
1

Network Embedding via Motifs

PING SHAO, Zhejiang University, China
YANG YANG∗, Zhejiang University, China
SHENGYAO XU, Finvolution Group Inc., China
CHUNPING WANG, Finvolution Group Inc., China

Network embedding has emerged as an effective way to deal with downstream tasks, such as node classi-
fication [17, 32, 43]. Most existing methods leverage multi-similarities between nodes such as connectivity
which considers vertices that are closely connected to be similar and structural similarity which is measured
by assessing their relations to neighbors; while these methods only focus on static graphs. In this work,
we bridge connectivity and structural similarity in a uniform representation via motifs, and consequently
present an algorithm for Learning Embeddings by leveraging Motifs Of Networks (LEMON), which aims to
learn embeddings for vertices and various motifs. Moreover, LEMON is inherently capable of dealing with
inductive learning tasks for dynamic graphs. To validate the effectiveness and efficiency, we conduct various
experiments on two real-world datasets and five public datasets from diverse domains. Through comparison
with state-of-the-art baseline models, we find that LEMON achieves significant improvements in downstream
tasks. We release our code on Github at https://github.com/larry2020626/LEMON. 1

CCS Concepts: • Computing methodologies → Artificial intelligence.

Additional Key Words and Phrases: Motif, Network embedding, Motif super-vertex, Motif embedding

ACM Reference Format:
Ping Shao, Yang Yang∗, Shengyao Xu, and Chunping Wang. 2021. Network Embedding via Motifs. ACM Trans.
Knowl. Discov. Data. 1, 1, Article 1 (January 2021), 20 pages. https://doi.org/10.1145/3473911

1 INTRODUCTION
Graphs are an efficient and natural way to represent data from various domains such as social
networks and academic networks. Graph structures can be various and irregular, as the size of
graphs are variable and unordered vertices may have more or less neighbors [50]. Graph embedding,
also known as network embedding, which aims to learn the representation of vertices, has emerged
as an effective methodology for many downstream applications, such as node classification, link
prediction, etc [17, 32, 43]. Many algorithms employ random walks to generate a corpus, which
is then fed into the Skip-gram model [28] to learn latent embeddings. The basic concept involves
automatically projecting vertices of a given network into a low-dimensional latent space in which
similar vertices are close to each other. A crucial issue is how to define the vertex-similarity measure
that is most appropriate to the downstream application. Previous works in the literature have taken
different vertex-similarity measures into consideration such as, connectivity and structural similarity.
1Corresponding author: Yang Yang.

Authors’ addresses: Ping Shao, pinshao006@gmail.com, Zhejiang University, Hangzhou, Zhejiang, China; Yang Yang∗,
Zhejiang University, Hangzhou, Zhejiang, China, yangya@zju.edu.cn; Shengyao Xu, xushengyao@xinye.com, Finvolution
Group Inc. Shanghai, China; Chunping Wang, wangchunping02@xinye.com, Finvolution Group Inc. Shanghai, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1556-4681/2021/1-ART1 $15.00
https://doi.org/10.1145/3473911

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:2 Ping Shao, Yang Yang∗, Shengyao Xu, and Chunping Wang

Social Network Academic Network

Triangle Motif

2-Star Motif

Fig. 1. Illustration of motifs in different networks, such as social network and academic network.

Connectivity considers vertices that are closely connected or have many common neighbors to be
similar to each other [17, 32, 43]; on the other hand, structural similarity measures whether two
vertices share similar local structures [35]. Some existing works have tried to take multiple similar-
ities into consideration, for example, VERSE [46] propose three similarities: community structure,
roles and structural equivalence. It is worth noting that community structure is substantially equal
to connectivity (nodes connected or have many common neighbors) while structural similarity can
covers roles and structural equivalence. For real-world datasets, researchers usually may encounter
with dynamic scenes: in the telecommunication datasets, users call each other dynamically; in
the academic networks, collaborations are formed and new papers are published continuously.
However, to our best knowledge, most approaches mentioned above only learn representations
for vertices from the perspective of one kind of similarity; moreover, most existing methods are
unsuitable to generate embeddings for unseen vertices.
Some existing works have already focused on inductive learning tasks, such as GraphSAGE

[18] which represents vertices by aggregating features from neighborhood. However, aggretating
features from neighbors alone only consider connectivity might fail in tasks that value structural
property. Take telecom fraud detection as an example, frauds behave differently from normal users
which can be reflected by the structural patterns of anomalies [53]. As a result, aforehead mentioned
method is inappropriate for datasets which value structural similarity and not capable enough of
capturing comprehensive features of complex real-world datasets. Therefore, we propose to study
a problem: how can we simultaneously measure connectivity and structural similarity in a uniform
representation and in the meantime be able to deal with inductive learning tasks?

As fundamental building blocks of networks [29], motifs describe small subgraph patterns with
specific connections among vertices, which represent the structures and contains the connection
information of vertices inside. Motifs are effective and crucial in a range of domains, including
bioinformatics, neuroscience, biology and social networks [55]. Figure 1 illustrates triangle motif
in different networks; in the social network, three close friends form a triangle motif (); in the
academic network, three scholars who often collaborate together and publish papers form another
one. Motifs contain rich information and can reveal semantic information of vertices; for example,

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Network Embedding via Motifs 1:3

in the social network, a vertex with a few () represents a person who tends to introduce her
friends to know each other, in contrast to vertices surrounded by (). A few existing works have
tried to generate embeddings via motifs [23, 41, 59]. To the best of our knowledge, most of these
methods only focused on node embedding for static graphs.

In light of the above, to address these issues, we propose amethod that considers multi-similarities
via motifs to learn representations. Apart from other motif-related methods, the major difference
lies in that our proposed method explicitly proposes motifs as super-vertices, instead of implicitly
utilizing motifs to exert influence when learning representations of vertices. Moreover, motifs allow
us to implement an inductive learning method; in particular, we can effectively obtain the new
vertex’s representation by embedding vectors of its related motifs. In this paper, we propose a novel
algorithm framework: Learning Embeddings based on Motifs Of the Network (LEMON). LEMON
puts various motifs into the network as super-vertices and constructs a heterogeneous network
consisting of relations between motif super-vertices and the original vertices in the network.
Furthermore, in order to incorporate the heterogeneous network into the Skip-gram model [28],
we propose a motif-step random walk strategy that ensures that vertices with high connectivity or
high structural similarity will appear close together in the corpus. Thus, our framework is able to
simultaneously measure both connectivity and structural similarity. The main contributions of our
paper can be summarized as follows:

• We propose to study the problem of uniformly learning network embedding by measuring
connectivity and structural similarity.

• We present a new framework, named LEMON, which leverages motif super-vertex to generate
embeddings for both vertices and motifs and can be applied for inductive learning tasks.

• We employ two real-world datasets and five public datasets to evaluate the effectiveness
and efficiency of our proposed framework on four different tasks. The experimental results
indicate that LEMON achieves superior performances to eleven state-of-the-art baseline
models.

Organization. The remainder of this paper is organized as follows. Section 2 provides a detailed
description of the problem we study; consequently Section 3 illustrates the details of our proposed
approach. In Section 4, all experimental settings and results are presented along with corresponding
analysis. Section 5 summarizes the related works on network embedding and motifs. Finally, Section
6 concludes this paper.

2 PRELIMINARIES
2.1 Problem Definition
In this paper, we use lower-case letters to indicate scalar parameters and bold letters for vectors;
moreover, the superscript 𝑖 of the bold vector symbol represents the 𝑖-th dimension of the vector.

