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ABSTRACT
Microcredit, very small loans given out without any collaterals, is
a new form of financial instrument that serves the segment of pop-
ulation that are typically underserved by traditional financial ser-
vices. When microcredit takes the form of lending over the inter-
net, it has the advantage of easy online application process and
fast funding for borrowers, as well as attractive rate of return for
individual lenders. For platforms that facilitate such activities, the
key challenge lies in risk management, i.e. adequately pricing each
loan’s risk so as to balance borrowers’ lending cost and lenders’
risk-adjusted return. In fact, identifying default borrowers is of
critical importance for the ecosystem. Traditionally, credit risk de-
pends heavily on borrowers’ historical loan records. However,most
borrowers do not have any bureau history, and therefore cannot
provide sufficient loan records.

In this paper, we study default prediction in online lending by
using social behavior. Specifically, we based our work on a dataset
provided by PPDai, one of the leading platforms in China. Our
dataset consists of over 11 million users and more than 1.5 billion
call logs between them.We establish a mobile network and explore
social factors that predict borrowers’ default. Based on this, we
focused on cheating agents, who recruit and teach borrowers to
cheat by providing false information and faking application mate-
rials. Cheating agents represent a type of default, especially detri-
mental to the system. We propose a novel probabilistic framework
to identify default borrowers and cheating agents simultaneously.
Experimental results on production dataset demonstrate signifi-
cant improvement over several baseline methods. Moreover, our
model can effectively identify cheating agents without any labels.
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1 INTRODUCTION
“Even the poorest of the poor can work to bring about their own
development.” With this vision, microcredit was invented as very
small loans to those borrowers, who typically lack collaterals or
verifiable credit history and thus are highly likely to be rejected by
traditional financial service providers. In recent years, microcredit
has grown through the form of lending over the internet, a type of
funding platform that matches borrowers with lenders, by passing
an intermediary financial institution (e.g. bank).

Many such platforms have acquired massive number of users,
such as PPDai1, Zopa2, Prosper3, and LendingClub4.

For example, PPDai, the first and one of the largest online lend-
ing platforms in China, has attracted more than 57 million users
and funded over $11 billion loans by the end of September 2017.

Proper risk management lays the foundation for the health of
any financial instruments. In online lending, one of the key chal-
lenges is to identify default borrowers. Traditional risk manage-
ment relies heavily on borrowers’ historical loan records [4, 7, 16,
17, 29]. However, a large portion of borrowers lack such informa-
tion. Furthermore, as Figure 1 shows, over 40% of borrowers who
have applied for at least one loan through PPDai have only one
loan record. Meanwhile, around 61% of defaults happen at borrow-
ers’ first application.

Inspired by the study that default behavior influences users with
social relations [8], in this work, we attempt to identify default bor-
rowers by using their social behavior information. In particular,
most online lending platforms in China require borrowers to pro-
vide call logs (only meta-data, no communication context) when
they apply for a loan. We thereby construct a social communica-
tion network based on these logs, and study different social char-
acteristics and their implications to default borrowers.

1http://www.ppdai.com/
2http://www.zopa.com/
3https://www.prosper.com/landing
4https://www.lendingclub.com/
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Figure 1: Distribution of number of loan requests raised by
default borrowers or normal users.

Identifying default borrowers based on social network is non-
trivial. First of all, a user’s social information is not intuitively cor-
related with his credit risk behavior. Discovering those hidden cor-
relation and design effective machine learning models that utilize
them is challenging. Secondly, through our study, we find a special
type of users that do not default, but shall be responsible for many
of default loans. We call these users as cheating agents, who bene-
fit from inciting other users to cheat, providing false information,
and faking personal information. We also find that many default
borrowers will communicate with cheating agents, and vice versa.
Thus the information of cheating agents could help in our task. Un-
fortunately, the ground truth data (i.e., label) of cheating agents are
extremely hard to obtain as theywill not default themselves.There-
fore, identifying cheating agents without supervised information
is a big challenge. Last but not least, users generate vast quantities
of call logs everyday. How to efficiently process these data is our
third challenge.

To address the first challenge, we conduct several exploratory
analysis based on a dataset provided by PPDai, which consists of
over 1.5 billion call logs between more than 10 million users.

For example, we find that default borrowers tend to be more ac-
tive in the network within the last week before applying for a loan.
We also find that default borrowers connect with more cheating
agents, and vice versa.

