatenating the Deepwalk embedding and the
node attributes; 4) GAE (Kipf et al. 2016): variational
graph auto-encoder and 5) DGI (Veličković et al. 2019):
another unsupervised graph model based on MI.

• Defense models: 1) Dwns_AdvT (Dai et al. 2019): a de-
fense model designed for Deepwalk; 2) RSC (Bojchevski
et al. 2017): a robust unsupervised graph model via spec-
tral clustering; 3) DGI-EdgeDrop (Rong et al. 2020): a
defense model that works by dropping 10% of edges dur-
ing training DGI; 4) DGI-Jaccard (Wu et al. 2019b): DGI
applied to a pruned adjacency matrix in which nodes with
low Jaccard similarity are forced to be disconnected; and
5) DGI-SVD (Entezari et al. 2020): DGI applied to a low-
rank approximation of the adjacency matrix obtained by
truncated SVD.

We also include Ours-soft, an variant of our model which
removes soft margin on GRV.
Implementation details. In the training phase, we adopt the
projected gradient descent topology attack (Xu et al. 2019a)
and PGD attack (Madry et al. 2018) to construct adversar-
ial examples of a and x, respectively. We set W = 5e-3,
X = 0.4|E|, and n = 0.1. For Polblogs, we do not perform
attacks on the pseudo node attributes. In evaluation, we use
the same attack strategy as in training, but set X = 0.2|E|
to satisfy imperceptible constraint. Considering the training
efficiency and the real attack during evaluation, the step size
and iteration number are set different. Note that DeepWalk
and RSC both require the entire graph, and thus we retrain
them using polluted data. The evaluation is performed on
node classification, link prediction, and community detec-
tion. We run 10 trials for all the experiments and report
their average performance and standard deviation. Codes are
available at: https://github.com/galina0217/robustgraph.

5.2 Results

Performance on downstream tasks. Table 2 summarizes
the performance of different models in three tasks. We see
that our model beats the best baseline by an average of +1.8%
on the node classification, +1.8% on the link prediction and
+45.8%on the community detection. It’sworth noting that, in
community detection, adversarial attacks can cause dramatic
influence on model performance because the task itself is
very sensitive to the global graph topology. The difference
between the performance of our model and that of those
non-robust graph learning models indicates the importance
of defense. Moreover, our model still stands out with huge
lead when compared with existing defense models. Besides,
the ablation study, i.e., comparing the last two rows inTable 2,
shows the superiority of the soft margin on GRV.



Node classification (Acc%) Link prediction (AUC%) Community detection (NMI%)

Model
Dataset Cora Citeseer Polblogs Cora Citeseer Polblogs Cora Citeseer Polblogs

Raw 57.4±3.0 49.7±1.6 73.9±0.9 60.5±0.1 50.2±0.5 89.0±0.4 9.7±7.5 1.0±0.5 0.2±0.1
DeepWalk 56.2±1.1 16.5±0.9 80.4±0.5 55.4±0.8 50.3±0.3 89.2±0.7 34.6±0.6 11.1±1.0 0.4±0.5
DeepWalk + X 59.3±0.4 26.5±0.5 - 55.9±0.6 50.9±0.3 - 34.2±3.7 11.1±1.3 -
GAE 14.0±1.2 16.2±1.1 49.9±1.2 52.4±1.4 50.9±1.8 50.5±1.3 10.9±2.1 1.4±1.7 9.2±1.0
DGI 69.3±2.8 53.2±2.2 75.2±2.4 68.6±0.4 57.6±2.1 91.2±1.1 30.3±3.5 8.5±3.8 6.0±5.6
Dwns_AdvT 59.2±1.2 25.0±1.0 80.7±0.5 56.0±0.7 50.7±0.4 89.5±0.8 35.0±0.7 11.5±1.0 0.9±0.7
RSC 46.9±3.5 34.0±2.2 58.9±1.7 52.5±0.4 57.2±0.2 61.5±0.4 4.9±0.7 1.8±0.4 4.4±4.3
DGI-EdgeDrop 56.0±4.3 49.0±4.5 79.8±1.7 66.2±0.8 61.3±0.9 89.3±1.6 30.1±6.8 7.34±0.8 9.0±7.8
DGI-Jaccard 69.4±2.8 57.1±1.3 79.3±0.8 63.8±0.8 57.6±1.0 84.7±0.9 16.4±1.1 6.1±0.6 12.9±0.0
DGI-SVD 68.1±8.0 56.1±16.4 81.6±0.7 60.1±0.8 54.7±1.3 85.2±0.7 16.2±0.9 6.5±0.8 13.0±0.0
Ours-soft 69.4±0.7 57.5±2.0 79.7±2.1 68.1±0.3 58.2±1.3 90.3±0.5 39.2±8.8 23.5±1.9 12.6±9.6
Ours 70.7±0.9 58.4±1.4 82.7±2.2 69.2±0.4 59.8±1.3 91.8±0.4 41.4±4.7 23.6±2.8 14.8±2.7