Given an undirected graph 𝐺 = (𝑉 , 𝐸), where 𝑉 denotes vertices and 𝐸 represents edges respec-
tively, 𝐸 ∈ (𝑉 ×𝑉). Our goal is to map vertices and various motifs into a low dimensional space 𝑅𝑑 ,
with 𝑑 ≪ |𝑉 |, capturing the connectivity and structural information of vertices via exploiting the
frequently occurring substructures (motifs).
Definition 1.1. (Motifs): Given a graph 𝐺 = (𝑉 , 𝐸), motifs are subgraphs 𝐺 ′ = (𝑉 ′, 𝐸 ′) that recur
significantly in statistics, where 𝑉 ′ ⊂ 𝑉 ; 𝐸 ′ ⊂ 𝐸 and |𝑉 ′ | ≪ |𝑉 |.
2-vertex motif is an alias of edge. 3-vertex and 4-vertex motifs are widely used in network

embedding [11, 23, 39, 41, 51, 54] and graphlet counting [4, 6]. Thus, in this paper, we utilize 2, 3,
4-vertex motifs as illustrated in Figure 2 and indicated as𝑀0 to𝑀8.
Definition 1.2. (Motif Count Vector): For a vertex 𝑢 in the network, we calculate motif count
vector 𝒄𝒖 ; the 𝑖-th dimension of 𝒄𝒖 indicates the number of 𝑖-th type motif that contains vertex 𝑢.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 Ping Shao, Yang Yang∗, Shengyao Xu, and Chunping Wang

M0 M1 M2 M3 M4 M5 M6 M7 M8

2-path 2-star triangle 3-star
tailed-

triangle
4-path 4-circle

chordal

-cycle
4-clique

[1,1] [2,1,1] [2,2,2] [2,2,1,1] [3,1,1,1] [2,2,2,2] [3,2,2,1] [3,3,2,2] [3,3,3,3]

Fig. 2. Illustration of 2, 3 and 4-vertex undirected motifs, indicated as𝑀0 to𝑀8. In this paper, we only consider
undirected graphs for simplicity. Our framework can be easily applied to directed graphs by adopting directed
motifs.

2.2 Motif Extraction
Motif extraction has been a heated topic in data mining domain. Ribeiro et al. [36] divide motif
extraction algorithms into exact subgraph counting algorithms [4, 20, 33] and approximate sub-
graph counting algorithms [10, 21]. Classical methods enumerate all connected motifs, result in
enormous time complexity while analytic algorithms [4, 33] calculate motif count through math
derivation. Compared to exact subgraph counting algorithms, approximate subgraph counting
algorithms trade off accuracy for time complexity to some extent, which can be divided into random
walk algorithms [21], and color-coding algorithms [10]. From another perspective, motif extraction
algorithms can be divided into global motif counting algorithms and local motif counting algo-
rithms [12, 20, 27, 49]. In this paper, we adopt an exact subgraph counting algorithm Orca [20],
which calculates the motif count vector for each vertex; the time complexity of Orca is𝑂 (𝑘 · |𝐸 | +𝑇4)
and more details of execution time can be found in Section 4.7.

3 OUR APPROACH
We propose a novel representation learning method named LEMON to bridge connectivity and
structural similarity in a universal form and learn desirable representations for vertices and various
motifs, which is suitable for inductive learning tasks.

3.1 LEMON: Learning Representations for Vertices and Motifs
The proposed framework LEMON is expected to do the following: 1) bridge connectivity and
structural similarity; 2) learn embeddings for vertices and motifs; 3) support inductive learning
scenarios.
We extract the structural information of vertices via motifs: consider two vertices to be struc-

turally similar if their motif count vectors are similar. In our model, we put all motifs into the
network as super-vertices, as illustrated in Algorithm 1. The structural edges between vertices and
corresponding motif super-vertices are constructed; the weight of the structural edge between 𝑖-th
motif super-vertex𝑀𝑖 and vertex 𝑢, denoted as𝑤 (𝑢,𝑀𝑖), is proportional to 𝑐𝑖𝑢 , which means the
number of 𝑖-th type of motif containing vertex 𝑢, as shown below:

𝑤 (𝑢,𝑀𝑖) =
𝑐𝑖𝑢∑
𝑣∈𝑉 𝑐𝑖𝑣

(1)

As can be seen from Figure 3, the weight of structural edge between the triangle motif super-vertex
and vertex 6 ((5, 6, 7), (6, 8, 9)) is larger than the weight of the structural edge between the triangle
motif super-vertex and vertex 7 (5, 6, 7); the weight of the structural edge between the 2-star motif
super-vertex and vertex 4 ((1, 2, 4), (1, 3, 4), (2, 3, 4), (2, 4, 5), (3, 4, 5), (1, 4, 5)) is larger than the

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Network Embedding via Motifs 1:5

Algorithm 1 LEMON Algorithm
Input: graph 𝐺 = (𝑉 , 𝐸), motifs𝑀
Output: embedding vectors for vertices and motifs
1: Extract Motifs
2: Add all motifs into the network as super-vertices
3: for each vertex 𝑢 ∈ 𝑉 do
4: Construct structural edge between 𝑢 and each super-vertex
5: end for
6: for each vertex 𝑢 ∈ 𝑉 do
7: W=Motif-Step RandomWalk(𝐺 , 𝑢, 𝑞, 𝑙𝑒𝑛𝑔𝑡ℎ)
8: end for
9: 𝑆𝑘𝑖𝑝-𝑔𝑟𝑎𝑚(𝑊), get embedding vectors
10:

11: Motif-Step RandomWalk(𝐺 , 𝑢, 𝑞, 𝑙𝑒𝑛𝑔𝑡ℎ)
12: Initialize walk𝑊 as [𝑢].
13: while |𝑊 | < length do
14: 𝑢𝑐𝑢𝑟 =𝑊 [−1]
15: Sample x ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚[0, 1]
16: if 𝑥 < 𝑞 and 𝑢𝑐𝑢𝑟 ∈ 𝑉 then
17: According to edge weight, pick one motif super-vertex𝑀𝑖

18: Add motif super-vertex𝑀𝑖 into𝑊
19: else
20: neighs 𝑠 = GetNeighs(𝑉 , 𝑢𝑐𝑢𝑟)
21: Randomly pick one vertex from 𝑠 and add into𝑊
22: end if
23: end while

weight of the structural edge between the 2-star motif super-vertex and vertex 2 ((1, 2, 4), (2, 3, 4),
(2, 4, 5)).

Motif-Step Random Walk: Inspired by natural language processing models in which the
embedding vectors of words are trained based on the corpus, DeepWalk [32] maps the word-context
concept in a text corpus into the network by taking vertices as words and executing random walk to
generate paths as “context”. It then utilizes the Skip-gram model [28] to learn the representation of
the vertices that facilitate the prediction of its context. Considering that we have two types of edges
in the network: structural edges and normal edges, we propose a parameter 𝑞 to determine the
probability of random walking on structural edges or normal edges 2. Clearly, the embedding vector
of the vertex should be more similar to ones of the motif super-vertices that contain this vertex
more frequently than others. In response, we improve the random walk strategy by proposing a
new strategy named motif-step random walk; 𝜋𝑢 represents the transition probability of the next
step of the motif-step random walk for vertex 𝑢.

2We will refer to the vertices (edges) in the given network as normal vertices (edges) later in this paper to avoid ambiguity.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 Ping Shao, Yang Yang∗, Shengyao Xu, and Chunping Wang

Random walks on structural edgeWeighted structural edge

Normal edge Random walks on normal edge

2

1

3

4

(1-q)/4

q

5

7

6

9

8

2-star Motif Triangle Motif

11

12

10

Fig. 3. An illustration of LEMON. LEMON puts motifs into network as super-vertices and constructs structural
edges between vertices and motif super-vertices (for brevity, only a part of edges are drawn), where the weight
is proportional to the number of certain type of motif containing this vertex. The model adopts 𝑞 ∈ [0, 1] to
indicate the transition probability of traveling on different type of edges. If a walk travels to vertex 4, the next
step probability distribution is 𝑞 for the 2-star motif super-vertex and 1−𝑞

4 for vertex 1, 2, 3 and 5. It is worth
noticing that structurally similar vertices such as vertex 4 and vertex 11 (both contains several 2-star motifs
in their neighborhood) are bridged through motif super-vertex while these two vertices are far away from
each other in original network.