Based on our observations, we propose a novel probabilistic
framework, dual-task factor graph. Generally, our model is semi-
supervised and aims to identify default borrowers and cheating
agents in a uniform framework. We build connections between
these two roles of users, provide indirect supervised information
for cheating agents from default borrowers’ labels, and thereby
handle the second challenge mentioned above. We also design an
efficient approximate learning algorithm to handle large-scale data
and train the model.

Experimental results show that our model outperforms several
state-of-the-art baseline methods.

Furthermore, we demonstrate that ourmodel can also effectively
identify cheating agents, without any supervised information. We
summarize our contributions as follows:
• Based on a large-scale dataset, we discover different character-

istics of default borrowers, cheating agents, and normal users.
• Wepropose a novel semi-supervised framework to jointlymodel

default borrowers and cheating agents.
• We construct sufficient experiments to validate the effectiveness

of our model.

2 DATA AND PROBLEM
2.1 Dataset
Our dataset is provided by PPDai, one of the leading online con-
sumer finance marketplaces in China, spanning June 2015 to May
2017. It consists of three types of data: user call logs, user attributes,
and loan records (only used for labeling defaults) during that time.

More specifically, we have 1,563,368,539 telephone calls between
11,724,980 PPDai registered users. Each call log contains starting
time, ending time, and masked user identity of caller and callee.
For user attributes, we have each user’s age, gender and educa-
tional level (desensitized). Due to privacy concerns, we only report
overall statistics without revealing any identifiable information of
individuals in this paper. A user may have multiple records of loan
history which depends on the number of successful loans. Each
record can be further composed of loan time, loan amount and re-
payment time. The loan history is used only to label default iden-
tity. More specifically, we define a user who has 90 days overdue
repayment as default borrower. In this way, among 3,900,906 users
who have at least one record of loan history, we obtain 297,001 de-
fault borrowers in total.

2.2 Problem Definition
We extract a mobile communication network G from call logs in
our dataset. Formally, a mobile communication network is a di-
rected graph G = (V ,B,E), where V is the set of users, B is an
attribute matrix with each element bi j denoting the j-th attribute
(e.g., age) of the user vi , and each directed edge ei j ∈ E indicates
that the user vi calls the user vj at least once (vi ,vj ∈ V ). Exiting
work has concluded that the mobile network can roughly approx-
imate one’s social network [10, 31, 32].

According to their historical loan records, we define an identity
label yi for each user vi inG. For those who have defaulted a loan
more than 90 days at least once, we define yi = 1; for others who
have loan history and never default a loan more than 90 days, we
define their corresponding yi = 0; for the remaining who have
no loan history at all, we define an unknown identity label yi =?,
as we do not know if she will cheat yet. We then formulate our
problem below.

Definition 1. Default borrower prediction. Given a user vi
who has no loan history (i.e., yi =?), a time t , and a mobile commu-
nication network G = (V ,B,E) extracted from all call logs before
time t , and the identity vector Y , our goal is to predict, once the user
vi applies for a loan at time t , whether she will default more than 90
days.

Notice that our problem is different from existingwork [24][9] [7]
as we mainly consider the social network information and do not
employ the historical loan records for the prediction task.

3 EXPLORATORY ANALYSIS
We categorize users in our dataset into three groups, which con-
stitutes the basis for our analysis framework. We refer to users
that default a loan for more than 90 days as default borrowers, or
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Figure 2: User attributes (education and age) of default bor-
rowers and normal users.
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Figure 3: Calling behavior of default borrowers and normal
users one week before applying for a loan.

defaults in short 5. People who benefit from encouraging and as-
sisting other users to cheat by providing false information, faking
application documents, eliminating uncredited records for default
borrowers, etc., are referred to as cheating agents. In other words,
cheating agents will influence some borrowers to become defaults.
By our study, very few cheating agents themselves are defaults,
to keep a low profile. The rest of the users who have applied at
least one loan and kept paying their debts are normal users. In sum-
mary, we have 297,001 default borrowers, 12,985 cheating agents,
and 3,603,905 normal users in our dataset. Our goal in this section
is to explore the characteristics that differentiate defaults, cheating
agents, and normal users.

3.1 Distinguishing Defaults from Normal Users

User attributes. We use the education level and user age as two
examples to demonstrate how basic user attributes affect their de-
fault behavior (Figure 2). From Figure 2(a), we see that nearly 45.7%
of PPDai users possess at least a junior college degree, while other
users who are educated at most high school are more likely to be a
default borrower. Meanwhile, as Figure 2(b) shows, the probability
of a user being default increases as the user age grows.