Table 2: Summary of results for the node classification, link prediction and community detection tasks using polluted data.
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Figure 2: Accuracy of different models under various pertur-
bation rates X and n . The downstream task is node classifica-
tion and we use the Cora dataset for illustration. The shaded
area indicates the standard deviation (×0.1) over 10 runs.

Performance under different rates of perturbation. We
further compare our model with several strong competitors
under various strength of adversarial attacks on the graph
topology and the node attributes, by choosing different per-
buration rates X and n , respectively. We use the node classi-
fication task and the Cora dataset as an illustrative example.
As shown in Figure 2, the performance of our model is con-
sistently superior to other competitors, both on average and
in worst-case. Note that the strong competitor DGI generates
negative samples in the training phase, and this might ex-
plain the robustness of the DGI model. Comparably, the high
standard deviation of DGI-SVD might be attributed to the
continuous low-rank approximation of the adjacency matrix:
the output of truncated SVD is no longer a 0–1 matrix, which
violates the discrete nature of graph topology.

Performance under other attack strategies. In practice,
we do not know which kind of attack strategies the malicious
users are going to use. Thus it is interesting and important
to know the performance of our model across different types
of adversarial attacks. We adapt some common attack strate-
gies to the unsupervised setting and use them as baselines.
1) Degree/Betw/Eigen: flip edges based on the sum of the
degree/betweenness/eigenvector centrality of two end nodes;
2) DW (Bojchevski et al. 2019a): a black-box attack method
designed for DeepWalk. We set the size of the sampled can-
didate set to 20K, as suggested in (Bojchevski et al. 2019a).
This time we consider the node classification task on Pol-
blogs for illustration. This choice is convincing because all

Model
Attacker Degree Betw Eigen DW

Raw 87.4±0.3 84.1±0.8 86.4±0.6 87.9±0.4
DeepWalk 87.8±0.9 83.5±1.2 84.3±1.0 87.7±0.9
DeepWalk + X 85.8±2.7 82.7±2.1 85.0±1.1 88.3±0.9
GAE 83.7±0.9 81.0±1.6 81.5±1.4 85.4±1.1
DGI 86.6±1.1 84.8±1.2 84.8±1.0 86.4±1.1
Dwns_AdvT 88.0±1.0 84.1±1.3 84.6±1.0 88.0±0.8
RSC 52.1±1.3 51.9±0.7 51.4±0.5 52.6±1.1
DGI-EdgeDrop 87.1±0.3 87.0±0.6 80.5±0.5 86.3±0.3
DGI-Jaccard 82.1±0.3 80.7±0.4 80.6±0.3 82.2±0.2
DGI-SVD 86.5±0.2 85.6±0.2 86.1±0.2 85.3±0.3
Ours-soft 88.5±0.7 85.7±1.5 86.2±0.4 88.7±0.7
Ours 89.3±0.7 86.3±1.2 86.7±0.4 89.0±0.8

Table 3: Defense against different attackers on Polblogs for
the node classification task.

the above attack strategies only vary the graph topology,
which is the only information we know about Polblogs. Re-
sults in Table 3 show that our model’s superiority persists in
three attack strategies out of four. Comparison between Ta-
ble 2 and Table 3 shows that the projected gradient descent
topology attack via MI is the most effective attack strategy
used here, which verifies that our model learns the worst
adversarial example that deteriorates the performance most.

6 Conclusion
In this paper, we study unsupervised robust representation
learning on graphs. We introduce the graph representation
vulnerability to quantify the robustness of an unsupervised
graph encoder. After that we propose a robust unsupervised
graph model that can enhance robustness as well as im-
prove expressive power. We further build sound theoretical
connections between GRV and one example task, node clas-
sification. Extensive experimental results demonstrate the
effectiveness of our method on blocking perturbations on
input graphs, regardless of the downstream tasks.
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A Appendix
A.1 Notations
The main notations can be found in the following table.