𝜋𝑢 =

𝑞𝑤(𝑢,𝑀𝑖)∑8
𝑗=0 𝑤(𝑢,𝑀𝑗)

motif super-vertex𝑀𝑖

1−𝑞
|𝑁 (𝑢) | nerighbor vertex

(2)

If walks travel from normal vertices, they have a probability of 𝑞 ∈ [0, 1] of traveling on structural
edges and a probability of 1−𝑞 of traveling on normal edges; the weights of normal edges are treated
as the same, therefore the probability of traveling on normal edges will be equally distributed to
neighbors. Taking vertex 4 in Figure 3 as an example, if a walk travels to vertex 4, the probability
distribution of next step for vertex 4 is 𝑞 for the 2-star motif super-vertex and 1−𝑞

4 for vertex 1, 2, 3
and 5 respectively. With motif-step random walk strategy, vertices and their highly related motif
super-vertices as well as two vertices that are surrounded by the same type of motif will be close to
each other in the corpus, and their corresponding embedding vectors will be driven close to each
other.

After obtaining the corpus, we then feed the collected corpus into the Skip-gram model [28] to
map vertices into the low-dimensional embedding vectors. For simplicity, object function can be
described as an optimization problem:

𝑚𝑖𝑛Φ(𝑣𝑖),Φ(𝑀𝑗) − (𝑙𝑜𝑔 𝑃𝑟 ({𝑣𝑖−𝑤, ..., 𝑣𝑖+𝑤}\𝑣𝑖 |Φ(𝑣𝑖),Φ(𝑀 𝑗))
+ 𝑙𝑜𝑔 𝑃𝑟 ({𝑣 𝑗−𝑤, ..., 𝑣 𝑗+𝑤}\𝑣𝑀𝑗

|Φ(𝑣𝑖),Φ(𝑀 𝑗)))
(3)

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Network Embedding via Motifs 1:7

where 𝑣𝑖 , Φ(𝑣𝑖) denotes vertex 𝑖 and the representation vector of vertex 𝑖 while𝑀 𝑗 , Φ(𝑀 𝑗) denotes
motif super-vertex 𝑗 and the representation vector of motif super-vertex 𝑗 , and𝑤 denotes windows
size. For different networks, we can adjust the coefficient 𝑞 according to specific prior knowledge.
The larger the coefficient 𝑞 is, the more likely that the random walks travel on structural edges; the
model pays more attention to the structural similarity than it does to connectivity in the network.

Algorithm 2 Inductive learning of LEMON
Input: 𝐺 = (𝑉 , 𝐸), set of unseen nodes �̃�
Output: embeddings of unseen nodes 𝑣�̃�∈�̃�
1: for each node �̃� ∈ 𝑉 ′ do
2: Initialize 𝒄�̃� as [0, ..., 0]
3: Get 3-vertex and 4-vertex motif count vector of unseen node and concate together 𝒄�̃�
4: Calculate structural part embeddings based on motif representations: 𝛼

∑8
𝑖=0

𝑐𝑖
�̃�∑

𝑣∈𝑉 𝑐𝑖𝑣
𝒗𝑴𝒊

5: Aggregate the embeddings of neighbors: (1 − 𝛼)∑𝑥 ∈𝑁 (�̃�) 𝒗𝒙
6: Calcualte embeddings of unseen nodes 𝒗�̃�
7: end for
8:

9: Get n-vertex motif count vector of �̃� (node �̃�, number of vertex in the motif:n, repeat times T)
10: for each t=1 to T do do
11: Initialize𝑊 as [�̃�]
12: while |𝑊 | < n do
13: 𝑢𝑐𝑢𝑟 =𝑊 [−1], randomly select one neighbor of 𝑢𝑐𝑢𝑟 and add into𝑊
14: end while
15: Sort degree vector of collected subgraph and compared to degree vector of different motifs
16: Add 1 to corresponding dimension of 𝒄�̃�
17: end for

3.2 Inductive Learning for Unseen Vertices
In dynamic scenarios, vertices arrive continuously in the network in a stream. As illustrated above,
LEMON leverages the learned motif embeddings and vertex embeddings to efficiently generate
embeddings for unseen vertices.
LEMON adopts attention mechanism that assigns importance to different motifs around the

unseen vertex. Naturally, the easier it is for random walks to obtain what kind of motif, the more
important this pattern is. In particular, if nodes collected by random walk can often constitute a
certain motif, it shows the importance of this frequent pattern; the importance of each motif may
be assigned via the this frequency. 3 We may repeat the process of adopting random walk to obtain
subgraph, 𝒄�̃� = {𝑐0

�̃�
, 𝑐1

�̃�
, ..., 𝑐8

�̃�
} for the newly arrived vertex �̃�. Specifically, we adopt random walk

from vertex �̃� to collect a subgraph and then calculate its degree vector. After sorting the degree
vector in descending order and compare it with degree vectors of different motifs listed in Figure 2.
The time complexity of this process can be represented as 𝑂 (𝑘 · 𝑛𝑙𝑜𝑔 · 𝑛), where k represents the
times of repetition and n indicates the number of nodes in certain motif, in this case, n equals 3 or 4.

3If an amount of unseen vertices arrive, we may adopt Orca to get the motif count vector for new vertices and indicate the
importance of each motif for simplicity.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Ping Shao, Yang Yang∗, Shengyao Xu, and Chunping Wang

v

2-star Motif Triangle Motif

~ u

Fig. 4. Illustration of inductive learning for unseen vertex �̃�.

The embedding vector for the unseen vertex �̃� can be calculated as follows:

𝒗�̃� = 𝛼

8∑
𝑖=0

𝑐𝑖
�̃�∑

𝑣∈𝑉 𝑐𝑖𝑣
𝒗𝑴𝒊 + (1 − 𝛼)

∑
𝑥 ∈𝑁 (�̃�)

𝒗𝒙 (4)

where 𝒗𝒙 , 𝒗𝑴𝒊 indicates embedding vector for vertex 𝑥 , 𝑖-th type motif super-vertex respectively, 𝑐𝑖𝑢
means the number of 𝑖-th type motif containing vertex �̃� and 𝑁 (�̃�) represents the neighbor vertices
of �̃�.
As shown in Figure 4, for the unseen vertex �̃� in the network, we first calculate its motif count

vector, and then calculate the representation vector of the vertex �̃� via the above formula. Specifically,
the representation vector of vertex �̃� consists of two parts: (a). connectivity, which is represented
by the features of the neighbors of vertex �̃� such as vertex 𝑣 ; (b). structural similarity, which is
calculated via the representation of the motifs.

4 EXPERIMENTS
4.1 Datasets
We utilize following datasets to perform experiments:

• Mobile [60]: This dataset is provided by China Telecom, one of China’s major mobile service
providers. Mobile users are considered as vertices, while edges indicate that one user has
called another. The network contains call records for one week, with 5,000 vertices (4105
negative and 895 positive), 228,110 edges.

• Loan [60]: This dataset is provided by Finvolution Group. Vertices represent registered users
of Finvolution Group, while edges represent mobile phone calls between users from January
2018 to January 2019. Users who fail to repay money in time are considered positive vertices,
while others are negative. We use random walk to collect the largest connected subgraph as
our dataset, which contains 1104 vertices (123 positive and 981 negative) and 1719 edges.

• Wiki [26]: This network contains 2,405 vertices (17 labels) and 17,981 edges. The vertices
indicate words, while edges represent the co-occurrence relationship between words. The
labels are given based on the Part-of-Speech tags.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Network Embedding via Motifs 1:9

• Cora, Citeseer [37]: Cora contains 2708 vertices (7 labels, such as Genetic Algorithms and
Theory) and 5278 edges, while Citeseer contains 3264 vertices (6 labels) and 4536 edges. Each
vertex indicates a scientific paper, while edges represent academic citations.

• PPI [9]: This network contains 3890 vertices and 37845 edges. This is a subgraph of the
Protein-Protein Interactions network for Homo Sapiens.

• AMiner [44]: AMiner network contains 2,092,356 academic papers and 8,024,869 citations
between papers. We select 20 vertices from top 200 vertices with largest degree and conduct
breadth first search to sample a subgraph which contains 81725 nodes indicating authors,
and 485175 edges indicating collaborations; the label of vertex is defined by whether the
author’s H-index is in the top 50% of all selected vertices or not.

4.2 Experimental Settings
To elaborate on the advantages of our proposed model, we construct four different experiments on
seven above datasets and answer the following questions:

• 𝑄1: Is using motif an effective way to exploit network’s information for subsequent tasks,
such as node classification?

• 𝑄2: Is LEMON able to uniformly learn both connectivity and structural similarity sponta-
neously?

• 𝑄3: Is the structural information of various motifs well represented by the learned embedding
vectors?

We compare LEMON with following baselines. For fairness, baselines are mainly unsupervised
learning methods. And the details of baseline models can be found in Table 1.

• struc2vec [35]: Struc2vec learns latent embedding vectors through the structural identity
(symmetry) of vertices. The parameters are set to recommended value: dimensions 128, walk
length 80, num walks 10.

• GraphWave [14]: GraphWave represents vertices via low-dimensional vectors by utilizing
heat wavelet diffusion patterns in an unsupervised way. Sample number 50, heat coefficient
1000, under exact mechanism.

• NetMF [34]: NetMF unifies word2vec based embedding models into the matrix factorization
framework, including DeepWalk, node2vec, LINE and PTE. We adopt default parameters:
256 eigenpairs used to approximate normalized graph laplacian to get 128 dimension of
embeddings.

• VERSE [46]: VERSE takes three similarities into consideration: community structure, roles
and structural equivalence, and learns embeddings through neural network. We set 𝛼 0.85
and learning rate 0.0025 as default settings.

• Motifwalk [30]: Motifwalk leverages higher-order organization via motifs by exploiting a
biased random walk strategy to generate contexts in the motif-aware graph. We adopt walk
number 10, negative samples 15, walk length 15 as default settings.

• ProNE [58]: ProNE propose a scalable and effective model which adopts sparse matrix
factorization and propagating in the spectral space. We adopt default parameter values, i.e.
𝜃 = 0.5, 𝜇 = 0.2, step of recursion 10.

• Meta-GNN [42]: Meta-GNN proposes a novel metagraph convolution operation to capture
metagraph-structured neighborhoods’ information.

• NEU [52]: NEU proposes to apply approximating higher-order proximities to network em-
bedding methods to enhance the performance on downstream tasks. We utilize NetMF as
basic embedding model.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Ping Shao, Yang Yang∗, Shengyao Xu, and Chunping Wang

Table 1. Implementation details of baseline models.

Baseline Code
struc2vec https://github.com/leoribeiro/struc2vec
NetMF https://github.com/xptree/NetMF
VERSE https://github.com/xgfs/verse

Motifwalk We implemented the algorithm ourselves at
https://github.com/larry2020626/motifwalk

ProNE https://github.com/THUDM/ProNE
GraphWave https://github.com/benedekrozemberczki/GraphWaveMachine
Meta-GNN https://github.com/aravindsankar28/Meta-GNN

NEU, GLEE, BoostNE, Role2Vec https://github.com/benedekrozemberczki/karateclub

• GLEE [45]: GLEE proposes to construct graph embeddings based on the geometric properties
of the Laplacian matrix.

• BoostNE [24]: BoostNE proposes to learn the embeddings from multi-level without the
requirement of low-rank assumption.

• Role2Vec [5]: Role2Vec adopts attributed random walks as a basis for existing random walk
based method and enhances the performance of downstream tasks.

All experiments are conducted under the environment of 256G memory, 2 CPUs of 2.20GHz and
the Ubuntu 16.04.3 system. LEMON and baselines learn embedding for vertices taking only the
graph structure as input.4 For node classification experiments, the embedding vectors of vertices
are randomly divided into training, validation and testing set according to the ratio of 7:1:2. For
link prediction experiments, we concatenate two vertices’ embedding vectors together as the
representation of edges. We randomly select 80% of the edges as the training and validation set. The
remaining 20% edges are used as positive cases in testing set and we manually fabricate the same
number of edges as negative cases. We adopt LightGBM [22] as the classifier. The Loss function is
based on cross-entropy, as shown below:

𝐿 = −
𝑚∑
𝑐=1

𝑦𝑐𝑙𝑜𝑔(𝑝𝑐), 𝑦𝑐 ∈ {0, 1} (5)

where m indicates the number of classes; if class label c is the correct classification for prediction,
𝑦𝑐 is 1 and 0 otherwise; 𝑝𝑐 indicates the probability of class c.

Hyperparameter settings are introduced as follows to facilitate better reproductivity: 1) for
random walks settings, by default, there are 10 walks starting at each vertex, with a length of 80; 2)
for embedding part, we set window size for optimization is 10, the dimension of output vectors is
128 for both vertices and motif super-vertices and adopt stochastic gradient descent as optimization
strategy; 3) for classification, we utilize LightGBM model with 1000 boosting iterations with early
stopping technique to avoid overfitting or underfitting.

4.3 Experimental Results

4This paper focuses on graph representation without node attributes. Although our proposed method is unable to achieve
SOTA effects compared with models which consider node attributes, LEMON still exceeds SOTA baselines which also focus
on non-attribute graph representation. From this perspective, LEMON has the superiority to baselines to a certain extent.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Network Embedding via Motifs 1:11

Table 2. Experimental results of anomaly detection. Symbol / suggests execution time is larger than 1 day.

Methods Mobile Loan

Prec. Recall Micro-F1 Prec. Recall Micro-F1

struc2vec / / / 0.167±.090 0.200±.026 0.189±.013
GraphWave 0.756±.071 0.455±.047 0.568±.047 0.276±.016 0.133±.011 0.180±.004
Motifwalk 0.279±.084 0.248±.031 0.262±.054 0.027±.002 0.152±.014 0.045±.001
NetMF 0.151±.001 0.183±.001 0.166±.001 0.130±.001 0.167±.001 0.146±.001
VERSE 0.161±.012 0.225±.012 0.188±.012 0.043±.001 0.143±.017 0.067±.002
ProNE 0.646±.040 0.417±.008 0.507±.018 0.275±.041 0.141±.022 0.186±.028

Meta-GNN 0.110±.001 0.201±.001 0.142±.001 0.124±.001 0.164±.001 0.141±.001
NEU 0.721±.001 0.408±.001 0.521±.001 0.3040.3040.304±.001.001.001∗ 0.175±.001 0.222±.001
GLEE 0.733±.001 0.445±.001 0.554±.001 0.174±.001 0.174±.001 0.174±.001

BoostNE 0.8020.8020.802±.001.001.001∗ 0.445±.001 0.573±.001 0.261±.001 0.115±.001 0.160±.001
Role2Vec 0.700±.038 0.453±.017 0.549±.024 0.044±.001 0.098±.025 0.060±.005

LEMON 0.7650.7650.765 ± .042.042.042 0.5210.5210.521 ± .003.003.003∗ 0.6200.6200.620 ± .010.010.010∗ 0.2080.2080.208 ± .036.036.036 0.2630.2630.263 ± .004.004.004∗ 0.2330.2330.233 ± .023.023.023∗

Anomaly detection. On the whole, LEMON outperforms baselines for both datasets. As shown
in Table 2, LEMON exceeds the highest recall and f1 score for Mobile dataset. More specifically,
for Mobile dataset, LEMON achieves an improvement of 9.16% in terms of F1 score relative to the
best baseline model, GraphWave; in the mean time, LEMON also achieves the highest recall and
relatively superior precision to baselines, only second to BoostNE.

An interesting observation is that VERSE, which also considers multi-similarities, did not perform
as well as LEMON. One possible reason for this phenomenon is that in Mobile dataset, the positive
cases are Fraudsters who get the contact information of people from all walks of life in the society
through various channels and commit frauds via telephone calls. The people contacted by the
fraudsters are not acquaintances to each other; as a result, most motifs around them are unclosed,
such as () and (). In order to verify this analysis, we calculate the distribution of the number
of motifs around fraudsters and normal users, and the results are shown in Figure 5.

Normal Users Fraudsters
0

20000

40000

60000

80000

100000

120000

2-
st

ar
 m

ot
ifs

Normal Users Fraudsters
0.0

0.5

1.0

1.5

2.0

4-
pa

th
 m

ot
ifs

1e7

Fig. 5. Motif distributions around fraudsters and normal users.

It can be seen that compared with normal users, fraudsters are more likely to contact two other
users who do not know each other. As a result, more unclosed motifs appear around fraudster users.
On the contrary, two people called by a normal user are relatively more likely to be acquainted
to each other and also have call records. For example, a company employee calls his/her two

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Ping Shao, Yang Yang∗, Shengyao Xu, and Chunping Wang

Table 3. Experimental results of node classification. The results of Motifwalk on Cora and Citeseer are quoted
from [30], which does not provide standard deviations.

Methods Wiki Cora Citeseer AMiner

Micro-F1 Micro-F1 Micro-F1 Acc.

struc2vec 0.209±0.011 0.408±0.005 0.354±0.011 /
GraphWave 0.291±0.016 0.594±0.001 0.541±0.001 0.712±0.001
Motifwalk 0.328±0.031 0.680 0.457 0.527±0.001
NetMF 0.628±0.001 0.282±0.001 0.279±0.001 0.527±0.001
VERSE 0.626±0.007 0.772±0.024 0.642±0.015 0.716±0.003
ProNE 0.682±0.004 0.845±0.004 0.700±0.001 0.734±0.003

Meta-GNN 0.216±0.001 0.295±0.001 0.342±0.001 0.553±0.001
NEU 0.672±0.001 0.849±0.001 0.695±0.001 0.696±0.001
GLEE 0.470±0.001 0.762±0.001 0.626±0.001 0.769±0.001

BoostNE 0.520±0.001 0.710±0.001 0.585±0.001 0.744±0.001
Role2Vec 0.597±0.018 0.707±0.013 0.522±0.026 0.798±0.001

LEMON 0.7160.7160.716 ± 0.0050.0050.005∗ 0.8580.8580.858 ± 0.0050.0050.005∗ 0.7040.7040.704 ± 0.0050.0050.005∗ 0.8300.8300.830 ± 0.0080.0080.008∗

colleagues, and these two colleagues may be likely to have phone calls between them. Therefore,
there will be relatively more () around normal users. This key structural information can be
precisely captured by motifs. Moreover, NetMF tends to preserve the information of the first-order
network, which is unsuitable to deal with tasks values structure information. The experimental
results in Table 2 verifies the analysis. NEU also values high-order structure information and it
performs better than NetMF while it is not as effective as LEMON which indicates that LEMON
can extract high-order structure information well.
For Loan dataset, NEU achieves the highest precision, while LEMON obtains the best perfor-

mances in terms of recall, f1 and the second highest precision. It is worth noting that we pay more
attention to identifying users who may not be able to pay back loans or scam users. Thus, we care
more about positive samples by paying more attention to recall rather than precision particularly
in this case. In the case of unbalanced categories, f1 score is the most balanced indicator; from this
perspective, LEMON is still superior to NEU and other baselines.
Both Mobile and Loan datasets value structural information; moreover, LEMON demonstrates

its ability to deal with structural similarity based datasets by surpassing methods which values
structure information such as struc2vec and NEU. Based on these experimental results, we can
conclude an answer to 𝑄1 that motifs contain valuable information and adopting motifs is an
effective way to exploit structural information.

Node classification. For balanced node classification experiment, we utilize Wikipedia, Cora,
Citeseer and AMiner datasets. As shown in Table 3, LEMON achieves the best result for all four
datasets. In terms of Micro-F1 score, LEMON outperforms 4.99%, 1.06% and 0.57% than the most
competitive baseline model forWikipedia, Cora and Citeseer respectively; moreover, it also achieves
an improvement of 4.01% in terms of accuracy for AMiner.
For Wikipedia, Cora, Citeseer and AMiner datasets, the ratio of edges connecting the same

category vertices among all edges is 71.2%, 81.00%, 73.8% and 68.5%, suggesting that these datasets
pay more attention to connectivity similarity than structural similarity; these experiments prove
that LEMON can also perform well in connectivity based datasets.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Network Embedding via Motifs 1:13

Table 4. Experimental results of link prediction.

Methods Mobile PPI

Prec. Recall F1 Prec. Recall F1

struc2vec / / / 0.695±.016 0.699±.016 0.697±.006
GraphWave 0.955±.001 0.887±.002 0.920±.002 0.7900.7900.790± .005.005.005∗ 0.703±.001 0.744±.002
Motifwalk 0.948±.003 0.870±.002 0.907±.002 0.672±.007 0.713±.009 0.692±.008
NetMF 0.942±.001 0.860±.001 0.899±.001 0.693±.001 0.714±.001 0.703±.001
VERSE 0.955±.002 0.879±.002 0.915±.001 0.729±.006 0.720 ±.004 0.724±.002
ProNE 0.9700.9700.970± .001.001.001∗ 0.923±.003 0.946±.002 0.759±.009 0.776±.006 0.767±.007
NEU 0.969 ±.001 0.924±.001 0.946±.001 0.770±.001 0.742±.001 0.756±.001
GLEE 0.969±.001 0.924±.001 0.946±.001 0.706±.001 0.750±.001 0.727±.001

BoostNE 0.968±.001 0.925±.001 0.946±.001 0.739±.001 0.719±.001 0.729±.001
Role2Vec 0.963±.001 0.910±.002 0.936±.002 0.768±.003 0.713±.003 0.740±.003

LEMON 0.9670.9670.967 ± .001.001.001 0.9270.9270.927 ± .002.002.002∗ 0.9470.9470.947 ± .001.001.001∗ 0.7590.7590.759 ± .007.007.007 0.7770.7770.777 ± .001.001.001∗ 0.7680.7680.768 ± .003.003.003∗

Link prediction. For link prediction experiments, we utilize Mobile and PPI datasets. LEMON
outperforms all baselines in recall and F1 score for both datasets; ProNE achieves the highest
precision for Mobile while GraphWave obtains the highest precision for Loan.
These experiments indicate that LEMON generally generates superior performances to the

state-of-the-art baselines for various downstream tasks which proves that LEMON is an effective
method to leverage information of graphs. Moreover, the standard deviation of LEMON stays low in
different experiments, indicating that LEMON is stable, which is another advantage of our proposed
model.

4.4 Parameter Analysis
Our model has one important hyperparameter: 𝑞, which controls the probability of traveling on
structural edges or normal edges. The effect of different 𝑞 reflects on the results of different datasets
is illustrated in Figure 6. As the value of 𝑞 varies, the performance also changes. For datasets which
values connectivity, LEMON achieves the best results when parameter 𝑞 is relatively small (0.05 for
Cora and Citeseer, 0.10 for Wikipedia). For Loan, which places more weight on structural similarity,
the optimal 𝑞 for Loan is relatively large; when 𝑞 < 0.3, precision, recall and F1 score increase as 𝑞
becomes larger; when 𝑞 > 0.3, all metrics decrease as 𝑞 increases.
For 𝑄2, LEMON achieves relatively satisfying results on both the connectivity based datasets

and structural similarity based datasets, suggesting that our proposed model can simultaneously
and uniformly leverage connectivity and structural similarity information by adjusting parameter
𝑞. In conclusion, LEMON performs well in various downstream tasks.

Generally, for datasets that value connectivity, 𝑞 ought to be set relatively small and optimized
in a small range; while we ought to set a larger 𝑞 for datasets that pay more attention to structural
similarity. In real-world scenarios, an empirical formula of determining the value parameter of 𝑞
is required. As illustrated in above analysis, some datasets values connectivity while others pay
attention to structural similarity. First, we use 𝑝 to denote the ratio of edges connecting the same
4As Meta-GNN trains a GNN through semi-supervised learning instead of expressing embeddings through unsupervised
learning. The framework of applying Meta-GNN method to link prediction task is quite different from other modes; hence,
for fairness, it is not utilized as the baseline of link prediction task.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Ping Shao, Yang Yang∗, Shengyao Xu, and Chunping Wang

0.0 0.2 0.4 0.6 0.8
0.00

0.25

0.50

0.75

Sc
or

es

Mobile

Accuracy
Precision
Recall
F1

0.0 0.2 0.4 0.6
0.00

0.25

0.50

0.75

1.00
Loan

Accuracy
Precision
Recall
F1

0.0 0.2 0.4 0.6 0.8

0.4

0.6

0.8
Wikipedia

Micro-F1

0.0 0.2 0.4 0.6 0.8
0.6

0.7

0.8

0.9
Cora

Micro-F1

0.0 0.2 0.4 0.6 0.8

0.5

0.6

0.7

0.8
Citeseer

Micro-F1

0.0 0.2 0.4 0.6 0.8
0.70

0.75

0.80

0.85

AMiner
Accuracy

Fig. 6. Parameter sensitivity analysis for different datasets (x axis indicates 𝑞).

2 4 6 8 10 12

Normalized Ratio
y = -0.0426 x + 0.4634

0.2

0.0

0.2

0.4

0.6

0.8

O
pt

im
al

 q
 v

al
ue

CoraCiteseer

Loan

Mobile

Wiki

Fig. 7. Empirical formula of the optimal value of parameter 𝑞.

category vertices among all edges, then propose normalized 𝑝 =
𝑝

𝑝𝑟
, where 𝑝𝑟 indicates the ratio

𝑝 under random circumstances. The larger 𝑝𝑟 , the more dataset values connectivity instead of
structural similarity. We learned an empirical formula:

𝑞 = −0.0426𝑝 + 0.4634 (6)

as the regression line shown in Figure 7, which represent the linear relationship between the
normalized ratio 𝑝 and optimal 𝑞 value. To validate the effectiveness of this formula, we repeat
experiments on Cora, Citeseer, Wiki, Mobile and Loan with𝑞 that calculated based on above formula.
Table 5 represents the comparison results of LEMON with optimal 𝑞 and empirically calculated 𝑞.
Overall, LEMON(emp) achieves at least comparable performance to the most competitive baseline.
Through this empirical formula, we can quickly determine the value of 𝑞.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Network Embedding via Motifs 1:15

Table 5. Experimental result comparison of LEMON. LEMON(opt) and LEMON(emp) indicates LEMON with
optimal 𝑞 and 𝑞 calculated based on formula 6. Baseline* denotes the most competitive baseline.

Methods Cora Citeseer Wiki Loan Mobile

Acc. Acc. Acc. Micro-F1 Micro-F1

Baseline* 0.849±0.001 0.700±0.001 0.682±0.004 0.222±0.001 0.798±0.001
LEMON(opt) 0.858±0.005 0.704±0.005 0.716±0.005 0.233±0.023 0.620±0.010
LEMON(emp) 0.847±0.004 0.663±0.002 0.643±0.021 0.167±0.004 0.587±0.001

4.5 Case Study
Considering 𝑄3, how do we evaluate the quality of learned motif embeddings? In the Word2Vec
framework [28], the quality of embedding vectors for vertices can be explained using the example
that the vector of the word 𝑏𝑖𝑔 is similar to the vector of the word 𝑏𝑖𝑔𝑔𝑒𝑟 , in the same sense that the
vector of the word 𝑠𝑚𝑎𝑙𝑙 is to the vector of the word 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 [28]. In other words, 𝒗𝒔𝒎𝒂𝒍𝒍𝒆𝒓−𝒗𝒔𝒎𝒂𝒍𝒍 =

𝒗𝒃𝒊𝒈𝒈𝒆𝒓−𝒗𝒃𝒊𝒈 , where 𝒗𝒔𝒎𝒂𝒍𝒍𝒆𝒓 , 𝒗𝒔𝒎𝒂𝒍𝒍 , 𝒗𝒃𝒊𝒈𝒈𝒆𝒓 , 𝒗𝒃𝒊𝒈 indicates representation vector of word 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 ,
𝑠𝑚𝑎𝑙𝑙 , 𝑏𝑖𝑔𝑔𝑒𝑟 and 𝑏𝑖𝑔 respectively.

Transferring this idea to motifs, and taking motifs as words, we calculate 𝑿 = 𝒗𝑴2 − 𝒗𝑴1 + 𝒗𝑴4

where𝑀1 (),𝑀2 (),𝑀4 (),𝑀6 () are four types of motifs. We then search in the vector
space and find the closest embedding vector of motifs by Euclidean distance, Cosine similarity and
Pearson similarity respectively.

Delightfully, we find that the embedding vector 𝒗𝑴6 for () is the closest embedding vector to
𝑋 , which fit the commonsense interpretation (adding one edge from the center vertex from𝑀1 we
get𝑀4 and adding one edge from the center vertex from𝑀2 we get𝑀6; both𝑀2 and𝑀6 contain a
closed triangle pattern, while𝑀1 and𝑀4 contain open 2-star pattern). The embedding vectors of
other structurally similar motif pairs are also close in hidden space.
To verify whether the embedding vectors of structurally similar motifs are also close together

in latent space, we also calculate the closest motifs for each motif; results are shown in Table 6.
From this, we can perceive some interesting phenomena: 1) The closest motif to the most complex
motif𝑀8 () is𝑀7 (), with only one edge missing from𝑀8. 2) The closest motif to the simplest
motif 𝑀0 () is 𝑀1 (), with only one more edge from 𝑀0 under Euclidean distance, Cosine
similarity and Pearson similarity respectively. 3) For the 2-star motif𝑀1 (), the three closest
motifs are𝑀3 (),𝑀4 () and𝑀0 (). From the structural perspective,𝑀0,𝑀3 and𝑀4 are very
close to𝑀1: adding an edge at the non-centered vertex of (), we get (); adding an edge at the
centered vertex of (), we get (); removing an edge of (), we get (). These above analyses
suggest that the learned embedding vectors of various motifs encode structural information into
low-dimensional vectors.

4.6 Inductive Learning Experiment
We adopt Mobile dataset, a dynamic network, to perform the inductive learning experiment. We
consider the vertices and edges that appear in the first 80% of time to form a known network that
contains 4716 vertices, 227625 edges, while the follow-up unseen data contains 283 vertices and
485 edges.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Ping Shao, Yang Yang∗, Shengyao Xu, and Chunping Wang

Table 6. Closest motifs in the latent space under different similarity calculation method.

Motifs Eucli-dis Cosine-sim Pearson-sim

Table 7. Experimental results of inductive learning task.

Methods F1 Time(sec)

Incremental SVD 0.172±0.001 0.245
GraphSAGE 0.219±0.016 1.099

LEMON 0.3190.3190.319 ± 0.0300.0300.030∗ 0.900

The known network is fed into our proposed model and baseline models (GraphSAGE and
Incremental SVD [8]), and vertices embeddings are obtained. We then split these embeddings
vectors as training and validation set to train the classifier. Follow-up vertices and edges are
added into the network; the model generates embeddings for these unseen vertices, which are
fed into classifier as the testing set. From Table 7, we can see that in the inductive learning
scenario, LEMON outperforms Incremental SVD [8] and GraphSAGE effectively, as our model
achieves an improvement of 45.7% and 85.5% in terms of F1 score relative to GraphSAGE and
Incremental SVD. GraphSAGE obtains representations for unseen vertices by aggregating features
from their neighbors. Thus, it is not suitable for detecting anomalies. The results of the inductive
learning experiment also suggest that the learned embedding vectors of motifs contain rich network
information.

4.7 Complexity Analysis
Given a network 𝐺 , We firstly extract motifs for vertices in𝐺 and then adopt motif-step random
walk to collect corpus in order to learn embedding vectors for vertices and motifs. The running
time for both parts are listed in Figure 8. The time complexity of Orca is 𝑂 (𝑘 · |𝐸 | +𝑇4), where
𝑘 denote the maximum node degree and 𝑇4 denotes the time needed to enumerate (). LEMON
adopts hierarchical softmax based on Huffman coding, therefore the time complexity for learning
embedding part is 𝑂 (|𝑉 | · 𝑙𝑜𝑔 |𝑉 | + 𝑛 · 𝑙), where |𝐸 |, |𝑉 | indicates the number of edges and vertices
respectively, 𝑛 indicates the number of random walks and 𝑙 indicates the length of random walks.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Network Embedding via Motifs 1:17

Loan Cora Citeseer AMiner
10 2

10 1

100

101

102

103

104

R
un

ni
ng

 T
im

e(
se

c)

41× 107× 123×

182×

Embedding
Motif Extraction

Fig. 8. Execution time analysis (seconds) for counting motif extraction and learning embedding vectors for
vertices and motifs of different networks.

5 RELATEDWORK
In the interests of clarity, related work of this paper is mainly divided into two parts: representation
learning and motif related works.

Representation learning. Network embedding is a crucial area that has attracted significant
research attention over the past couple of decades. Early works can be traced back to these traditional
models based on the matrix factorization perspective [3, 31, 48]. However, apart from sparse matrix
factorization methods [58], due to the large computational cost of decomposing a large-scale matrix,
along with its statistical performance drawback [17], these models inevitably encounter limitations
in both efficiency and effectiveness.

In the literature of network embedding studies, randomwalk based models play an important role,
such as DeepWalk [32] preserve the connectivity information between a vertex and its neighbors.
Node2vec [17] further develops this idea by designing a biased random walk strategy to capture
diverse neighborhood patterns; LINE [43] captures local and global structures through first-order
and second-order proximity; DPWalker [15] learns representations for scale-free network. Moreover,
GLEE [45] and BoostNE [24] also learn representation of nodes based on connectivity properties of
nodes. One of the representative structural similarity based works: struc2vec [35], uses the degree
of vertices as the basis measure of structural vertex-similarity. In addition, metapath2vec [13]
and hin2vec [16] use meta-path random walk to generate contexts for heterogeneous networks.
There are some existing works that take multi-similarities into consideration, such as VERSE [46]
(community structure, roles and structural equivalence); RUM [57] (local triads, neighborhood
relationships and global community proximity). RolX [19] discovers structural roles for vertices and
use non-negative matrix factorization to generate embedding. Meanwhile, Graphwave [14] treats
the spectral graph wavelet signatures of structurally similar vertices as probability distribution.
Moreover, NEU [52] enhance the performance of network embedding methods via approximating
higher-order proximities.

Motif related network embedding. There are some pioneering works that learn embeddings
based on motifs are outlined below: MCN [23] proposes a motif-based attention model which lever-
ages higher-order neighborhoods using multi-hop motif adjacency matrices. Motif-CNN [41] em-
ploys an attentionmodel to effectively capture high-order structural pattern information; [11, 38, 59]

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Ping Shao, Yang Yang∗, Shengyao Xu, and Chunping Wang

adopt motif-based adjacency matrices, while Nest [51] utilizes motif filtering and convolutional neu-
ral networks to capture structures. OFFER [56] improves the effectiveness of graph representation
learning via refining the adjacency matrix and transition probability matrix based on motif degree
of nodes and motif degree of edges respectively. There are some works utilize motif to capture
higher-order structures in the network and conduct link prediction tasks effectively, i.e. [1, 47].
HONEM [40] incorporates non-Markovian higher-order dependencies during learning embeddings
of the networks besides pairwise interactions. SNS [25] combines neighbor information and local-
subgraphs similarity together to enhance the quality of embeddings. Sub2Vec [2] utilizes random
walk and word2vec framework proposes a scalable embedding method based on two intuitive
properties of subgraphs. Subrank [7] introduces a subgraph to subgraph proximity measure and
computing subgraph embeddings based on personalized PageRank.

6 CONCLUSION
In this paper, we propose a novel representation learning framework, LEMON, bridging connectivity
and structural similarity in a universal form via motifs and LEMON is able to effectively learn
representations for both vertices and motifs, which enables LEMON to deal with inductive tasks.
Experimental results show that LEMON outperforms state-of-the-art algorithms on two real-world
datasets and five public datasets for four different tasks.
Acknowledgments. This work is supported by the National Key Research and Development
Project of China (2018AAA0101900) and a research funding from Tongdun Technology.

REFERENCES
[1] Ghadeer Abuoda, Gianmarco De Francisci Morales, and Ashraf Aboulnaga. 2019. Link Prediction via Higher-Order

Motif Features. In Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2019,
Vol. 11906. Springer, 412–429.

[2] Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. 2018. Sub2vec: Feature learning for subgraphs.
In PAKDD, Vol. 10938. Springer, 170–182.

[3] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and Alexander J Smola. 2013. Distributed
large-scale natural graph factorization. In WWW. ACM, 37–48.

[4] Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, and Nick Duffield. 2015. Efficient graphlet counting for large
networks. In ICDM. IEEE, 1–10.

[5] Nesreen K Ahmed, Ryan A Rossi, John Boaz Lee, Theodore L Willke, Rong Zhou, Xiangnan Kong, and Hoda Eldardiry.
2019. role2vec: Role-based network embeddings. In Proc. DLG KDD. 1–7.

[6] Nesreen K Ahmed, Theodore L Willke, and Ryan A Rossi. 2016. Estimation of local subgraph counts. In ICBD. IEEE,
586–595.

[7] Oana Balalau and Sagar Goyal. 2020. SubRank: Subgraph Embeddings via a Subgraph Proximity Measure. In PAKDD,
Vol. 12084. Springer, 487–498.

[8] Matthew Brand. 2006. Fast low-rank modifications of the thin singular value decomposition. Linear Algebra and Its
Applications (2006).

[9] Bobby-Joe Breitkreutz, Chris Stark, Teresa Reguly, Lorrie Boucher, Ashton Breitkreutz, Michael Livstone, Rose Oughtred,
Daniel H Lackner, Jürg Bähler, Valerie Wood, et al. 2007. The BioGRID interaction database: 2008 update. Nucleic acids
research 36, suppl_1 (2007), 637–640.

[10] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro Panconesi. 2018. Motif counting
beyond five nodes. TKDD 12, 4 (2018), 48:1–48:25.

[11] Manoj Reddy Dareddy, Mahashweta Das, and Hao Yang. 2019. motif2vec: Motif aware node representation learning
for heterogeneous networks. In ICBD. IEEE, 1052–1059.

[12] Vachik S Dave, Nesreen K Ahmed, and Mohammad Al Hasan. 2017. E-CLoG: counting edge-centric local graphlets. In
ICBD. IEEE, 586–595.

[13] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec: Scalable representation learning for
heterogeneous networks. In SIGKDD. ACM, 135–144.

[14] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. 2018. Learning structural node embeddings via
diffusion wavelets. In SIGKDD. ACM, 1320–1329.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Network Embedding via Motifs 1:19

[15] Rui Feng, Yang Yang, Wenjie Hu, Fei Wu, and Yueting Zhang. 2018. Representation learning for scale-free networks.
In AAAI, Vol. 32.

[16] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. Hin2vec: Explore meta-paths in heterogeneous information
networks for representation learning. In CIKM. ACM, 1797–1806.

[17] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In SIGKDD. ACM, 855–864.
[18] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In NeurIPS.

1024–1034.
[19] Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato Basu, Leman Akoglu, Danai Koutra,

Christos Faloutsos, and Lei Li. 2012. Rolx: structural role extraction & mining in large graphs. In SIGKDD. ACM,
1231–1239.

[20] Tomaž Hočevar and Janez Demšar. 2014. A combinatorial approach to graphlet counting. Bioinformatics 30, 4 (2014),
559–565.

[21] Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. 2004. Efficient sampling algorithm for estimating subgraph
concentrations and detecting network motifs. Bioinformatics (2004), 1746–1758.

[22] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm:
A highly efficient gradient boosting decision tree. In NeurIPS.

[23] John Boaz Lee, Ryan A Rossi, Xiangnan Kong, Sungchul Kim, Eunyee Koh, and Anup Rao. 2019. Graph convolutional
networks with motif-based attention. In CIKM. ACM, 499–508.

[24] Jundong Li, Liang Wu, Ruocheng Guo, Chenghao Liu, and Huan Liu. 2019. Multi-level network embedding with
boosted low-rank matrix approximation. In ASONAM. 49–56.

[25] Tianshu Lyu, Yuan Zhang, and Yan Zhang. 2017. Enhancing the network embedding quality with structural similarity.
In CIKM. ACM, 147–156.

[26] Matt Mahoney. 2011. Large text compression benchmark. URL: http://www.mattmahoney.net/dc/textdata (2011).
[27] Dror Marcus and Yuval Shavitt. 2012. Rage–a rapid graphlet enumerator for large networks. Computer Networks

(2012), 810–819.
[28] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector

space. In ICLR.
[29] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon. 2002. Network motifs:

Simple building blocks of complex networks. Science (2002).
[30] Hoang Nguyen and Tsuyoshi Murata. 2017. Motif-aware graph embeddings. In IJCAI.
[31] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asymmetric transitivity preserving graph

embedding. In SIGKDD. ACM, 1105–1114.
[32] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning of social representations. In SIGKDD.

ACM, 701–710.
[33] Ali Pinar, C Seshadhri, and Vaidyanathan Vishal. 2017. Escape: Efficiently counting all 5-vertex subgraphs. In WWW.

1431–1440.
[34] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018. Network embedding as matrix

factorization: Unifying deepwalk, line, pte, and node2vec. InWSDM. ACM, 459–467.
[35] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec: Learning node representations

from structural identity. In SIGKDD. ACM, 385–394.
[36] Pedro Ribeiro, Pedro Paredes, Miguel EP Silva, David Aparicio, and Fernando Silva. 2021. A Survey on Subgraph

Counting: Concepts, Algorithms, and Applications to Network Motifs and Graphlets. ACM Computing Surveys (CSUR)
54, 2 (2021), 1–36.

[37] Ryan Rossi and Nesreen Ahmed. 2015. The network data repository with interactive graph analytics and visualization.
In AAAI. 4292–4293.

[38] Ryan A Rossi, Nesreen K Ahmed, and Eunyee Koh. 2018. Higher-order network representation learning. InWWW.
3–4.

[39] Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, Sungchul Kim, Anup Rao, and Yasin Abbasi Yadkori. 2018. HONE:
higher-order network embeddings. arXiv preprint arXiv:1801.09303.

[40] Mandana Saebi, Giovanni Luca Ciampaglia, Lance M Kaplan, and Nitesh V Chawla. 2020. HONEM: learning embedding
for higher order networks. Big Data 8, 4 (2020), 255–269.

[41] Aravind Sankar, Xinyang Zhang, and Kevin Chen-Chuan Chang. 2017. Motif-based convolutional neural network on
graphs. arXiv preprint arXiv:1711.05697 (2017).

[42] Aravind Sankar, Xinyang Zhang, and Kevin Chen-Chuan Chang. 2019. Meta-GNN: Metagraph Neural Network for
Semi-supervised learning in Attributed Heterogeneous Information Networks. ASONAM. IEEE (2019), 137–144.

[43] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015. Line: Large-scale information
network embedding. InWWW. 1067–1077.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Ping Shao, Yang Yang∗, Shengyao Xu, and Chunping Wang

[44] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnetminer: extraction and mining of
academic social networks. In SIGKDD. ACM, 990–998.

[45] Leo Torres, Kevin S Chan, and Tina Eliassi-Rad. 2020. GLEE: Geometric Laplacian Eigenmap Embedding. Journal of
Complex Networks 8, 2 (2020).

[46] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. 2018. Verse: Versatile graph embeddings
from similarity measures. InWWW. 539–548.

[47] Lei Wang, Jing Ren, Bo Xu, Jianxin Li, Wei Luo, and Feng Xia. 2020. MODEL: Motif-Based Deep Feature Learning for
Link Prediction. IEEE Transactions on Computational Social Systems 7, 2 (2020), 503–516.

[48] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017. Community preserving network
embedding. In AAAI. 203–209.

[49] Sebastian Wernicke and Florian Rasche. 2006. FANMOD: A tool for fast network motif detection. Bioinformatics (2006),
1152–1153.

[50] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. 2020. A comprehensive
survey on graph neural networks. IEEE transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[51] Carl Yang, Mengxiong Liu, Vincent W Zheng, and Jiawei Han. 2018. Node, motif and subgraph: Leveraging network
functional blocks through structural convolution. In ASONAM. IEEE, 47–52.

[52] Cheng Yang, Maosong Sun, Zhiyuan Liu, and Cunchao Tu. 2017. Fast network embedding enhancement via high order
proximity approximation.. In IJCAI. 3894–3900.

[53] Yang Yang, Yuhong Xu, Chunping Wang, Yizhou Sun, Fei Wu, Yueting Zhuang, and Ming Gu. 2019. Understanding
Default Behavior in Online Lending. In CIKM. 2043–2052.

[54] Hao Yin, Austin R Benson, and Jure Leskovec. 2018. Higher-order clustering in networks. Physical Review E 97, 5
(2018), 052306.

[55] Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. 2017. Local Higher-Order Graph Clustering. In SIGKDD.
ACM, 555–564.

[56] Shuo Yu, Feng Xia, Jin Xu, Zhikui Chen, and Ivan Lee. 2020. OFFER: A Motif Dimensional Framework for Network
Representation Learning. In CIKM. 3349–3352.

[57] Yanlei Yu, Zhiwu Lu, Jiajun Liu, Guoping Zhao, and Ji-rong Wen. 2019. Rum: Network representation learning using
motifs. In ICDE. IEEE, 1382–1393.

[58] Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. 2019. ProNE: Fast and Scalable Network Representation
Learning. In IJCAI, Vol. 19. 4278–4284.

[59] Huan Zhao, Yingqi Zhou, Yangqiu Song, and Dik Lun Lee. 2019. Motif enhanced recommendation over heterogeneous
information network. In CIKM.

[60] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic network embedding by modeling
triadic closure process. In AAAI. 571–578.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