Calling behavior. Comparing with normal users, default borrow-
ers contact their friends more frequently in the last week before
applying for a loan. This phenomenon is consistently reflected on
both the number of new contacts the user has (Figure 3(a)) and the

5We choose 90 days as to be consistent with PPDai’s definition to default borrowers,
used in their online operations.

number of calls made by the user (Figure 3(b)). It suggests that the
network structure of default borrowers will vary more.

Social network. A person’s mobile network can reasonably ap-
proximate her social network. A user’s degree measures the num-
ber of other users she has called at least once. Degree and PageR-
ank [20], a common metric of vertex importance, reflect the in-
volvement of a user in her social network. Default borrowers present
larger degree and higher PageRank score than normal users, shown
in Figure 4(a) and Figure 4(b). Users with larger degree and higher
importance are more likely to be a default borrower.

Furthermore, we define the default traffic of a vertex v as the
maximal number of default neighbors v’s neighbors have. It re-
flects howmuch information between defaults can be diffused through
v . As expected, from Figure 4(d), default borrowers have larger de-
fault traffic than normal users. The probability of a user being a
default borrower increases as her default traffic grows.

Interestingly, as Figure 4(c) shows, compared with normal users,
default borrowers have a larger proportion of default second-degree-
neighbors. Through some careful investigation, we find this result
is caused by some abnormal vertexes, which bridge many default
borrowers. Our next question is, who are these “abnormal bridges”?

3.2 Study of Cheating Agents

Existence. To further confirm the existence of “abnormal bridges”,
we create a null model based on the assumption that any vertex in
the mobile network uniformly connects to a default borrower or a
normal user. We then compare how the number of default neigh-
bors distributes in null model and in real data. Figure 5(a) shows a
clear difference. Overall, compared with the null model, real-world
network contains more vertexes connected with defaults.

By several case studies and interviews with business people of
PPDai, we conclude that the above “abnormal bridges” are actu-
ally cheating agents, who connect with a lot default borrowers and
benefit from providing false information, faking application docu-
ments, eliminating uncredited records, and so on.

Identify cheating agents. We then explore factors that can help
us identify cheating agents from the mobile network. Intuitively,
cheating agents make calls to a more diverse population. Taking
user age as an example to measure the population diversity, we
validate the variance of the age distribution of a particular user’s
neighbors. As Figure 5(b) shows,we see contacts of cheating agents
have a larger variance. Moreover, the entropy of the number of
phone calls over different neighbors tends to be larger for cheat-
ing agents, shown in Figure 5(c).

Connection between agents and defaults. Intuitively, users
who connect with more cheating agents tend to default on their
loans. On the other hand, users who have lots default neighbors are
more likely to be cheating agents. We examine this in Figure 5(d),
which shows that the probability of a user being default borrower
increases as the number of her neighbors being cheating agents
grows, and vice versa. This result also further confirms that the
previously observed “abnormal bridges” are cheating agents. One
thing worth to mention is that, default borrowers and cheating
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(d) Default traffic.

Figure 4: Distinguishing social-network characteristics between default borrowers and normal users. Figure 4(a) presents the
degree distribution of default borrowers and normal users, and the probability of a user being as a default borrower changes
over her degree. Figure 4(b) and (c) are the comparison results of PageRank and the number of second-degree neighbors as
defaults. Figure 4(d) shows the correlation between default traffic and default probability. We define the default traffic of a
vertex as the maximal number of default neighbors among this vertex’s neighbors.
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Figure 5: They study of cheating agents. Figure 5(a) examines the existence of cheating agents by constructing a null model.
Figure 5(b) and (c) present features that can help to identify cheating agents. Figure 5(d) shows the correlation between cheating
agents and default borrowers.

agents may overlap in theory (i.e., some cheating agents will de-
fault loans by themselves). However, our data show that there is
nearly no such case.

4 MODEL FORMULATION
4.1 Model Description

Overview. We develop a probabilistic model, Dual-Task Factor
Graph (DTF), to jointly identify default borrowers, normal users,
and cheating agents in a given mobile network. In general, the
model itself can be thought of a factor graph over four types of
random variables, which are introduced as follows:

• Identity of default borrowers. We define Y as a set of binary ran-
dom variables to indicate whether a particular user is a default
borrower or not. We denote identities that has been known as
Y L and unknown identities as YU .

• Identity of cheating agents. Similarly, we define Z as a set of
binary random variables to indicate whether a particular user is
a cheating agent or not. To be mentioned, as obtaining identities
of cheating agents is hard, we put this part in an unsupervised
setting and assume all elements in Z are unknown and need to
be inferred.

• Default borrower features. Inspired by Section 3, we define ran-
dom variableX to indicate user features extracted from personal
attributes, calling behavior, and social network structure of users.
We expect that a uservi ’s featureXi has correlation with her de-
fault borrower identity Yi . We list details of how we define each
feature in Table 1.

• Cheating agent features. Similarly, we define random variable
X̃ to represent another set of user features that are correlated
with identify of cheating agents. These features in X̃ are mainly
defined based on the mobile network. Please see Table 2 for de-
tails.

Generally, our goal is to model the joint probability of (Y ,Z)
conditioned on the observed user features (X , X̃ ), i.e., P(Y ,Z |X , X̃ ).
Factor graph provides us a way to factorize the “global” probabil-
ity as a product of “local” factor functions [15], each presents the
correlation between a particular set of random variables. This fac-
torization makes the computation of the joint probability easy.The
remaining key issue here is how to define each factors (i.e., the cor-
relation between random variables).

Factors. According to previous analysis in Section 3, a user vi ’s
default borrower features xi can reveal her default identity yi to



Figure 6: Graphical representation of our proposed model.
Generally, it captures the connections between default bor-
rowers and cheating agents.

some extent. Formally, we define factors ΨF to model the correla-
tion between X and Y as

ΨF
i (xi ,yi ) = κ1 exp(αyixi ) (1)

where αi is the model parameter as a |xi |-length vector, and κ1 is
a normalization term to ensure that the sum of factor equal to 1.

Similarly, we also observe that user vi ’s cheating agent identity
can be reflected by her network structure. In particular, we define
the factorΨA to represent the correlation between X̃ andZ , which
is instantiated as the following function:

ΨA
i (x̃i , zi ) = κ2 exp(βzi x̃i ) (2)

where βi is a |x̃i |-length vector with model parameters, and κ2 is
the normalization term.

From previous observation, we find that default borrower iden-
tity and cheating agent identity are correlated: users with more de-
fault neighbors are more likely to be cheating agents, and default
borrowers have more cheating agents as their neighbors. Inspired
by this phenomenon, we define factor ΨE to indicate the above
correlation between Y and Z . More specifically, for each user pair
vi and vj with an edge in the given mobile network G, we define
a factor as follows:

ΨE
i j (yi , zj ) =

[
γ00 γ10
γ10 γ11

]
(3)

where γkl captures the adaptability between y = k and z = l . In-
tuitively, this factor bridges two otherwise disjoint model compo-
nents that identify default borrowers and cheating agents respec-
tively, and leads them to enhance the performance of each other.

Figure 6 presents the graphical presentation of our model. So far,
we have defined three types of factors, i.e.,ΨF ,ΨA andΨE , based
on the insights obtained from our analysis in Section 3. By inte-
grating all the factors together and according to the Hammersley-
Clifford theorem [12], we obtain the following likelihood of a par-
ticular identity assignment:

Pr(Y ,Z |X , X̃ ;θ) =

∏
i Ψ

F
i (xi ,yi )

∏
j Ψ

A
j (x̃ j ,zj )

∏
i, j Ψ

E
i j (yi ,zj )

Z(X ,X̃ )
(4)

where Z(X , X̃ ) is the partition function to ensure the sum of prob-
ability equal to 1, which takes the form as:

Z(X , X̃ ) =
∑
Y ,Z

∏
i

ΨF
i (xi ,yi )

∏
j
ΨA
j (x̃ j , zj )

∏
i, j

ΨE
i j (yi , zj ) (5)

4.2 Model Inference and Learning

Inference. Suppose thatC denotes all the random variables in our
graph (i.e.C = Y ∪Z ), one of the most typical inference problems
are to predict the label (i.e. c∗ = arдmaxc Pr(c)) given the mobile
networkG and user features. For discrete variables, the marginals
could be computed by brute-force summation, but the time com-
plexity is exponential. Another challenge here is that the graphi-
cal structure of our model may be arbitrary and contain cycles. To
solve these issues, we adopt an approximate algorithm Loopy Belief
Propagation (LBP) [19].

mas (cs ) =
∑
ca\cs

Ψa(ca)
∏
t ∈a\s

mta(ct ) (6)

msa(cs ) =
∏

b ∈N (s)\a
mbs (cs ) (7)

The intuition behind LBP is that each of the neighboring factors
of a given random variable would make a contribution (i.e. mes-
sage) to its marginal, these messages can be iteratively updated by
a propagation algorithm as shown in Equation 6 and Equation 7,
where N (s) denotes the adjacent factors of Cs , mas denotes the
message from factor Ψa to variable Cs andmsa denotes the mes-
sage in a reverse order. The approximate marginal Pr(cs ) is pro-
portional to the product of all the incoming messages to variable
Cs :

Pr(cs ) ∝
∏

a∈N (s)

mas (cs ) (8)

Learning. According to the previous definition, the log likelihood
l of our model can be described as follows:

l(θ) = log Pr(Y L |X , X̃ ;θ)

= logZ(Y L ,X , X̃ ) − logZ(X , X̃ )
(9)

We optimize the above objective function to estimate model pa-
rameters {α , β,γ }. Unfortunately, Equation 9 is intractable as it is
difficult for the exact computation of the partition function Z. In
practice, we train the model approximately. By employing Bethe
Approximation [34], the negative log of partition function Z can be
approximated by minimum of Bethe free energy:

OBETHE(q) = −HBETHE(q) −
∑
a

∑
ca

q(ca) logΨa(ca) (10)

whereq is a set of approximatemarginal distributions generated by
LBP, and HBETHE(q) is Helmholtz free energy, which can be written
as follows:



Algorithm 1: Learning algorithm of the proposed model.
Data: A mobile networkG, two fully observed user

attribute matrices X and X̃ , a partially labeled
default borrower identity vector Y , an unlabeled
cheating agent identity vector Z , and the learning
rate λ.

Result: Estimated parameter θ , convergent q, q̂
1 Initialization θ and q, q̂ randomly;
2 while not converge do
3 repeat
4 Perform Equation 6, 7 and 8 in graphical model,

where only X and X̃ are observed;
5 until q converge;
6 repeat
7 Perform Equation 6, 7 and 8 in graphical model,

where X , X̃ , and Y L are observed;
8 until q̂ converge;
9 Calculate ∂l

∂θ by Equation 13;
10 Update θnew = θold + λ ∗ ∂l

∂θ by equation 13;
11 end

HBETHE(q) = −∑
a
∑
ca q(ca) logq(ca) +

∑
i
∑
ci (di − 1)q(ci ) logq(ci )

(11)
LetOBETHE and ÔBETHE represent the Bethe free energy of two graph-

ical models: one excludes the observed values in Y and is only
given by X and X̃ ; and another one regards X , X̃ and Y L as ob-
served. We then further yield the objective function:

l(θ) ≈ l ′(θ ,q, q̂) = min
q

OBETHE(q) −min
q̂

ÔBETHE(q̂) (12)

The parameter learning procedure can be viewed as a coordinate
ascent. More specifically, we run LBP for two graphical models to
get optimal q and q̂ with θ fixed, and then take gradient decent to
partially maximize l ′(θ ,q, q̂), which take the form as

∂l

∂θ
≈ ∂
∂θ

∑
a

∑
ca

(q̂(ca) − q(ca)) logΨa(ca) (13)

See details of our learning procedure in Algorithm 1.
Time complexity It takes O(T |E |) to perform LBP in our algo-
rithm, where |E | is the number of edges in the given mobile net-
work, and T is the number of iterations of LBP. The gradient com-
putation takes O(|E | + |V |), where |V | is the number of variables
in our model. Thus in turn, our model has a time complexity of
O(RT |E |), where R is the number of iterations. Empirically, LBP
converges quickly in our dataset (i.e. T ≈ 8), and R is around 350.

5 EXPERIMENTS
In this section, we present the results from a series of experiments
to evaluate the effectiveness of our proposed method. All the ex-
periment are implemented in Python 2.7.6 on a 1.2GHz Intel Cores
server with 56 CPUs and 396GM RAM, running Ubuntu 14.04.5.

Table 1: List of features correlated with default borrowers
and used in ΨF .

Feature Description
demographics Age and gender of vi .
education level Educational level of vi .
indegree & outdegree The number of vi ’s neighbors that have

made calls to(from) vi .
default degree The number of vi ’s default neighbors

before vi applying to loan.
#2nd-degree neighbors The number of users who have common

neighbor with vi .
#2nd-degree defaults The number of default borrowers who

have common neighbor with vi before
vi applying to loan.

default traffic maxj ∈N (i)
∑
k ∈N (j)\i 1{yk=1} , The

maximal default degree of vi ’s neigh-
bors before vi applying to loan.

clustering coefficient |ejk :vj ,vk ∈V ,ejk ∈E |
dv (dvi −1)

, where vj and vk

are vi ’s neighbors, and dvi is vi ’s de-
gree.

PageRank The PageRank value of vi in graph.
#new contacts The number of new contacts that uservi

contact within a week(day) before loan.
#calls before loan The number of phone calls that user vi

make within a week(day) before loan.
peak of call Themaximal number of phone calls that

user vi make within a week(day).
contacts similarity The cosine similarity of vi contacts vec-

tor before and within a week.

5.1 Experimental Setup

Dataset. To conduct experiments and validate the effectiveness
of our model, we sample a network from the dataset we intro-
duced in Section 2.1. In particular, we perform random walk on
the complete mobile network, and in turn obtain a graph G with
205,824 vertexes, 1,252,741 edges between them, and involved with
37,454,890 call logs. Among all users, we have 20,010 default bor-
rowers and 185,814 normal users (around 1 : 9.3) . Notice that the
ratio of defaults here is slightly higher than that in the complete
dataset, as our sampling strategy aims to provide a relatively com-
plete mobile network. There are 594 cheating agent labels, which
are only used as the ground truth for test.

Given themobile networkG and an identity vectorY , the task in
our experiment is to determine the unknown values in Y (i.e. YU ).
We conduct 5-fold cross validation to train and test with Precision,
Recall, F1-score and AUC as metrics for evaluation.

Baselines. We consider the following comparativemethods in our
experiment:

• Logistic Regression(LR): We apply logistic regression which use
all features listed in Table 1 to train a classification model, and
determine whether a specific user is a default borrower or not.



Table 2: List of features correlated with cheating agents and
used in ΨA.

Feature Description
age diversity variance of the distribution of ages that

vi ’s neighbors belong.
degree The number of vi ’s neighbors that have

made calls to or from vi .
clustering coefficient |ejk :vj ,vk ∈V ,ejk ∈E |

dv (dvi −1)
, where vj and vk are

vi ’s neighbors, and dvi is vi ’s degree.
degree growth The increasing rate of vi ’s degree in dy-

namic graph.
entropy entropy of the number of phone calls over

different neighbors of vi

Table 3: Performance of detecting default borrowers.

Method Precision Recall F1 AUC
LR 0.187 0.549 0.279 0.710

HITS 0.114 0.591 0.191 0.561
OddBall 0.120 0.587 0.199 0.575

DeepWalk 0.126 0.417 0.194 0.567
DTF 0.215 0.580 0.317 0.757

• OddBall: It is a fast and unsupervisedmethod[3] to detect anoma-
lous nodes in weighted graph. In practice, we construct a undi-
rected graph where each vertex correspond to a user. We create
a weighted link between two users if there exist any call log be-
tween them, and the weighted value is equal to the number of
call logs.

• HITS: Due to the correlation between default borrowers and
agents that we analyzed in Section 3, we apply HITS algorithm
in the graph the same as what we introduced in OddBall method.
We use the authority value of each user to determine whether
she is a default borrower or not.

• DeepWalk: It uses local information obtained from randomwalks
in communication network to learn the latent representation
vector for each user [23]. We use these vectors as features to
train a logistic regression to classify users.

• DTF: It is our proposed model. We empirically set the parameter
λ = 0.1 and |Y L |/|YU | = 7/3. To be mentioned, because we
do not introduce any ground truth about cheating agents in our

model, we empirically fix the parameter inΨE as
[
1.00 0.73
0.97 1.20

]
.

In this setting, we enhance adaptability of y = 1, z = 1 and
reduce the adaptability of y = 1, z = 0 and y = 0, z = 1 due
to previous observation. This manual adjustment can be think
of a prior to our model. Notice that after accumulating sufficient
labels for cheating agents, ΨE can be estimated automatically
according to the learning algorithm in Section 4.
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Figure 7: Performance of detecting cheating agents.

5.2 Identifying Default Borrowers
Table 3 lists performances of all comparative methods. Overall, our
method outperforms all baselines in terms of F1-score and AUC
(e.g., +50.6% in terms of F1). We also test the significance of this
result to further confirm the improvement of our method (p ≪
10−9).

Due to lack of supervised information, HITS and OddBall per-
form worse than our model.

HITS, OddBall, and DeepWalk mainly consider network struc-
tural characteristics of default borrowers. Among them, HITS only
measures vertex importance and performs worse than others. Odd-
Ball only uses neighbors-related features but do not explore 2nd-
degree neighbor’s properties, which are considered useful accord-
ing to our previous analysis in Section 3. DeepWalk aims to learn
sufficient structural features automatically from the given mobile
network. The significant difference between its performance with
that of ours suggests that non-structure features like calling behav-
ior are further required in our task.

LR considers both structural and behavior features just like our
method does. Comparing with LR, our model (DTF) yields an im-
provement of 12.5% on F1-score and 6.5% on AUC.Themajor differ-
ence between these twomethods is that DTF jointlymodels default
borrowers and cheating agents, the latter in turn helps to improve
the performance of identifying default borrowers.

5.3 Identifying Cheating Agents
Themajor challenge for detecting cheating agents is that the ground
truth data (or the label) is extremely difficult to obtain. In practice,
staff of PPDai will call people suspected to be cheating agents, pre-
tending to be a potential client, see if the other sidewill commit as a
cheating agent, and collect the labels. The above time-consuming
process is the only way for obtaining labels. Fortunately, PPDai
kindly provides 594 labels obtained in such way, based on which
we design two experiments to examine the effectiveness of the DTF
model we proposed in the cheating agent detection task.

Feature effectiveness. In the first experiment, to verify the effec-
tiveness of our features (Table 2) in agent detection task, we utilize
a linear model that adopts these features to score each user. Then
we fine tune the weight in this linear model by evaluating the pres-
ence of labeled agent among the top 1000 scored users. We report
100 suspicious users to PPDai through this way, and they evalu-
ate the results by calling these suspicious. Eventually, 50 calls suc-
cessfully get through, and the very preliminary method with the
features we discovered hits 18 cheating agents (36%), achieving an
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Figure 8: Performance of ourmodel on detecting default bor-
rowers with different factors.

over 2 times improvement compared with PPDai’s previous strat-
egy.

In spite of the performance improvement, exhausted searching
parameters is inadvisable. We then perform another experiment to
demonstrate the ability of our model in this task.

Comparison results. In order to make comparison, we apply lo-
gistic regression (LR) as our baseline that uses features described in
Table 2. More specifically, we include all positive instances and ran-
domly sample 20000 data from remainders as negative instances.
We further separate these data into training/test set with a ratio of
7:3, use the trained LR to score and rank the data in test set. Please
notice that as the proportion of cheating agents is very low, the
sampled negative instances are trustful.

For our model, we use beliefs of Z , which indicates the cheating
agent label in our model, as final scores (DTF-belief ). Additionally,
we alter coefficients of trained LR to the coefficients we obtained
from ΨA as another comparative method (DTF-coef ).

Due to extremely imbalanced classes, we evaluate the result by
sorting scored users in descending order and then calculating the
average rank of labeled agents. The smaller average rank stands
for a better performance. Figure 7 examines the performances of
agent detection under these different approaches, we can see that
our model (DTF-belief) yields the best result where the average
rank of agents have a drop of 18.9%. In addition, DTF-coef can also
outperform LR significantly (i.e. p ≪ 0.01) by using a different set
of coefficients obtained from ΨA.

To be mentioned, in the learning and inference phases of our
model that we introduced in Section 4, we did not involve any la-
bel of agent identity and did not even tell our model the physical
meaning of Z . Instead, the model can infer it and capture agent
identity by bridging and utilizing the supervised information of
default borrowers and the correlation between Y and Z .

5.4 Model Structure Analysis
To validate the necessity of the local structure and training phase
of our model, we further design two experiments. In the first exper-
iment (“No prior” in Figure 8), we remove all individual factors (i.e.
ΨF andΨA) from our model and only preserveΨE , which models
the correlation between Y and Z , to demonstrate the necessity of
user features (i.e., user attributes, calling behavior, and social net-
work structural features). In the second experiment (“Disjoint” in
Figure 8), we aim to examine if the idea of bridging default borrow-
ers and cheating agents contributes in our model. In particular, we
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Figure 9: Performance of ourmodel on detecting default bor-
rowers under different settings.

first use logistic regression to train ΨF and ΨA respectively and
merge these two parts into our model without further training. It
is worth noting that we use negative sampling to create negative
labels of non-agent while we training the parameter of ΨA.

Figure 8 shows the results of above two experiments. We can
see that removing individual factors (i.e. ΨF and ΨA) from our
model causes a 26.1% drop on F1-score and a 18.4% drop on AUC.
This result, along with the result of LR, demonstrates the fact that
personal attributes and structural information are both essential
to the final performance. In addition, DTF yields an improvement
of 5.4% on F1-score and 1.3% on AUC compared with the Disjoint
model (i.e. train ΨF and ΨA separately). It reveals the capability
that DTF can better understand the correlation between two kinds
of identities by the training step.

5.5 Parameter Sensitivity
We finally examine how the model parameters influence its perfor-
mance. We conducted experiment on default borrower prediction
task with all other parameters fixed except ΨE . More specifically,
we gradually increase or decrease a single parameter of ΨE in the
range of 5% and check its effect. From Figure 9(a), we find that the
performance is basically stable varying γkl , which reflects the ro-
bustness of our model. We also test the performance of DTF under
different ratio of training instances in Figure 9(b). Initially, increas-
ing the ratio has some effect in the results, but this effect quickly
fade away when the ratio exceeds 0.5.

5.6 Case Study
To demonstrate the effectiveness of DTF, we give a simple case
study as shown in Figure 10. The performance of the model while
no agent identity is introduced in the left part of the figure, where
color indicates the output of the model. The difference between
the defaults and normal users is quite unclear. In contrast, if we
introduce the agent identity of center node, it make a great con-
tribution to identify the defaults as shown in the right part of the
figure. Although this modification confuses the prediction to some
part of normal users, it will have a greater promotion to defaults
as we analyzed in section 3.

6 RELATEDWORK
In this section, we briefly review the various methods that pro-
posed for anomaly detection or fraud detection which is widely
applied in many fields [5, 26, 30].
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Figure 10: Case study of effectiveness of DTF.

Loan fraud detection is most relevant to our work. Many re-
searchers have formulated this task as a typical classification prob-
lem. Individuals are classified into default and nondefault groups
based on the observed attributes, which are historical loan requests
and income information in most cases [4, 7, 16, 17, 29]. For exam-
ple, Ajay Byanjankar et al. [7] proposes a credit scoring model us-
ing artificial neural networks. Different from existing work, in this
paper, we propose a framework to identify frauds by employing so-
cial network information of users.

Since frauds usually behave differently from others, outlier de-
tection [11, 18, 22] and anomaly user detection [2, 27] methodolo-
gies can also be adopted. Based on the insights that fraudsters may
be reflected by the relationships between objects, some work uti-
lize relational classificationmethods. For example, Akoglu et al. [1]
proposed a framework to spot fraudsters and fake reviews in on-
line review datasets. Yang et al. [33] proposed a semi-supervised
learning framework to distinguish fraudsters in a real-world telecom-
munication network. Another type of works use decomposition-
based algorithm [6, 14, 21, 25, 28]. For example, Hooi et al. [13]
propose a camouflage-resistant method to detect fraudsters in a bi-
partite graph and provided its upper bounds on the effectiveness.
Most of the existing work are either supervised or unsupervised.
In this paper, we discover a group of special identities(i.e. cheating
agents) and develop a semi-supervised framework to detect default
borrowers and cheating agents simultaneously.

7 DEPLOYMENT
The proposed model is deployed as an important part of PPDai’s
anti-fraud system, where the data and features are mainly sup-
ported by a Hadoop platform (150 servers, each with a CPUs, 256
GB RAM) with scientific computation empowered by Spark. This
system keeps automatically pushing suspicious cases to staff for
manual investigation and recording the investigation results as
labels for future model improvement. In particular, the separate
cheating agent model (ΨA) and default borrower model (ΨF ) are
both in the stage of deployment during the development of the DTF
model. More specifically, the cheating agent model has been work-
ing online to help PPDai identify cheating agents much more effi-
ciently. There are several challenges for the deployment of default
borrower model, mostly due to some time consuming features like
PageRank on huge user population (around 10 million). We handle
this issue by updating such features for the whole network in an
incremental way instead of a re-calculation. By jointly learning the

two parts, the proposed DTFmodel brings additional improvement
as mentioned and is planned to be deployed next step.

8 CONCLUSIONS
In this paper, we study the problem of identifying default borrow-
ers in online lending platforms by employing social network in-
formation. Based on a real-world dataset provided by PPDai with
over 1.5 billion call logs between more than 11 million users, we
conduct several exploratory analysis. We demonstrate several dif-
ferent characteristics between normal users and default borrowers.
Moreover, we unearth a special type of users, named as cheating
agents, from the network. Based on our observations, we propose a
novel probabilistic framework to uniformly model default borrow-
ers and cheating agents. We further formulate prediction tasks to
validate the effectiveness of our model. Experimental results show
that our model outperforms several baselines. Furthermore, our
model can effectively identify cheating agents without any super-
vised information by bridging the information of default borrowers
and cheating agents.
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