Notation Description
G, A, X The input graph, the adjacency matrix and

the node attribute matrix of G
�, a The random variable representing structural

information and its realization
- , x The random variable representing attributes

and its realization
(, s The random variable (�, -) and its realiza-

tion (a, x)
A, X, S,Z, Y The input space w.r.t graph topology, node

attributes, their joint, representations and la-
bels.

`- The probability distribution of -
`- ′ The adversarial probability distribution of

- ′

ˆ̀ (=)
-

The empirical distribution of -
ˆ̀ (=)
- ′ The adversarial empirical distribution of - ′
4, 5 , 6 The encoder function, the classifier function

and their composition

Table 4: Description of major notations.

A.2 Algorithm
Overall, the algorithm we use is a variant of the classical
gradient-based methods, as presented in Algorithm 1. In ev-
ery iteration, we first find out the distribution of the worst-
case adversarial attack, and thus we can calculate the value of
GRV. If GRV is larger than W, we try to enhance the robust-
ness in this iteration, and apply one gradient descent step
for the first sub-problem in Problem (4). Otherwise when
GRVg (4) < W, the encoder is considered robust enough, and
thus we focus on improving the expressive power by one
gradient descent move in the second sub-problem in (4). As
a small clarification, the stopping criterion in Algorithm 1
follows the famous early-stopping technique (Prechelt 1998).

The time complexity of our algorithm is $ ( |V|2 + |V| ∗ 2)

Algorithm 1: Optimization algorithm.

Input: Graph G = (A,X), learning rate U.
Output: Graph encoder parameters Θ.
1: Randomly initialize Θ.
2: while Stopping condition is not met do
3: `(★ ← argmin`(′ ∈B∞ (`( ,g) I((

′; 4((′)).
4: GRVg (4) ← I((; 4(()) − I((★; 4((★)).
5: if GRVg (4) > W then
6: Θ← Θ − U∇ΘI((★; 4((★)).
7: else
8: Θ← Θ − U∇ΘI((; 4(()).
9: end if
10: end while

Return: Θ.

(where |V| and 2 are the number of nodes and the dimension
of node attributes), which mainly comes from the worst-case
attack estimation. Themutual information solution only costs
$ ( |V|). If a light version is desired, you can directly switch
to another handy but more efficient attack strategy.

A.3 Dataset Details
we use three benchmark datasets for evaluation: specifically,
Cora, Citeseer (Sen et al. 2008) and Polblogs (Adamic and
Glance 2005). The first two are citation networks commonly
used for node classification, where nodes represent docu-
ments and edges represent the citation links between two
documents. Each node has a human-annotated topic as the
class label as well as a feature vector. The feature vector
is a sparse bag-of-words representation of the document. All
nodes are labeled to enable differentiation between their topic
categories. Polblogs is a network of weblogs on the topic of
US politics. Links between blogs are extracted from crawls of
the blog’s homepage. The blogs are labelled to identify their
political persuasion (liberal or conservative). As Polblogs
is a dataset without node attributes, we construct an iden-
tity matrix as its node attribute matrix. The detailed dataset
statistics can be found in the following table.

Dataset Type # vertices # edges # classes # attributes
Cora Citation 2,810 7,981 7 1,433
Citeseer Citation 2,110 3,757 6 3,703
Polblogs Web 1,222 16,714 2 -

Table 5: Dataset statistics.

A.4 Implementation Details
Our evaluation is performed on three downstream tasks, and
we explain the detailed settings below.
• Node classification: logistic regression is used for evalua-
tion, and only accuracy score is reported as the test sets are
almost balanced. For Cora and Citeseer, we use the same
dataset splits as in (Kipf et al. 2017), but do not utilize the
labels in the validation set. For Polblogs, we allocate 10%
of the data for training and 80% for testing.

• Link prediction: logistic regression is used to predict
whether a link exists or not. Following conventions, we
generate the positive test set by randomly removing 10%
of existing links and form the negative test set by randomly
sampling the same number of nonexistent links. The train-
ing set consists of the remaining 90% of existing links and
the same number of additionally sampled nonexistent links.
We use the area under the curve (AUC) as the evaluation
metric on the link prediction task.

