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A B S T R A C T   

Machine learning (ML) technologies have achieved significant success in various downstream tasks, e.g., node 
classification, link prediction, community detection, graph classification and graph clustering. However, many 
studies have shown that the models built upon ML technologies are vulnerable to noises and adversarial attacks. 
A number of works have studied the robust models against noise or adversarial examples in image domains and 
text processing domains, however, it is more challenging to learn robust models in graph domains. Adding noises 
or perturbations on graph data will make the robustness even harder to enhance – the noises and perturbations of 
edges or node attributes are easy to propagate to other neighbors via the relational information on a graph. In 
this paper, we investigate and summarize the existing works that study the robust deep learning models against 
adversarial attacks or noises on graphs, namely the robust learning (models) on graphs. Specifically, we first 
provide some robustness evaluation metrics of model robustness on graphs. Then, we comprehensively provide a 
taxonomy which groups robust models on graphs into five categories: anomaly detection, adversarial training, 
pre-processing, attention mechanism, and certifiable robustness. Besides, we emphasize some promising future 
directions in learning robust models on graphs. Hopefully, our works can offer insights for the relevant re-
searchers, thus providing assistance for their studies.   

1. Introduction 

Machine learning (ML) technologies have become increasingly 
popular. They have attained impressive performances and successful 
applications on various downstream tasks such as image classification, 
object detection, traffic prediction, malware detection (Grosse et al., 
2017; Tao et al., 2018; Xu et al., 2020a), speech recognition (Vaswani 
et al., 2017), automatic language translation (Papineni et al., 2002), 
product recommendations (Cheng et al., 2016; Guo et al., 2017), 
self-driving vehicles (Bojarski et al., 2016), online fraud detection and 
stock market trading (Pandit et al., 2007; Patel et al., 2015), etc. Deep 
Neural Networks (DNNs), the most popular tool among machine 
learning technologies, are widely used in many real-world applications. 
However, many studies have shown that DNN models are not robust 
enough, that is, they are easily be fooled by noises or adversarial ex-
amples (that is, the examples that are carefully designed to deceive the 
models by making minor or even imperceptible modifications to benign 
examples). A line of existing works has shown that DNNs are vulnerable 
in many applications, such as malware detection (Grosse et al., 2017; 
Tao et al., 2018; Xu et al., 2020a), audio recognition (Carlini and 

Wagner, 2018), object recognition (Goodfellow et al., 2014), sentiment 
analysis systems (Ebrahimi et al., 2017), etc. It is an urgent need to study 
robust models using machine learning technologies. 

The graph-structured data is ubiquitous and plays a key role in many 
practical fields, including social network analysis, bioinformatics, 
chemistry, program analysis, etc. These graphs provide rich topology 
functions and common connectivity patterns, thus can help us better 
understand relational data. Deep learning on graphs has also achieved 
significant success in a wide range of applications (Goyal and Ferrara, 
2018), including financial surveillance (Paranjape et al., 2017), 
recommendation systems (Wang et al., 2019), molecule analysis 
(Hamilton et al., 2017) and drug discovery (Gilmer et al., 2017), etc. 
However, network data is hard to obtain and most networks obtained in 
the real world are error-prone and structurally flawed due to incomplete 
sampling (Gueorgi, 2006), imperfect measurements (Butts, 2003; 
Namata and Getoor, 2009), individual non-response and dropout 
(Schafer and Graham, 2002), etc. This will inevitably introduce many 
types of errors, including erroneous, ambiguous and redundant infor-
mation (Xu et al., 2020b). Thus, most network data obtained depicts an 
imperfect and incomplete picture of topological structure. These 
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inaccurate representation of networks can even have an adverse effect 
on how networks are interpreted and damage information diffusion 
process, resulting in misleading conclusions. On the other hand, graph 
learning models, e.g., Graph Neural Networks (GNNs) (Bruna et al., 
2013; Henaff et al., 2015; Defferrard et al., 2016; Levie et al., 2018; 
Hamilton et al., 2017; Monti et al., 2017; Niepert et al., 2016; Cao et al., 
2016) and network embedding (Ribeiro et al., 2017; Perozzi et al., 2014; 
Zhang et al., 2019a; Grover and Leskovec, 2016), have been shown to be 
vulnerable to adversarial examples (Chen et al., 2020; Bojchevski and 
Günnemann, 2019a; Dai et al., 2018; Zügner and Günnemann, 2019a). 
Adversarial attacks on graphs pose themselves as serious security chal-
lenges for many real-world systems. There have been lots of works focus 
on learning the robust models in image domains, but few have been 
studied the robustness of models on graphs. Hence, it is of practical 
importance to build robust learning models on graphs against noises or 
adversarial attacks. 

There have been a few surveys mentioning the robustness of deep 
learning models on graphs (Sun et al., 2018a; Jin et al., 2020). Although 
they provided their own categories of robust graph models, they did not 
include some important robustness metrics. In addition, anomaly 
detection, the most commonly-used approach to enhance robustness, is 
ignored in the previous surveys. In this survey, we first introduce the 
robustness metrics and then aim to summarize and discuss the robust 
learning models on graphs against noises and adversarial examples from 
a more comprehensive perspective. The major contributions can be 
summarized as follows:  

• We target the critical yet overlooked robust models on graphs against 
noises and adversarial attacks.  

• We provide some evaluation metrics of model robustness on graphs. 
• We divide existing works of robust models on graphs into five cate-

gories: anomaly detection, adversarial training, pre-processing, 
attention mechanism, and certifiable robustness. We provide a 
detailed and systematic analysis of these studies.  

• We present some exciting future directions of the model robustness 
on graphs. 

Our manuscript is organized as follows. Some notations and back-
grounds are mentioned in section 2. In section 3, we show some evalu-
ation metrics of model robustness on graphs. In section 4, we introduce 
the five categories of robust models on graphs in detail. Some future 
directions are presented in section 5. We conclude our manuscript by 
providing a conclusion in section 6. 

2. Preliminaries 

2.1. Notations 

Formally, we represent a network as G = (V ,E ), where V is the 
set of nodes with |V | nodes, while E is the set of edges with |E | edges. 
We further denote A as the adjacency matrix of G and D as the degree 
matrix of A . We augment G with the node attribute matrix X if nodes 
have certain attributes in particular applications. Also in some appli-
cations where edges have attributes, we augment G with the edge 
attribute matrix H . 

2.2. Victim models 

In this survey, we use victim models to denote the models attacked 
by adversarial examples. We briefly summarize the victim models which 
are proven to be susceptible to adversarial examples, also known as non- 
robust models. In our context, we mainly discuss studies of adversarial 
examples for graph neural networks which are powerful tools in learning 
the representation of graphs (Sun et al., 2018b). 

Graph Convolutional Networks (GCN) (Kipf and Welling, 2016) 
bridged the spectral-based GNNs with spatial-based ones, which later 

became one of the most successful GNN variants. The intuition of GCN 
follows that of CNN that it keeps aggregating and transforming the in-
formation from neighbor nodes to learn the representations for each 
node. However, though GNNs can achieve impressive performance 
across many kinds of tasks, the vulnerability to adversarial attacks of 
GNNs including GCN has been demonstrated as potential threats to in-
dustry and society applications [41, ?]. Besides, there are also other 
important graph learning algorithms that are possible to be attacked by 
adversarial examples such as network embeddings including LINE (Tang 
et al., 2015) and Deepwalk (Perozzi et al., 2014), graph-based semi--
supervised learning (G-SSL) (Xiaojin and Zoubin, 2002), and knowledge 
graph embedding (Bordes et al., 2013). 

2.3. Learning from graph data 

In this section, we introduce the basic graph learning tasks such as 
node classification and graph classification. We use triple set G =

{(ci,G i, yi)}i∈[N] to denote the training set with labels where N is the 
number of the samples. ci is the i-th sample of the set and G i and yi 
respectively represents the corresponding (sub)graph and the label 
related to ci. The uniform formula to represent both node classification 
and graph classification is given below: 

min
θ

L train(fθ(G))=
∑

(ci ,G i ,yi)∈G

ℓ(fθ(ci,G i), yi), (1)  

where fθ is the mapping function learned to predict the true labels with 
learnable parameters θ. 

Node classification. For node-level classification, each node lies in 
the same graph G i = G = (V ,E ) and fθ(ci,G i) = fθ(G )i extracts the i- 
th node’s representation from the whole single graph. 

Graph classification. For graph-level classification, each individual 
graph G i = (V i,E i) has a label and fθ(ci,G i) = fθ(G i) extracts the i-th 
graph’s representation independent with other graphs. 

2.4. Adversarial attacks on graphs 

In this section, we give a general form of the objective for graph 
adversarial attacks and illustrate the damage of the attacks which in-
dicates the urgent need to research into robust models on graphs (see 
Fig. 1). 

Graph adversarial attacks. In image domain, the attack is 
straightforward to introduce small perturbations into pixels (showed as 
Fig. 2) which is a little different from that in graphs. As illustrated in 
Fig. 3, the target of graph attack can be both graph topology and node 
attributes. Formally, based on the formula showed in Section 2.3, we can 
define the attack objective on graph data as: 

Fig. 1. The category of robust learning models on graphs.  
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max
Ĝ∈Φ(G)

∑

(
ci ,Ĝ i ,yi

)
:i∈T(G)

ℓ
(

fθ∗

(

ci, Ĝ i

)

, yi

)

(2)  

s.t. θ∗ = argmin
θ

L train(fθ(G
′

)), (3)  

where Ĝ denotes the perturbation set of G including adversarial graphs 
Ĝ i = (Â i, X̂ i). As for target set, T(G) = G holds in untargeted setting 
and T(G) consists of targeted samples in targeted attacks. G′

= G rep-
resents the evasion attacks while G′

= Ĝ when the attacks are poisoned. 
Note that in most cases, the attacks should be limited in a constrained 
domain Φ(G) to ensure the perturbations are imperceptible. Formally, 
given the distance function d of G and the perturbation budget Δ, for 
any Ĝ i ∈ Φ(G), Ĝ i should satisfy the constraint: 

d
(

Ĝ i,G i

)

≤ Δ. (4) 

Why to study graph robust learning. Significant success in a large 
number of applications (Goyal and Ferrara, 2018) has been promoted by 
deep learning on graphs, including molecule analysis (Hamilton et al., 
2017), drug discovery (Gilmer et al., 2017), financial surveillance 
(Paranjape et al., 2017) and recommendation systems (Wang et al., 
2019), etc. However, some works (Bojchevski and Günnemann, 2019a; 
Chen et al., 2020; Dai et al., 2018; Zügner and Günnemann, 2019a) have 
exposed the potential danger that these approaches are vulnerable to 
adversarial examples. In other words, the models are easy to be deceived 
by the attacks that are carefully designed to them by making subtle or 
even human-incomprehensible modifications to benign examples. 

Therefore, adversarial attacks themselves are serious security challenges 
for many real-world systems and identifying the weaknesses of these 
graph learning models to make them more robust to different kinds of 
attacks are very urgent. 

3. Robustness metrics 

We here introduce some metrics to measure the robustness of graph 
models. Note that in this section, we use (a, x) to denote an original 
example in the dataset where a is the adjacency matrix and x is the 
attribute matrix. 

Classification margin. Classification margin is commonly used to 
measure whether a node can be correctly classified, which has also been 
utilized to measure the robustness associated with GNNs (Zügner and 
Günnemann, 2019b; Bojchevski and Günnemann, 2019b). This metric 
focuses on the label space which implies it changes for different down-
stream tasks. Besides, classification margin measures the robustness in a 
static perspective and the scope of investigation is limited in a dataset 
itself. For example, given a model, the most vulnerable example lies in 
the dataset which achieves the maximum value of the metric. 

Definition 1. (Classification margin.) Let y∗ denotes the ground truth 
class of the example (a,x), then the classification margin of (a, x) can be 
defined as:  

CM(a, x, g, y∗)= max
y∈Y \{y∗}

lnp(ŷ = y) − lnp(ŷ = y∗),

where g is the classifier, ŷ = g(a, x) and Y denotes the label space. The 
smaller the value of CM(a,x,g,y∗), the more robust g is w.r.t the example 
(a, x). Adversarial risk and adversarial gap. Drawn from the 

Fig. 2. A demonstration of adversarial example in image domain. By injecting a small perturbation, “panda” is classified as “gibbon”. (Image Credit: (Goodfellow 
et al., 2014)). 

Fig. 3. An illustration of adversarial example in graph structure. By creating a new connection between node 3 and node 7 and modifying the features, originally 
green node 7 is predicted as blue one. (Image Credit: (Jin et al., 2020)). 
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definition of classification margin, we can define adversarial risk and 
adversarial gap which measure the vulnerability of a given model under 
input perturbations on the joint input space (Zhu et al., 2020). Different 
from the classification margin, these two metrics measure the robustness 
in a probability manner. More specifically, they will examine the 
continuous adversarial examples in a small budget, and they will 
consider the robustness of the encoder for the whole dataset instead of 
focusing on one specific example. 

Definition 2. Let (S , d) denotes the input metric space. For any 
classification model g : S →Y , we define the adversarial risk of g with 
the adversarial budget τ ≥ 0 as follows:  

AdvRiskτ(g) = Ep(s,y∗)
[
∃ s′

= (a′

, x′

) ∈ B (s, τ)
s.t. CM(a′

, x′

, g, y∗) ≥ 0],

where B (s, τ) = {s′

∈ S : d(s′

, s)≤ τ} represents the perturbation set of 
s. Based on AdvRiskτ(g), the adversarial gap is defined to measure the 
relative vulnerability of a given model g w.r.t τ as: 

AGτ(g)=AdvRiskτ>0(g) − AdvRiskτ=0(g).

4. Robust models on graphs 

The vulnerability of graph learning models poses major challenges to 
the reliable and secure applications on graphs. we target the critical yet 
far overlooked aspect of learning robust models on graphs. 

In this section, we divide existing works of robust models on graph 
into the following five categories, i.e., (1) anomaly detection, (2) 
adversarial training, (3) pre-processing, (4) attention mechanism, and 
(5) certifiable robustness. Due to its importance and wide range of ap-
plications (Jiang et al., 2020; Akoglu et al., 2015), we specifically 
classify anomaly detection as a category; while others are mainly 
divided based on the technical characteristics. 

In more details, anomaly detection and pre-processing methods are 
both used to correct the underlying attacked graph and obtain a more 
robust model training on the fixed graph. Both methods can defend 
poisoning attacks through identifying the attack methods or utilizing 
some prior assumptions to refine the graph. However, the methods are 
not in an end-to-end manner which is more time-consuming in the 
inference stage. As for attention mechanism, it aims to decrease the 
negative influence of attacks during the aggregation process in the 
presence of adversarial attacks. But this will cause extra learnable pa-
rameters and processing time to infer the downstream tasks. Further-
more, adversarial training and certifiable robustness apply different 
strategies to generate attacks from clean graphs to train the robust 
models on them, which is from an attacking-free perspective. 

4.1. Anomaly detection 

Anomaly detection is one of the most straight-forward ways to 
enhance the robustness of models and systems. The main idea of 
anomaly detection is to identify rare and unusual patterns which 
significantly differ from the majority of data. There are usually two main 
categories of anomalies in anomaly detection (Jiang et al., 2020):  

• Point anomalies. Anomaly detection on point anomalies means to 
detect an individual anomalous data sample only respect to some of 
other data samples.  

• Contextual or collective anomalies. Anomaly detection on contextual 
or collective anomalies means to detect a set of related or conditional 
anomalous data samples respect to the entire graph. 

Within anomaly detection methods, identifying and removing 
anomalies from the source of data can increase robustness and reliability 
of models and systems constructed on these data. Many technologies in 

anomaly detection have been widely used in a number of real-world 
applications, e.g., fraud detection (Yang et al., 2019a, 2019b), game 
bot detection (Tao et al., 2018; Xu et al., 2020a), intrusion detection 
(Khraisat et al., 2019), fault detection (Miljković, 2011), novelty 
detection (Pimentel et al., 2014). 

Considering the inter-dependent and relational nature of graph- 
structured data, the anomaly information will propagate from nodes 
to their neighbors, leading to more destructive results. Hence, anomaly 
detection on graphs is much more challenging. 

Graph anomaly detection techniques can effectively protect graph 
data from graph adversarial attacks by exploring the intrinsic difference 
between adversarial structures and the clean ones (Ioannidis et al., 
2019a). There are four methods to distinguish graph adversarial attacks 
and help correctly detect adversarial perturbations (Jin et al., 2020), i.e., 
(1) link prediction, (2) sub-graph link prediction, (3) graph generation, 
and (4) outlier detection. 

Existing works of anomaly detection on graphs mainly focus on 
dealing with static graphs and dynamic graphs (Akoglu et al., 2015):  

• Anomaly detection on static graphs. Given the snapshot of a graph 
database, the objective is to find the nodes, edges or sub-graphs that 
are rare and unusual in the graph.  

• Anomaly detection on dynamic graphs. Given a sequence of graphs, the 
objective is to find the timestamps that correspond to a change, as 
well as the top-k nodes, edges or sub-graphs that contribute most to 
the change. 

There exist plenty of works on static graphs. Jiang et al. (2020) 
design a graph convolution network model to detect both anomalous 
behaviors of individual users and associated malicious threat groups. As 
shown in Fig. 4, this model can characterize entities’ properties as well 
as structural information between them into graphs, because only 
considering entities’ properties information easily leads to high false 
positives. Because traditional anomaly detection methods such as 
one-class support vector machine (OCSVM) lost their effectiveness in 
graph data, Wang et al. (2020) propose one-class graph neural network 
(OCGNN) to combine the powerful representation ability of graph 
neural networks along with the classical one-class objective. As illus-
trated in Fig. 5, this hypersphere learning framework is a natural 
extension of OCSVM in the field of graph data. 

Compared with static graphs, there exist only a few works on spot-
ting anomalies by exploiting dynamic attributed graphs. Du et al. (2017) 
propose a deep neural network model, named DeepLog, utilizing Long 
Short-Term Memory (LSTM) to model a system log as a natural language 
sequence. The model architecture is shown in Fig. 6. DeepLog can 
automatically learn log patterns from normal execution and detect 
anomalies when log patterns deviate from the model trained from log 
data under normal execution. In addition, DeepLog is able to adapt to 
new log patterns over time and construct workflows from the underlying 
system log. 

Even though there have been plenty of works in developing graph- 
based abnormality detection problems and algorithms, there are still 
some limitations of anomaly detection. In theoretical research, there 
exist only a few works on spotting anomalies by exploiting dynamic 
attributed graphs compared to plenty of works on static graphs. From 
systems perspective, most methods focus too much on detection per-
formance while ignoring adversarial robustness. In view of practice, it is 
often hard to predict what would boost a detection algorithm’s perfor-
mance the most, the methods are not end-to-end and ground truth data 
is often inexistent. 

4.2. Adversarial training 

Adversarial training is an important way to enhance the robustness 
of neural network. The main idea of adversarial training is to insert 
slight perturbations into the training set and then retrain the model, 
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which normally has good performance on clean data. 
In the image classification scenario, as illustrated in Fig. 2, these 

adversarial examples which look like the original images can fool the 
network. Generally, these results have often been interpreted as being a 
flaw in deep networks (Goodfellow et al., 2014). So studying adversarial 
examples in image data is thought to be extremely important. There are 
some training methods, such as FGSM (Goodfellow et al., 2014), Fast 
(Wong et al., 2020), TRADES (Zhang et al., 2019b), YOPO (Zhang et al., 
2019c). 

In graph domains, the attacker can modify the graph structure or 
node features to generate graph adversarial perturbations to mislead the 
prediction of GNN models. Since adversarial training has already been 
widely used in the image data, we can also take this strategy into 
consideration to defend graph adversarial attacks. There are two types of 
adversarial training: The first one is training with adversarial goals. 
Some adversarial training methods gradually optimize the model in a 
continuous min-max method under the guidance of two opposite 
(minimize and maximize) objective functions, as shown below (Jin 

Fig. 4. Graph convolution network model for anomaly detection using graph data as input. (Image Credit: (Jiang et al., 2020)).  

Fig. 5. The overall framework of OCGNN. (Image Credit: (Wang et al., 2020)).  

Fig. 6. The model architecture of DeepLog. (Image Credit: (Du et al., 2017)).  
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et al., 2020; Li et al., 2020), 

min
θ

max
δA∈P A ,δX∈P X

L train(fθ(A+ δA,X + δX)). (5)  

where δA, δX represent the perturbation added to A, X, respectively; P A, 
P X denote the areas of unnoticeable perturbation.The min-max opti-
mization problem in Eq (5) shows that graph adversarial training in-
cludes two processes: (1) maximize the prediction loss by adding 
perturbations and (2) minimize the prediction loss by retraining model 
to update parameters. Through the above two processes, we can get a 
robust model. Since there are two inputs, i.e., adjacency matrix A and 
feature matrix X, adversarial training can be done on them separately. 
The second one is training with adversarial examples. During the 
training process, other models based on the adversarial model are pro-
vided to the adversarial samples, which helps the model learn and adjust 
to adapt to the adversarial samples, thereby reducing the impact of these 
potential attack samples. For instance, Deng et al. (2019) proposed 
batch virtual adversarial training (BVAT) algorithms, which aim to 
generate virtual adversarial perturbations to perceive the connectivity 
patterns between nodes in the graph to improve the smoothness of the 
output distribution of the node classifier (shown in Fig. 7 and Fig. 8). 
Chen et al. (2019) proposed two special adversarial training strategies: 
global adversarial training (Global-AT) that for all nodes protection and 
target label adversarial training (Target-AT) that can protect the target 
labeled nodes from attack. In Global-AT, we select the target pair of 

nodes firstly, then update the adjacency matrix Â
t− 1 

of the (t − 1)

adversarial network and get the adjacency matrix Â
t
: 

Â
t
ij = Â

t− 1
ij + θij. (6)  

where Â
t
ij and Â

t− 1
ij are the elements of Â

t 
and Â

t− 1
. Target-AT only 

consider the target labeled nodes, and use the link selected by adver-
sarial network attack to update the adversarial network. 

4.3. Pre-processing 

Both adversarial training or certifiable defense methods only aim at 
resisting evasion attacks, which means that the attack occurs during the 
test time. But poisoning attacks will insert several fake samples into the 
training set. Attackers usually prefer to add edges rather than remove 
edges or modify features, and tend to connect different nodes. This 
training process with fake samples can cause bad performance on the 
test data. Therefore, purifying the perturbed graph data and then 
training the GNN model on the clean graph data will get better results. 

There are some models can be used for graph pre-processing before 
training normal graph models like GNNs. Xu et al. (2018) proposed 
different methods based on the graph generation model, and used link 
prediction as pre-processing to detect potential malicious edges. Zhang 
et al. (2019d) focused on the problem of detecting nodes which have 
been subject to topological perturbations calculated by the Nettack 
(Zügner et al., 2018). Through observing the discrepancy between the 

first-order proximity information of vi and the neighbors of vi which 
created by Nettack, they using a relatively simple threshold test find the 
Nettack perturbations on GCN. 

Similarly, in order to discard the high-rank perturbations generated 
by Nettack, Entezari et al. (2020) proposed the low-rank approximation 
and then retrain GCN with the low-rank approximation matrices (See 
Fig. 9). 

Except for the above mentioned, GraphSAC filters out sets contam-
inated by abnormal nodes based on the graph-aware criterion calculated 
on a subset of nodes randomly, the formula is given as below (Ioannidis 
et al., 2019b): 

P̂ = f
(
{yn}n∈L ,A

)
, (7)  

where yn are sample labels at random subsets of nodes n ∈ L ⊂V , A is 
the graph connectivity, and P̂(n,c) ∈ [0,1] can be denoted as the proba-
bility that yn = c. The choice of f( ⋅) is determined by the specific at-
tributes it wants to capture. Then, GraphSAC compares the accuracy of 
f( ⋅) using the ratio of nodes in the consensus set to a prespecified 
threshold T to judge it whether contain anomalies. 

These models only rely on network topology for attack detection. On 
attributed graphs, based on the observations that attackers prefer adding 
edges than removing edges and the edges are often added between 
dissimilar nodes. Based on these findings, Xu et al. (2020c) sampled 
sub-graphs from the poisoned training data and then used outlier 
detection methods to detect and filter adversarial edges. And Wu et al. 
(2019) proposed a defense method by eliminating the edges whose two 
end nodes have small Jaccard Similarity, the Jaccard Similarity score is 
given as (Said et al., 2010): 

Ju,v =
M11

M01 + M10 + M11
. (8)  

where M11 represents the number of features where both node u and 
node v have a value of 1. Similarly, M10, M01, M00 represent the number 
of feature values of node u and node v, 1 and 0, 0 and 1, 0 and 0, 
respectively. 

4.4. Attention mechanism 

Different from pre-processing methods which try to purify the per-
turbed graph data to enhance the robustness of GNN models, attention- 
based models aim to improve the robustness of GNNs in the presence of 
adversarial attacks. More specifically, the designed attention mecha-
nism are trained to distinguish the adversarial edges and nodes with the 
clean ones. When aggregating the information from neighbors, the 
learned attention weights will penalize the perturbed part of data 
through making them contribute less during the propagation process. 

RGCN (Zhu et al., 2019) makes the assumption that adversarial 
nodes may have high prediction uncertainty. From Fig. 10, since the 
plain vectors cannot adapt to the abnormal changes, RGCN proposes to 
model the hidden representations of nodes in all graph convolutional 
layers as Gaussian distributions to automatically reflect the effects of 
adversarial changes in the variances. As a result, the variance-based 
attention mechanism will penalize the nodes with high variance to 

Fig. 7. In sample-based BVAT (S-BVAT), two nodes u and v are selected to 
calculate the LDS loss, and the virtual adversarial perturbation is applied to the 
elements that have no intersection in its acceptance area (marked in red and 
blue). (Image Credit: (Deng et al., 2019)). 

Fig. 8. In optimization-based BVAT (O-BVAT), all nodes are included to 
calculate LDS loss, and the virtual adversarial perturbation of all nodes is 
optimized together. (Image Credit: (Deng et al., 2019)). 
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help mitigate the propagation of negative impact caused by adversarial 
examples. The attention weights of node vj in layer l are defined as 

α(l)
j = exp

(
− γσ(l)

j

)
, (9)  

where σ(l)
j denotes the variance and γ is a hyper-parameter. 

PA-GNN (Tang et al., 2020) introduces the supervised information 
about real perturbations in a poisoned graph to help improve the 
robustness of target GNN models. The intuition is from the fact that there 
usually exist clean graphs sharing the similar topological distributions 
and node attributes with the poisoned graph. For example, co-review 
networks like Yelp and Foursquare and social networks like Facebook 
and Twitter both share similar domains. Therefore, PA-GNN first learns 
to discriminate adversarial edges generated by attacking the clean 
graphs with supervised knowledge of known perturbations. With su-
pervision knowledge, PA-GNN designs a loss function to guarantee less 
attention weights for adversarial edges as 

L dist = − min
(

η, E
eij∈E \P

αl
ij − E

eij∈P
αl

ij

)

, (10)  

where E and P represents the set of all edges and that of perturbed 
edges and αl

ij denotes the self-attention coefficient assigned for eij on the 
l-th layer. η is a hyper-parameter controlling the margin between the 
expectations of two distributions. Then a meta-optimization algorithm is 
proposed to train the initialization of PA-GNN and further fine-tunes the 
model on the poisoned graph to achieve robustness. 

4.5. Certifiable robustness 

In most previous works, the robustness of GNNs is exploited heu-
ristically and experimentally. However, the criteria of measuring the 
safety of input graphs under adversarial perturbation is not solved in the 
previous works. Therefore, to research the problem that how to verify 
that small perturbations to input data will not cause dramatic effect to a 
GNN is important (see Fig. 11). 

In (Zügner and Günnemann, 2019b), they try to derive an efficient 
principle for robustness certificates. More specifically, they want to 
provide a certificate to measure that for which nodes the given trained 
GNN can guarantee that the predictions will not change under any ad-
missible perturbations given a specific attack budget (see Fig. 13). To 
tackle this problem, they aim to find the worst case margin (see Fig. 12) 
for the node t under some set X q,Q(Ẋ) of admissible perturbations to the 
node attributes: 

mt(y∗, y) : =min
X̃
f t
θ

(
X̃, Ȧ

)

y∗
− f t

θ

(
X̃, Ȧ

)

y
(11)  

s.t.X̃ ∈ X q,Q

(
Ẋ
)
, (12)  

where y∗ denotes the class of node t given by the ground truth or pre-
dicted and f t

θ( ⋅) represents the classifier which outputs the logits of each 
class. It is easy to see that the GNN is certifiably robust w.r.t node t when 
mt(y∗, y) > 0 for all y ∕= y∗, which means there exists no adversarial 
examples that can change its prediction for node t. Through some re-
laxations, they obtain a lower bound of mt(y∗, y) which is tractable to 
calculate. Thus, they can use this certificate to find how many nodes in a 

Fig. 9. The overall system: low-rank approximation of graph structure and feature matrices to vaccinate the node classification method and discard high-rank 
perturbations. (Image Credit: (Entezari et al., 2020)). 

Fig. 10. The framework of RGCN. And the GGCL represents the Gaussian-base graph convolutional layer. (Image Credit: (Zhu et al., 2019)).  
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graph is certifiably safe. Furthermore, the certificate can be taken as the 
objective to help more nodes safer through maximizing the worst case 
margin. 

However, Zügner et al. (Zügner and Günnemann, 2019b) only con-
siders perturbations to the node features. Bojchevski et al. (Bojchevski 
and Günnemann, 2019b) is completely orthogonal to (Zügner and 
Günnemann, 2019b) since they consider adversarial perturbations only 
to the graph structure instead. This work derives the robustness 

certificates for the models where the prediction is a linear function of 
(personalized) PageRank. Based on the observation, the work transforms 
robustness certificates to worst-case margin of node t between class yt 

and class c under any admissible perturbation G̃ ∈ Q F : 

m∗
yt ,c(t) = min

G̃∈Q F

myt ,c(t) (13)  

= min
G̃∈Q F

π
G̃
(et)

T ( H:,yt − H:,c
)
, (14)  

where H:,yt and H:,c denote the prediction logits vectors of class yt and 
class c respectively. And π

G̃
(et) is the personalized PageRank vector of 

node t. Then they aim to find a set of fragile edges into included/ 
excluded to obtain a perturbed graph G̃ maximizing the margin. 
Furthermore, inspired by the Markov decision process (MDP), they 
reformulate the problem as a non-convex Quadratically Constrained 
Linear Program (QCLP) to be able to handle the global budget; They 
utilize the Reformulation Linearization Technique (RLT) to construct a 
convex relaxation of the QCLP, enabling to efficiently compute a lower 
bound on the worst-case margin. As an extension of (Bojchevski and 
Günnemann, 2019b), Zügner et al. (Zügner and Günnemann, 2020) 
covers the highly important principle of graph convolutional networks. 
They rephrases the objective function as a jointly constrained bilinear 
program to make the optimization tractable. 

Bojchevski et al. (2020) proposes an approach that can handle both 
types of perturbations and be applied to any GNN utilizing randomized 
smoothing framework. In this framework, the certificate is defined as: 

ρx,̃x(p, y)= min
h∈H :
Pr(h(φ(x))=y)=p

Pr(h(φ(x̃))= y), (15) 

Fig. 11. Overall framework of PA-GNN. Thicker arrows indicate higher attention coefficients. θ∗ denotes the model initialization from meta-optimization. (Image 
Credit: (Tang et al., 2020)). 

Fig. 12. Intuitive idea of the classification margin (Zügner and Günnemann, 2019b).  

Fig. 13. Illustration of certifiable robustness on graphs (Zügner and Günne-
mann, 2019b). 
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where x̃ is a given neighboring point, and H is the set of measurable 
classifiers with respect to φ. φ is a randomization scheme to be specified, 
which assigns probability mass Pr(φ(x)= z) for each randomized 
outcome z. h is a base classifier outputting a single prediction class. 
Based on this definition, they define the data-dependent sparsity-aware 
noise distribution: 

Pr(φ(x)i ∕= xi)= pxi
− p(1− xi)

+ , (16)  

where the randomization scheme φ deletes an existing edge with prob-
ability p− , and similarly adds a new edge with probability p+. Through 
theoretic analysis and further relaxation, they conduct experiments to 
verify the effectiveness and efficiency of their algorithm. This work also 
gives the certificates for graph-level classification models for the first 
time. Except for node and graph classification tasks, there are also other 
works concentrating on certifiable robustness on other applications such 
as community detection (Jia et al., 2020). 

5. Future directions 

We have thoroughly investigated robust models on graphs and 
gained an overview of this emerging research field, robust learning on 
graphs. The deep understandings of this area allows us to discuss some 
promising research directions.  

• Graph data. Compared with considerable amount of work on static 
graphs, there still remain problems on dynamic graphs, e.g., detect-
ing anomalies on attributed dynamic graphs, work with the trace of 
edge or node updates. Besides, when it comes to an explicit graph 
representation, to add or remove latent edges may also be possible, 
that is, augmented graphs, e.g., edges based on similarities or domain 
knowledge.  

• Graph construction. The data does not form a network or there is more 
than one network available. To use graph-based techniques, how to 
use the source of data to construct a best representation, a graph or 
multi-graphs, remains an open problem.  

• Balance performance. Most methods focus on anomaly detection 
performance while ignoring adversarial robustness. How to balance 
detection performance and the robustness of models is still an open 
challenge.  

• Evaluation. Ground truth data is often inexistent and humans cannot 
easily tell whether adversarial perturbations on graph data are 
imperceptible or not, thus to find concise evaluation measure is 
urgent. 

6. Conclusion 

In this survey, we conduct a comprehensive review on robust 
learning models on graphs. Specifically, we present the recent de-
velopments of this area, we first provide some robustness evaluation 
metrics of model robustness on graphs, and then comprehensively divide 
existing works of robust models on graphs into five categories: anomaly 
detection, adversarial training, pre-processing, attention mechanism, 
and certifiable robustness. Besides, we further emphasize some potential 
future directions in learning robust models on graphs. 

We hope our works can serve as a reference to help researchers get a 
systematical and comprehensive understanding of robust models on 
graph, thus providing more insights for their studies. 
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