• Community detection: following the basic schemes for
community detection based on graph representation learn-
ing, we apply the learned representations to the K-means
algorithm. The normalized mutual information (NMI) is
used as the evaluation metric here.
We conduct all experiments on a single machine of Linux

system with an Intel Xeon E5 (252GB memory) and a



NVIDIA TITAN GPU (12GB memory). All models are im-
plemented in PyTorch 1 version 1.4.0 with CUDA version
10.0 and Python 3.7.
Implementations of our model. We train our proposed
model using the Adam optimizer with a learning rate of 1e-3
and adopt early stopping with a patience of 20 epochs. We
choose the one-layer GNN as our encoder and set the di-
mension of its last layer as 512. The weights are initialized
via Xavier initialization. When evaluating the learned rep-
resentations via the logistic regression classifier, we set its
learning rate as 1e-2 and train 100 epochs.

In the training phase, the step size of the projected gradient
descent topology attack is set to be 20 and the step size of
PGD attack is set to be 1e-5. The iteration numbers of both
attackers are set to be 10. In the testing phase, the step size
of projected gradient descent topology attack is set to 1e-3.
The iteration numbers are set to 50 for both attacks. Others
attacker parameters are the same as that in the training phase.
Implementations of baselines. For all the baselines, we
directly adopt their implementations and keep all the hyper-
parameters as the default values in most cases.

A.5 Additional Results

Empirical Connection between GRV and AG In §4, we
established a theoretical connection between the graph rep-
resentation vulnerability (GRV) and adversarial gap (AG)
under different assumptions. Here, we also conduct experi-
ments to corroborate whether a similar connection still holds
in more complicated scenarios. Again, we take the node clas-
sification task on the Cora dataset as our illustrative example.
We compare some metrics of three kinds of encoders: GNNs
of which the last layers have dimensions 512, 384, and 256,
respectively. The left of Figure 3 presents a positive correla-
tion between the adversarial gap and the value of GRV. This
numerical results shows that GRV is indeed a good indicator
for the robustness of graph representations. Finally, as a sup-
plementary experiment, the right of Figure 3 plots the predic-
tion accuracy under polluted data versus our approximation
of the objective function ℓ2 (Θ) = I((; 4(())−GRVg (4) (with
V = 1). The figure shows a positive correlation between these

1https://github.com/pytorch/pytorch
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Figure 3: Left. Connection between GRV and AG. Right.
Connection between adversarial accuracy and our approxi-
mation of ℓ2 (Θ). Filled points, half-filled points, and unfilled
points indicate our models with X = 0.4, n = 0.1, our model
with X = 0.1, n = 0.025, and the DGI model, respectively.

two quantities, which verify the use of ℓ2 (Θ) to enhance the
adversarial accuracy.
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Figure 5: The performance of our model against the pertur-
bations performed on a single input spaceA or X compared
with that on the joint input space under increasing attack rate.

Sensitivity of the budget hyperparameters. The budget
hyperparameters X and n determine the number of changes
made to the original graph topology and node attributes re-
spectively when finding the worst-case adversarial distribu-
tion, and are thus important hyperparameters in our proposed
model. We use grid search to find their suitable values in
our model through numerical experiments on Cora in Fig-
ure 4. Better performance can be obtained when U = 0.3
and n = 0.15. We further observe that when U and n are
small, the budgets are not sufficient enough to find the worst-
case adversarial distribution; while when U and n are big,
introducing too much adversarial attack will also lead to a
decrease in the performance to some extent.
Defending perturbations on the joint input space is more
challenging. In all the above-mentioned experiments, we
further evaluate our model’s robustness against the perturba-
tions performed on the joint space (A,X). Here, we consider
the perturbations performed on a single space A or X (i.e.,
Ours-A/X: our model against perturbations performed onA
or X) under increasing attack rate as the setting of § 5.1,
and present their results in Figure 5. We can see that when
facing with the perturbations on the joint input space, the
performance drops even more. This indicates that defending
perturbations on the joint input space is more challenging,
that is why we focus on the model robustness against pertur-
bations on the joint input space.

A.6 Proofs
Proof of Theorem 4.1. For simplicity, we denote = := |\ |.

Let 'y be the random variable following the Binomial dis-



tribution according to � (i.e., 'y =
∑=
8=1 �8 ∼ �(=, 0.5 +

y(? − 0.5))) and its realization ry =
∑=
8=1 a8 . Let � be

the random variable following the Gaussian distribution ac-
cording to A and X (i.e., � = �) - ∼ N(0, 'yf2O)),
then its realization h = a) x is exactly the aggregation
operator of GNNs. We first compute the explicit formula-
tion of the representation vulnerability GRVd (4). Note that
I (-;. ) = � (-) −� (- |. ) = � (. ) −� (. |-). For any given
4 ∈ E, we have
GRVd (4) = I ((; 4 (()) − inf

`
�′) -′∼B∞ (`�) - ,d)

I ((′; 4 ((′))

= �1 (0.5) − inf
`�′∼B∞ (`� ,d)

�1 (4((′)),

because � (4(() |() = 0, and the distribution of h =

a) x, informally defined as h ∼ 0.5N(0, r+1f2O) +
0.5N(0, r−1f2O)), is symmetric w.r.t. 0. We thus have,
�1 (4(()) = −%s∼`( (hΘ ≥ 0) log %s∼`( (hΘ ≥ 0) −
%s∼`( (hΘ < 0) log %s∼`( (hΘ < 0) = �1 (0.5). We note
that the binary entropy function �1 (\) = −\ log(\) − (1 −
\) log(1 − \) is concave on (0, 1) and that the maximum
of �1 is attained uniquely at \ = 0.5. To obtain the infi-
mum of �1 (4((′)), we should either maximize or minimize
%s′∼`(′ (h

′Θ ≥ 0).
Bound of %s′∼`(′ (h

′Θ ≥ 0). To achieve the bound of
%s′∼`(′ (h

′Θ ≥ 0), we first consider the bound of |ΔhΘ|
where Δh = h′ − h = (a + Δa)) (x + Δx) − a) x. Accord-
ing to `� ′ ∼ B∞ (`� , d), we can get ‖Δ�‖ ? ≤ d holds
almost surely w.r.t. the randomness of � and the transport
map defined by ∞-Wasserstein distance. Then, according to
the Hölder’s inequality, we have |ΔhΘ| ≤ ‖Δh‖ ? ‖Θ‖@ ≤
d‖Θ‖@ , which indicates %s∼`( ( |ΔhΘ| ≤ d‖Θ‖@) ≈ 1. We
have,
%s∼`( (hΘ − d‖Θ‖@ ≥ 0)︸                           ︷︷                           ︸

À

≤ %s′∼`(′ (h
′Θ ≥ 0)

≤ %s∼`( (hΘ + d‖Θ‖@ ≥ 0︸                          ︷︷                          ︸
Á

).

Compute GRVd. Next, we will induce the more detailed
formulations of the two bounds above. The lower bound is

À =%h∼N(0,rf2O ) ,r∼`' (hΘ − d‖Θ‖@ ≥ 0)
=%/∼N(0,1)%r∼`' (/ ≥ d‖Θ‖@/

√
rf‖Θ‖2).

Then according to De Moivre-Laplace Central Limit The-
orem, we use Gaussian distribution to approximate Binomial
distribution ry ( e.g., r+ → N(=?, =?@) where @ = 1 − ?).
We have,

À =
1
2
%/∼N(0,1) [%r+∼� (=,?) (/

√
r+f‖Θ‖2 ≥ d‖Θ‖@)

+ %r−∼� (=,1−?) (/
√
r−f‖Θ‖2 ≥ d‖Θ‖@)]

≈1
2
%/∼N(0,1) ,/>0 [%.∼N(0,1) (. ≥ "-

√
=?

@
)

+ %.∼N(0,1) (. ≥ "-
√
=@

?
)

= : %1/2 (0 ≤ %1 ≤ 1).

where " = (d2‖Θ‖2@//2f2‖Θ‖22)/
√
=?@. Similarly, we

have Á ≈ 1/2 + %2/2 (0 ≤ %2 ≤ 1). Thus, GRVd (4) =
�1 (1/2) − �1 (max{|%1/2 − 1/2|, |%2/2|} + 1/2).
Compute AGd. Given the formulation of GRVd, we further
aim to establish its connection to AGd. Here we induce the
detailed formulation of AGd. In our case, the only two non-
trivial classifiers to be discussed are 51 (I) = I and 52 (I) =
−I.

For given 4 ∈ E, we have AdvRiskd ( 51 ◦ 4) as:

Â :=AdvRiskd ( 51 ◦ 4)
=%(s,y)∼`(. [∃ s′ ∈ B(h, d), s.t. sgn(h′Θ) ≠ y]
=%(s,y)∼`(. [ min

s′∈B(h,d)
y · h′Θ ≤ 0]

=%(s,y)∼`(. [y · hΘ ≤ − min
Δs∈B(0,d)

y · ΔhΘ] .

Given that |ΔhΘ| ≤ d‖Θ‖@ , we have −minΔs∈B(0,d) y ·
ΔhΘ = d‖Θ‖@ holds for any y and

Â =
1
2
%h∼N(0,r+f2O ) ,r+∼� (=,?) (hΘ ≤ d‖Θ‖@)

+1
2
%h∼N(0,r−f2O ) ,r−∼� (=,@) (hΘ ≥ −d‖Θ‖@)

≈1/2 + %2/2.

We also have AdvRiskd=0 ( 51 ◦ 4) as Ã := AdvRiskd=0 ( 51 ◦
4) = %(s,y)∼`(. [y · hΘ ≤ 0] = 1/2. Thus, AGd ( 51 ◦ 4) =
Â −Ã = %2/2.
Similarly, for given 4 ∈ E, we have AdvRiskd ( 52 ◦ 4)

as Ä := AdvRiskd ( 52 ◦ 4) ≈ 1/2 + %2/2. We also have
AdvRiskd=0 ( 52◦4) = 1/2.We can get AGd ( 52◦4) = Ä−Å =

%2/2.
As a result, we have AGd ( 51 ◦ 4) = AGd ( 52 ◦ 4) = %2/2.

Connection between GRV and AG. Now we aim to find
the connection between AGd and GRVd. Given their formu-
lations derived above, it is easy to show that %1 + %2 = 1 is
equivalent to 1/2− %1/2 = %2/2 and |%1/2− 1/2| = |%2/2|.
Then we have, GRVd (4) = �1 (1/2) − �1 (%2/2 + 1/2) =
�1 (1/2) − �1 (1/2 + AGd ( 5 ∗ ◦ 4)).

�

Proof of Theorem 4.2. Similarly, let ' represent the random
variable following the Binomial distribution according to
� (i.e., ' =

∑=
8=1 �8 ∼ �(=, 0.5)) and its realization r =∑=

8=1 a8 . We define �? (r) = ? − (r − ?) = 2? − r, where ?
represents the number of samples with y = +1 connected to a
node and r− ? represents the number of samples with y = −1
connected to a node (note that a node can be connected to
itself). Let � represent the random variable following the
Gaussian distribution according to A andX (i.e.,� = �) - ∼
N(�? (')-, 'f2O)), then its realization h = a) x is exactly
the aggregation operator of GNNs.

We have the probability %s∼`( (") (where " = ; (hΘ ≥



0) and ; (hΘ) represents some functions of hΘ) as,

%s∼`( (") =%r [
min{r ,=/2}∑

?=max{0,r−=/2}
%h∼N(�? (r)-,rf2O ) (")]

=
1
2
%r [(

min{r ,=/2}∑
?=max{0,r−=/2}

+
min{r ,=/2}∑

A−?=max{0,r−=/2}
)

%h∼N(�? (r)-,rf2O ) (")]

=
1
2
%r [

min{r ,=/2}∑
?=max{0,r−=/2}

(%h∼N( (2?−r)-,rf2O ) (")

+ %h∼N( (r−2?)-,rf2O ) ("))] .

where r ∼ �(=, 0.5). The first equality holds because
�? (r) is independent of y. Note that if a node is con-
nected with ? samples with y = +1, then it can also
be connected with ? samples with y = −1 with the
same probability given r. We thus get a pair of proba-
bility (%h∼N( (2?−r)-,rf2O ) ("), %h∼N( (r−2?)-,rf2O ) (")) for
given r and ?. The pair of Gaussian distribution has oppo-
site mean and the same variance which perfectly match the
conditions in (Zhu et al. 2020). So we can directly reuse the
formulations.

The rest of the proof follows in a similar way as Theo-
rem 4.1, so we omit it here.

�


