Cypher-RI: Reinforcement Learning for Integrating
Schema Selection into Cypher Generation

Hanchen Su Xuyuan Li Yan Zhou
Zhejiang University Zhejiang University Createlink Technology
hcsu@zju.edu.cn 3220102970@zju.edu.cn zhouyan@chuanglintech.com

Ziwei Chai Haozheng Wang Chen Zhang
Zhejiang University Independent Researcher Createlink Technology
zwchai@zju.edu.cn haozheng.wang@ensea.fr zhangchen@chuanglintech.com

Yang Yang *
Zhejiang University
yangya@zju.edu.cn

Abstract

The increasing utilization of graph databases across various fields stems from their
capacity to represent intricate interconnections. Nonetheless, exploiting the full
capabilities of graph databases continues to be a significant hurdle, largely because
of the inherent difficulty in translating natural language into Cypher. Recognizing
the critical role of schema selection in database query generation and drawing in-
spiration from recent progress in reasoning-augmented approaches trained through
reinforcement learning to enhance inference capabilities and generalization, we
introduce Cypher-RI, a specialized framework for the Text-to-Cypher task. Distinct
from conventional approaches, our methodology seamlessly integrates schema
selection within the Cypher generation pipeline, conceptualizing it as a critical
element in the reasoning process. The schema selection mechanism is guided by
textual context, with its outcomes recursively shaping subsequent inference pro-
cesses. Impressively, our 7B-parameter model, trained through this RL paradigm,
demonstrates superior performance compared to baselines, exhibiting a 9.41%
accuracy improvement over GPT-40 on CypherBench. These results underscore
the effectiveness of our proposed reinforcement learning framework, which inte-
grates schema selection to enhance both the accuracy and reasoning capabilities in
Text-to-Cypher tasks.

1 Introduction

Graph databases [28}[37]] are commonly utilized to efficiently handle graph data, providing a powerful
solution for representing and storing intricate, highly connected information. However, effectively
utilizing them remains a formidable challenge, primarily due to the nuanced and complex syntax
of graph query language-Cypher [9, |10} [26], which poses obstacles for general users seeking to
use graph databases, particularly those unfamiliar with programming paradigms. Therefore, The
development of a system for converting natural language into Cypher [[11}|13]] has gained significant
importance.

*Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

The automatic conversion of natural language questions into Cypher queries remains a persistent
challenge in graph database retrieval [7,14]. The emergence of large language models (LLMs) [21}|38]
40] has led to substantial progress. R3-NL2GQL [41]] combines small and large language models for
various tasks including ranking, rewriting, and refinement. This methodology exploits the capabilities
of finetuned small models for initial stages while harnessing the advanced generalization and query
formulation abilities of big LLMs for the final transformation into Cypher. An alternative strategy
proposed by Liang et al. [22] employs ChatGPT [2] to generate natural language-Cypher paired
datasets through self-instruction, based on given graph databases. These datasets are subsequently
used to fine-tune LLMs, facilitating alignment between LLMs and the graph databases. Nevertheless,
this approach necessitates dataset construction and model retraining for each new graph database,
incurring significant time and financial costs. Ozsoy et al. [30] curated and structured several
publicly available datasets, facilitating effective fine-tuning. The models fine-tuned on this dataset
demonstrated significant performance improvements.

Existing approaches predominantly depend on supervised fine-tuning [23]] and few-shot prompting
[L5] to guide models in Cypher query generation. Nevertheless, when faced with intricate database
schemas or ambiguous linguistic contexts that necessitate advanced reasoning, such models often
fail to produce Cypher queries accurately reflecting users’ intentions, due to their reliance on static
generation patterns and previously observed data. Consequently, current systems exhibit limited
robustness [S]] in adapting to new domains and generalizing across diverse database environments.
Moreover, the opaque reasoning mechanisms underlying Cypher generation restrict the applicability
of these models in critical sectors like law and finance, where transparency and accountability are
paramount.

Recently, reinforcement learning (RL) [[16, 32, [33]] has emerged as a promising paradigm for en-
hancing the reasoning capabilities of LLMs. Unlike traditional fine-tuning, RL enables adaptive
modification of decision policies through continuous interaction with dynamic environments, re-
sulting in improved performance on complex inference tasks. Empirical studies have validated
the efficacy of RL-based frameworks in strengthening reasoning proficiency and generalization in
areas such as information retrieval [4} [20], mathematical problem solving [17}39] and SQL genera-
tion [27, 31]]. Furthermore, innovations in expansive reasoning models, exemplified by OpenAl ol
[19] and DeepSeek-R1 [12], demonstrate that allocating additional computational resources during
inference to construct deliberate reasoning paths substantially elevates output quality.

Providing an LLLM with concise structural metadata about a graph database helps it convert natural-
language questions into precise query statements. Feeding complete schema dumps to the model,
however, often injects irrelevant detail, provokes spurious outputs, and increases computational
expenses. Schema selection [3} 24], which focuses on identifying and providing only the schema
components pertinent to a given query context, serves as a key mechanism for enhancing the
precision and overall performance of natural-language—to—database query generation models. By
steering the model’s attention toward relevant schema elements, it alleviates cognitive burden and
significantly narrows the exploration space for LLMs. Motivated by advancements in training
reasoning models through RL and recognizing the advantages of schema selection, we introduce
Cypher-RI, a reinforcement learning-based framework that integrates schema selection into Cypher
generation. This method promotes the articulation of explicit intermediate reasoning trajectories,
thereby substantially improving the reasoning quality and final query accuracy of LLMs.

Unlike common reasoning process solely involves <think> and <answer>, our framework incorpo-
rates additional components: specifically, the identification of needed entities and relations (annotated
within <json> tags) alongside the results of schema selection (enclosed within <schema> tags). We
conceptualize schema selection as an integral element of the overall reasoning trajectory, enabling
dynamic interactions between schema selection and textual deliberation. Notably, no manually anno-
tated reasoning traces are provided to guide the language models. Instead, we employ reinforcement
learning techniques to motivate LLMs to autonomously develop reasoning chains that integrate
schema selection behavior.

We train Cypher-RI from scratch using Qwen2.5-Coder-7B and perform comprehensive evaluations
on multiple Text-to-Cypher benchmarks. Notably, we validate the generalization capability of our
framework by evaluating the trained models on graph databases distinct from those used during
training. On CypherBench [8], our models achieve substantial absolute improvements ranging from

To address the question,
it is necessary to identify the
Club...
{
"name": "soccer",
“entities": [Invalid
{ JSON
“label": "Club" or label
not in
schema

complete graph schema
encompassing all entities and
relations

The key s to find a Club that has
a hasHomeVenue relation to the
Venue named "Tottenham
Hotspur Stadium" where the

@ start_year is before or equal to

2019 and the end_year is after or

—> equal to2019. If there's no
end_year, it might still be their
current venue....

! Simplified Graph Schema
{“name”: “soccer”, “entities”:
e

jabel” “partOfLeague”, | |
“Club, “obj_label™

i \“League™}...] "label": "Venue"

answer
@ Select schema MATCH (c:Club)-
[r:hasHomeVenue]-(v: Venue)
@ Retrieve schema | WHERE v.name = "Tottenham
Hotspur Stadium" AND
@ Concat sequences |~ rstart_year <=2019 AND
(rend_year IS NULL OR
@ Generate Cypher | rend_year >=2019)
WITH DISTINCT c as club
RETURN club.name

answer

: Valid

i | Question H g JSON

! | Which club used Tottenham Hotspur | | "relations": [and
Stadium as its home venue in 20197 | { label in
—_—————— "label": "hasHomeVenue", schema

"subj_label": "Club",

"obj_label": "Venue"

"Venue", "properties":
{"end_year": "int", "start_year":

lint"}}1}

Figure 1: An overview of the Cypher-RI training process. During the rollout phase, the LLM
integrates schema selection into Cypher generation. The two LLMs shown in the figure correspond to
the same model. Only the text highlighted with a yellow background participates in backpropagation.

13.12% to 69.59% over the base model, and outperform the strong GPT-40 baseline by up to 9.41%.
Our principal contributions are as follows:

 This study offers new insights into leveraging reinforcement learning to enhance the Cypher
generation capabilities of LLMs, marking the first RL-driven framework designed to autonomously
optimize the reasoning process for the Text-to-Cypher task.

* We introduce Cypher-RI, a novel approach that integrates schema selection directly into the Cypher
generation during training. Cypher-RI enables LLMs to learn reasoning strategies from scratch
without relying on any supervised annotations for intermediate reasoning steps.

» Extensive empirical evaluations validate the effectiveness of our method consistently achieving
substantial improvements over baseline approaches, and even outperforming the strong GPT-40
model while being much more cost effective.

2 Method

Schema selection is fundamental to the accuracy and effectiveness of Text-to-Cypher systems.
Providing the entire schema as input to an LLM can cause information overload, hindering the model’s
ability to distinguish relevant information from irrelevant details. Schema selection mitigates this
issue by directing the model’s focus toward pertinent schema components. By filtering out irrelevant
data, schema selection enables more accurate mapping of natural language queries to corresponding
nodes and edges within the graph schema, thereby improving the accuracy of the generated Cypher
queries. For questions requiring traversal across multiple nodes or involving complex aggregations,
correctly selecting the relevant nodes and edges is crucial. Schema selection identifies the necessary
components for constructing appropriate queries, effectively reducing the search space for LLMs. In
essence, schema selection serves as the semantic grounding step, interpreting the user’s intent within
the specific context of the target database.

Considering the benefits of schema selection and drawing inspiration from the success of the o-series
models developed by OpenAl and DeepSeek-R1 in learning to reason, we integrate schema selection
into the reasoning process, as illustrated in Figure[T} We train LLMs from scratch using reinforcement
learning without any labeled data on reasoning chains, enabling LLMs to learn schema selection and
Cypher generation in a unified manner.

The training methodology for Cypher-RI is presented first with an in-depth exploration of GRPO
and the implementation of rollout strategies that incorporate schema selection during reinforcement
learning. Subsequently, we describe the design of a training template that steers LLMs to produce
rollouts in a predefined format. Lastly, we outline the reward design, which plays a pivotal role in
guiding the optimization process within the reinforcement learning framework.

2.1 Reinforcement Learning

When generating database query language, accurate schema selection plays a pivotal role in enhanc-
ing precision. However, obtaining labeled reasoning data that incorporates schema selection for
supervised fine-tuning of LLMs remains a significant challenge, especially when aiming to replicate
reasoning patterns with schema selection. A promising solution lies in reinforcement learning, which
has demonstrated remarkable efficacy in training LLMs to perform reasoning tasks, even in the
absence of labeled data. The core idea of reinforcement learning in our method is to sample diverse
reasoning processes through schema selection and Cypher generation chains, and to optimize the
LLMs to maximize the likelihood of producing rollouts that achieve higher rewards.

Unlike traditional reasoning models, which typically involve only the <think> and <answer> phases,
the Cypher-RI rollout incorporates an additional schema selection step. In this process, the question
and a simplified version of the graph schema containing only the names of entities and relations
are provided as input to the LLM. The model first identifies the schema relevant to the question
and generates a JSON-formatted string to retrieve the complete version of the selected schema,
which includes the properties of entities and relations. These instructions are detailed in the training
templates, which will be explained in subsequent sections. The rollout procedure follows a sequence
of reasoning steps: thinking, selecting the schema, retrieving the complete schema, further reasoning,
and generating the answer, as depicted in Figure[I} More specifically, the rollout process terminates
upon encountering the </json> tag. If the string between the <json> and </json> tags can be
successfully parsed and the parsed labels exist in the schema, the label will be used as a key to retrieve
the corresponding complete schema. If the string fails to conform to the JSON format or the label
is not found in the schema, the complete schema encompassing all entities and relations will be
returned. This complete schema is enclosed within <schema> and </schema> tags and appended to
the rollout sequence. The updated rollout, now containing the complete selected schema, is then used
as input for the next generation step until the end-of-sentence tag is reached.

To enhance the stability of policy optimization and eliminate the necessity for an auxiliary value
function approximation, Deepseek propose Group Relative Policy Optimization(GRPO). Unlike
Proximal Policy Optimization (PPO), GRPO utilizes the mean reward derived from a set of sampled
outputs as a baseline, instead of depending on a learned value function. Specifically, given an input
query x, GRPO samples a batch of responses {y1, y2, - . ., Y } from the policy model 7y. The policy
model is subsequently optimized by maximizing the following objective function:

J(O)=E (1)

@D {y; Y~ (1)

T

I i (o) (@ Y 0 (el) o
G'L:l E?:lM v P)7 ’ N KL 0 Oref it |

it = oo (YilT) oo (YilT
2)

ri —mean({r; }5_,)
A= 3
Sd(r, 1) ®

where 7. is the reference model, 74 is the old policy model, € and 3 are hyperparameters, while
A; represents the advantage, calculated from the relative rewards r; of outputs within each group. This
method eliminates the need for additional complexity when computing A;. Rather than introducing
the Kullback-Leibler (KL) divergence as a penalty in the reward function, GRPO regularizes the
model by directly incorporating the KL divergence between the learned policy and the reference
policy into the loss function.

Additionally, we multiply M, ; by each token when computing the GRPO loss. The value of M; ; is
either O or 1. During the reinforcement learning process of LLMs, token-level losses are calculated
across the entire rollout sequence. In Cypher-RI, this sequence comprises both tokens generated
by the LLM and tokens representing the full schema retrieved from an external dictionary. While
optimizing the LLM-generated tokens enhances the model’s ability to perform reasoning, selection,
and generation, applying the same optimization to the retrieved tokens could inadvertently introduce
undesired learning behaviors. To mitigate this issue, we propose the use of loss masking for the
retrieved tokens, ensuring that the policy gradient objective is computed solely based on the LLM-
generated tokens and excluding the retrieved tokens from the optimization. This method contributes to
the stabilization of the training process while consolidating schema selection and Cypher generation
into a cohesive framework.

Table 1: Training template for Cypher-RI. During training and inference, the placeholders question
and schema will be replaced with specific instances.

A conversation between a User and an Assistant. The user asks the Assistant to translate the
question to Cypher query based on a simplified version of the schema of a graph database. The
Assistant first identifies the necessary schema components required to answer the User’s question
within <think> </think> tags. Next, the Assistant outputs the needed schema in JSON format
within <json> </json> tags. If the selected schema is valid, the Assistant is provided with
the complete version of the selected schema enclosed within <schema> tags, or it is provided
with the complete version of the full schema. After that, the Assistant explains the reasoning
process for generating the Cypher query within <think> </think> tags. Finally, the Assistant
provides the Cypher query enclosed within <answer> </answer> tags. For example, <think>
This is the reasoning process. </think> <json> {"name": "", "entities": [], "relations": []}
</json> <schema> This is the complete version of the schema. </schema> <think> This
is the reasoning process. </think> <answer> This is the Cypher query </answer>. Graph
schema: {schema} User: {question} Assistant:

2.2 Training Template

The training of Cypher-RI begins with the creation of a straightforward template designed to guide
the initial LLM in adhering to predefined instructions. As illustrated in Table |1} this framework
organizes the output into five iterative components: an initial reasoning phase identifying the needed
schema, followed by a JSON-formatted string representing the selected schema, the complete version
of schema, a subsequent reasoning phase focused on Cypher query generation, and ultimately, the
final response. By guiding LLMs to comprehend the rollout format, we incorporate schema selection
into the training process, enabling the model to jointly learn schema selection and Cypher generation
in a unified framework.

2.3 Reward design

In the reinforcement learning process of Cypher-RI, no supervised reasoning data is utilized, and
optimization of LLMs is guided solely through a simplified reward mechanism applied to rollouts.
Empirically, a rule-based reward function is sufficient to effectively elicit the reasoning capabilities
that integrate schema selection and Cypher generation within LLMs. The reward function is composed
of three key parts: format reward, schema selection reward, and Cypher execution reward.

To compute the format reward, we first specify the correct format as follows:
* The model’s reasoning process and final answer should be enclosed within the
<think>...</think> and <answer>...</answer> tags.

* The <json> </json> and <answer> </answer> tags must appear once, while the <think>
</think> tags must appear twice.

* The order of the tags must conform to <think> </think> <json> </json> <think>
</think> <answer> </answer>.

According to the aforementioned format requirements, the format reward is defined as follows:

“

1.0, if the format is correct
r = . ..
format —1.0, if the format is incorrect

For the schema selection reward, we first parse the string generated within the <json> tags and then
compare the parsed selected schema against the gold answer.

2.0, if the selected schema matches the gold answer
Tselection = § —1.D, if the selected schema does not match the gold answer @)
—2.0, if the selected schema is unparseable

For the Cypher execution reward, we extract the generated Cypher query enclosed within the
<answer> tags, then execute both the extracted Cypher and the gold answer on the graph database.

2.0, if the generated Cypher executes consistently with the gold answer
Tezecution = § —1.5, if the generated Cypher executes inconsistently with the gold answer (6)
—2.0, if the generated Cypher fails to execute

The final reward is the sum of the format reward, schema selection reward, and Cypher execution
reward.

T = Tformat + Tselection T Texecution (7)

3 Experiment

3.1 Training Data

GRPO algorithm encounters an issue related to vanishing gradients when certain prompts achieve
perfect accuracy. If all generated outputs for a given question are correct and receive a reward of
1, the computed advantage for that group becomes zero. A zero advantage provides no meaningful
gradient signal for policy updates, which severely limits sample efficiency. The situation in which all
outputs are incorrect remains the same. To this end, we perform data selection by generating eight
Cypher queries per prompt using our method.

Specifically, we select training instances from the CypherBench [§]] training set . We employ the
Qwen-2.5-Coder-7B model to first perform schema selection, then generate the corresponding Cypher
queries, and subsequently execute them within the database. Prompts with a mean selection accuracy
of 1 and a mean execution accuracy of 1, as well as those with a mean selection accuracy of 0 and a
mean execution accuracy of 0, are subsequently filtered out. Finally, we obtain 8,295 samples from
four distinct graph databases: Art, Terrorist Attack, Soccer, and Biology.

3.2 Evaluation Datasets and Metrics

We use two datasets to evaluate the conversion of natural language into Cypher queries: CypherBench,
Neo4j-Text2Cypher. Specifically, CypherBench is constructed across seven different property graphs,
including Fictional Character, Company, Flight Accident, Geography, Movie, NBA and Politics.
Neo4j-Text2Cypher is a synthetic dataset developed by Neo4j, comprising 15 graph databases.

To ensure a fair comparison, we adopt the evaluation standards established in previous benchmarks.
Specifically, we assess model performance using Execution Accuracy (EX), Provenance Subgraph
Jaccard Similarity (PSJS), executable percentage (Exec.) and Google-BLEU. Execution Accuracy
evaluates whether the database results executed by the predicted query align with those produced
by the ground-truth query. The provenance subgraph is defined as the portion of the graph retrieved
by executing the MATCH clause in combination with RETURN *. The PSJS metric quantifies
query similarity by computing the Jaccard similarity between provenance subgraphs of generated and
ground-truth Cypher queries. Exec. assesses whether the generated Cypher queries can be executed
in graph databases without compiler errors. Google-BLEU metric quantifies textual correspondence
by analyzing n-gram matches between the generated Cypher and the gold answer.

3.3 Baselines

To evaluate the effectiveness of Cypher-RI, we compare it with a range of baseline approaches: (1)
General Purpose Methods: including Qwen-2.5-Coder-7B[18], Llama3.1-8B[6]], Gemma-2-9B[35]],
GPT-40-mini, Gemini-1.5-Pro[34], and GPT-4o0[1]; and (2) Text-to-Cypher Specific Methods: R3-
NLGQL[41]], Text2Cypher-Gemma-3-27B[30, [36]]. These baselines collectively represent both
domain-agnostic and domain-specialized strategies, enabling a thorough and multifaceted evaluation
of the proposed method.

3.4 Implementation Details

In our Cypher-RI framework, we adopt Qwen-2.5-Coder-7B as the base model for training. The
dataset consists of 8,295 instances sourced from the CypherBench training split. During the training

Table 2: Main results of different methods on CypherBench and Neo4j-Text2Cypher. The best
performance is set in bold.

Methods CypherBench Neodj-Text2Cypher

EX (%) PSJS (%) Exec.(%) EX (%) Google-BLEU (%)

Qwen2.5-Coder-7B 13.12 22.65 62.95 12.06 44.37
Gemma-2-9B 18.61 30.67 68.57 14.49 51.04
Llama3.1-8B 18.82 30.98 90.67 11.86 41.30
R3-NLGQL 23.94 38.12 64.83 19.27 4791
GPT-40-mini 31.43 4591 87.39 25.82 59.62
Text2Cypher-Gemma-3-27B 38.71 55.53 92.97 29.84 50.10
Gemini-1.5-Pro 39.95 57.70 86.03 23.07 58.45
GPT-40 60.18 76.87 94.90 31.73 62.93
Cypher-RI(Ours) 69.59 75.21 99.28 30.61 60.13

process, each instance is sampled through 8 rollouts with the sampling temperature maintained at
1.0. We employ a training batch size of 128 and set the rollout batch size to 128 as well. The
learning rate is fixed at 1 x 10~°. Further training details are provided in Appendix In R3-NLGQL,
Qwen-2.5-Coder-7B is employed as the foundation model across all components.

3.5 Main Results

Table 2] reports the comprehensive evaluation results of Cypher-RI and several strong baseline models
across two benchmarks. Cypher-RI demonstrates state-of-the-art performance in crucial aspects of
Cypher query generation, achieving the highest Execution Accuracy at 69.59%. This represents a
significant margin over other models, notably outperforming the strong GPT-40 model, which scored
60.18% by 9.41 percentage points. Furthermore, Cypher-RI also sets a new standard for generating
syntactically valid queries, attaining an exceptional Executable Percentage of 99.28%. This near-
perfect rate in producing executable queries is the highest among all evaluated models, surpassing
GPT-40 and indicating the high reliability and robustness of our approach. In terms of PSJS, GPT-40
records the highest score at 76.87%, with Cypher-RI achieving a very competitive second place
at 75.21%. While GPT-40 shows a slight edge in aligning more closely with the exact structural
representation of the ground truth provenance subgraph, Cypher-RI’s leading EX score suggests that
it effectively identifies and retrieves the correct data, potentially through equally valid but structurally
slightly different query patterns. This also implies that while PSJS is an important measure of
structural understanding, Cypher-RI excels in translating this understanding into executable and
correct queries.

When compared to its base model, Qwen2.5-Coder-7B, which scored 13.12% EX, 22.65% PSJS,
and 62.95% Exec., Cypher-RI exhibits a remarkable improvement across all evaluated metrics.
Specifically, Cypher-RI boosts the Execution Accuracy by an absolute 56.47 percentage points, the
Provenance Subgraph Jaccard Similarity by 52.56 percentage points, and the Executable Percentage by
36.33 percentage points over its foundation. This substantial leap in performance clearly demonstrates
the profound efficacy of our training methodology in refining and specializing the base model for
complex Cypher query generation.

In terms of PSJS, Cypher-RI achieving a very competitive second place at 75.21%. While GPT-40
shows a slight edge in aligning more closely with the exact structural representation of the ground truth
provenance subgraph, Cypher-RI’s leading EX score suggests that it generates valid but structurally
slightly different query. This observation is consistent with our training reward, which is defined in
terms of execution accuracy.

In the Neo4j-Text2Cypher evaluation, Cypher-RI also exhibits highly competitive results. It achieves
an Execution Accuracy of 30.61%, closely matching GPT-40’s 31.73%, and outperforms all other
baselines. Regarding Google-BLEU, which measures n-gram level similarity between generated
queries and references, Cypher-RI achieves 60.13%, again ranking just behind GPT-4o.

A particularly noteworthy finding from our experiments is the efficiency and effectiveness of Cypher-
RI relative to model scale. Despite being developed upon a 7B parameter model, Cypher-RI consis-
tently outperforms significantly larger and more general-purpose models in the specialized domain
of Cypher generation. For instance, it surpasses GPT-40 in both execution accuracy and the ability

— CypherRI —— Qwen2.5-Coder-78 GPT-do —— Text2Cypher-Gemma- 3278

EX Across BASIC patterns EX Across Special MATCH patterns EX Acrg;gpkgE%gRN templates
tn) Optional Match————_Time-sensitive - AGGREGATE

/
R

//(/\ |Union FILTER |
< / \

Group By\

(n)-Lel-tm) " (n{} Comparison ARGMAX SORT

Figure 2: Performance evaluation of four models across distinct BASIC patterns, MATCH Patterns
and RETURN templates.

to generate executable queries in CypherBench. Similarly, Text2Cypher-Gemma-3-27B, a 27B
parameter model specifically finetuned for Text-to-Cypher tasks, also lags behind Cypher-RI with
an EX of 38.71%. This highlights Cypher-RI’s advanced capabilities and its potential for providing
highly accurate Cypher generation without necessitating the substantial computational resources
typically associated with much larger models.

3.6 Analysis

In this section, we provide a detailed analysis of the performance breakdown across multiple dimen-
sions. As illustrated in Figure[2] the left chart presents the execution accuracy across different basic
Cypher patterns. Here, “(:n)” denotes a node, “(:n{})” indicates a node with specified properties, and
“-[:e]->” represents an edge. Notably, the performance of Qwen-2.5-Coder-7B is significantly lower
than that of the other models, underscoring a substantial capability gap. In contrast, our RL-trained
model achieves highly competitive, and frequently superior, performance compared to the strong
baseline of GPT-40. While GPT-40 exhibits robust general capabilities, Cypher-RI demonstrates a
distinct advantage on several more complex Cypher structures, including two-hop paths and bidirec-
tional patterns. Cypher-RI not only achieves high peak performance but also demonstrates greater
consistency across the range of patterns. Its performance floor is significantly higher than the other
models, especially the base version. This robustness is critical for practical applications where a wide
variety of query types might be encountered. The high accuracy on complex patterns suggests an
ability to handle disjunctive or conjunctive relational conditions effectively.

The mid chart in Figure [2] edisplays execution accuracy across the special patterns. Compared
with GPT-40, Cypher-RI showcased competitive and, in several categories, superior performance.
Notably, our model achieved higher execution accuracy in “Time-sensitive”, “Comparison” and
“Group By” queries. While GPT-40 demonstrated a stronger performance in "Union" and "Optional
Match"patterns. The ability of our model to handle intricate Cypher patterns such as time-sensitive
constraints and optional graph traversals with high accuracy is a testament to the benefits of our
training approach.

Delving into specific return templates, as illustrated in the right chart of Figure 2] Cypher-RI
demonstrates exceptional proficiency in handling all clauses, achieving the highest execution accuracy
in these categories. This suggests that the reinforcement learning process has effectively equipped
the model to understand and generate complex query structures involving specific entity returns,
ordering of results, and aggregation functions. In the “SORT” template, which typically requires
more sophisticated semantic understanding to order values based on specific criteria, all other models
achieve an execution accuracy of less than 25%. In contrast, Cypher-RI attains an accuracy of
84.21%.

Integrating schema selection into Cypher generation within a reinforcement learning framework and
applying it to the training of LLMs can achieve state-of-the-art performance in the Text-to-Cypher
task, providing a more efficient and targeted alternative to relying solely on larger, general-purpose
models. The experimental results compellingly highlight the effectiveness of our method in training
large language models for Cypher generation, enhancing their ability to capture semantic subtleties

— CypherRI — SFT RL(w/o schema selection)

EX Across BASIC patterns EX Across Special MATCH patterns EX Across RETURN templates
n) Optional Match——— Time-sensitive PROPERTY

AGGREGATE

|Union FILTER |

Group By\

(n)-Lel-tm) " (n{} Comparison ARGMAX SORT

Figure 3: Performance evaluation of ablation models across distinct BASIC patterns, MATCH
Patterns and RETURN templates.

and syntactic rules. Notably, the improvements are particularly pronounced in cases involving
multiple relationships, time-related questions, and sorting requirements. Cypher-RI, our RL-trained
model, significantly outperforms its base model and shows competitive, often superior, performance
compared to GPT-40 across a variety of fundamental Cypher patterns. These findings demonstrate
that trained open-source models can achieve highly accurate and reliable natural language-to-Cypher
translation, validating the advantages of our specialized RL training method.

3.7 Ablation Study

In this section, we aim to assess the en-
hancement effects of reinforcement learn-

. . . : Model EX (%) PSJS(%) Exec. (%)

ing and the integration of schema selection

into training through comparative experi- SET ' 44.34 49.80 2434
g g p) p RL(w/o schema selection) ~ 58.35 66.55 96.12

ments. To demonstrate the effectiveness of Cypher-RI 69.59 75.21 99.28

reinforcement learning, we performed su-
pervised fine-tuning on the model. Specif- Table 3: Ablation Study Experiment on the Cypher-
ically, we used the same model as in the Bench Test Set.

reinforcement learning setup to collect roll-

outs on the training sets of CypherBench. For each instance in the training set, we prompted the LLM
to first select a schema and then generate the corresponding Cypher query. The generated Cypher
was executed against the graph database, and if the execution result matched the gold answer, we
added the trajectory to the training data. We sampled trajectories until the model generated the correct
answer, with a maximum of eight attempts per instance. To evaluate the effectiveness of integrating
schema selection into the training process, we also trained the model using reinforcement learning
without schema selection, similar to the approach in DeepSeek R1.

The results of these experiments are presented in Table[3] We can see that Cypher-RI outperforms
SFT and RL (without schema selection) on the test sets, demonstrating superior Cypher generation
capability and better generalization across graph databases. Figure [3|clearly illustrates the types of
situations where our method provides improvements. Compared to other methods, Cypher-RI shows
significant gains on complex basic patterns, “Group By”and “Time-sensitive” special patterns, as
well as “FILTER” and “SORT” templates.

We also evaluated the model’s performance
on the training data to better understand its

: . ; Model EX (%) PSIS(%) Exec. (%)
learning behavior. As shown in Table[d] the po— = 660 o 6; o -
SFT method achieved the highest EX score RL(w/o schema selection) 8089 §1.20 99.39
on the training data but the lowest EX score Cypher-RI 84.59 86.39 99.78

on the test data. This phenomenon demon-
strates that RL excels at learning general- Table 4: Ablation Study Experiment on the Training

izable knowledge, whereas SFT tends to Data.
simply memorize the training data.

4 Related Work

Text-to-Cypher Methods. Recent progress in large language models has markedly advanced methods
for translating natural language into Cypher queries. Hornsteiner et al. [15] proposed a framework
that notably improves user—graph database interaction and establishes a scaffold for integrating
multiple database systems with large language models. The R3-NL2GQL [41] approach combines
big and small language models across different stages, exploiting smaller models’ strengths for
preliminary ranking and textual normalization, while assigning final query synthesis and broad
generalization to larger models to produce high-quality GQL outputs. Liang et al. [22] synthesize
paired NL-GQL examples grounded in the target graph schema firstly. Next, these synthetic pairs
serve to fine-tune LLMs so that their outputs better conform to the database’s schema and querying
conventions. Text2Cypher [30] demonstrate the value of aggregating, sanitizing, and structuring
several public resources into a consolidated training corpus; models trained on this cleaned collection
exhibited notable gains in downstream query-generation performance. NAT-NL2GQL [23]] proposed
three agents to generate Cypher: a Preprocessor for context processing, a Generator for GQL creation,
and a Refiner that optimizes outputs using execution feedback.

Reinforcement Learning for Large Language Models. Reinforcement learning (RL) has proven to
be a valuable approach for improving the reasoning abilities of large language models. Ouyang et
al. [29]] were among the first to apply RL to LLM fine-tuning by using reinforcement learning from
human preferences. Their pipeline trains a reward model from human preference annotations and
then leverages that learned reward signal to perform policy optimization on the base language model
— a process commonly implemented with PPO. DeepSeek proposed GRPO, which eliminates the
need for a critic model by estimating baselines from group scores, exhibiting strong performance
in math field. Beyond these examples, reinforcement learning has been increasingly applied to a
variety of generation-oriented tasks, each leveraging RL to enhance model reasoning. For instance, in
SQL generation, systems such as SQL-R1 [27]] and Reasoning-SQL [31]] employ reward functions
derived from query execution accuracy to guide policy updates, enabling the models to generate
correct SQL. In the logical reasoning domain, Logic-RL [39] trains language models by using the
exact match of the final answer as the reward signal, enabling the model to iteratively refine its logical
reasoning when solving puzzles. For code generation, Code-R1 [25] integrates RL objectives based
on functional correctness, optimizing the model toward producing executable and efficient programs.
Search-R1 [20]] combines reinforcement learning with search-enhanced training, where the model is
rewarded for selecting informative retrieval paths and reasoning chains, effectively aligning its search
strategy with the goal of more accurate multi-hop reasoning.

5 Limitations

This study focuses specifically on the generation of Cypher queries. While Cypher is the most widely
used graph query language, we acknowledge that other graph query languages such as Gremlin,
PGQL and G-CORE are also utilized in the graph database landscape. Future research could extend
our reinforcement learning methodology to investigate its applicability and performance in generating
queries for these alternative languages, thereby broadening the scope of LLM-driven text-to-query
translation for graph databases.

6 Conclusion

This study presents Cypher-RI, an innovative framework that integrates schema selection into Cypher
query generation through reinforcement learning, without relying on any annotated reasoning step
supervision. In our methodology, schema selection is embedded as a critical element within the
reasoning process: the model first performs text-driven schema selection, and the selected schema is
then concatenated into the rollout sequence to guide the subsequent Cypher generation. Extensive em-
pirical evaluations across multiple Text-to-Cypher benchmarks demonstrate that Cypher-RI achieves
substantial gains compared to existing baseline models. Moreover, the findings suggest strong
applicability of our framework to practical, real-world environments. Overall, this research under-
scores the promise of reinforcement learning in jointly modeling schema selection and Cypher query
generation, offering a compelling direction toward building more capable, trustworthy LLM-driven
Text-to-Cypher systems.

10

References

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin Zhang, Wei Chen, and Xiang Bai. Rsl-sql:
Robust schema linking in text-to-sql generation. arXiv preprint arXiv:2411.00073, 2024.

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Fan Yang, Zenan Zhou,
Weipeng Chen, Haofen Wang, Jeff Z Pan, et al. Learning to reason with search for llms via
reinforcement learning. arXiv preprint arXiv:2503.19470, 2025.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans,
Quoc V Le, Sergey Levine, and Yi Ma. Sft memorizes, 1l generalizes: A comparative study of
foundation model post-training. arXiv preprint arXiv:2501.17161, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Guandong Feng, Guoliang Zhu, Shengze Shi, Yue Sun, Zhongyi Fan, Sulin Gao, and Jun
Hu. Robust nl-to-cypher translation for kbqa: Harnessing large language model with chain of
prompts. In China Conference on Knowledge Graph and Semantic Computing, pages 317-326.
Springer, 2023.

Yanlin Feng, Simone Papicchio, and Sajjadur Rahman. Cypherbench: Towards precise retrieval
over full-scale modern knowledge graphs in the llm era. arXiv preprint arXiv:2412.18702,
2024.

Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor
Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor. Cypher: An evolv-
ing query language for property graphs. In Proceedings of the 2018 international conference on
management of data, pages 1433-1445, 2018.

Balaji Ganesan, Sambit Ghosh, Nitin Gupta, Manish Kesarwani, Sameep Mehta, and Renuka
Sindhgatta. Llm-powered graphqgl generator for data retrieval. In Proceedings of the Thirty-Third
International Joint Conference on Artificial Intelligence, pages 8657-8660, 2024.

Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor Marsault, Stefan
Plantikow, Martin Schuster, Petra Selmer, and Hannes Voigt. Updating graph databases with
cypher. Proceedings of the VLDB Endowment, 12(12):2242-2254, 2019.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
IIms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Florian Holzschuher and René Peinl. Performance of graph query languages: comparison of
cypher, gremlin and native access in neo4j. In Proceedings of the Joint EDBT/ICDT 2013
Workshops, pages 195-204, 2013.

Markus Hornsteiner, Michael Kreussel, Christoph Steindl, Fabian Ebner, Philip Empl, and
Stefan Schonig. Real-time text-to-cypher query generation with large language models for
graph databases. Future Internet, 16(12):438, 2024.

Markus Hornsteiner, Michael Kreussel, Christoph Steindl, Fabian Ebner, Philip Empl, and
Stefan Schonig. Real-time text-to-cypher query generation with large language models for
graph databases. Future Internet, 16(12):438, 2024.

Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models.
arXiv preprint arXiv:2501.03262, 2025.

11

[17] Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

[18] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jia-
jun Zhang, Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint
arXiv:2409.12186, 2024.

[19] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

[20] Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Za-
mani, and Jiawei Han. Search-rl: Training llms to reason and leverage search engines with
reinforcement learning. arXiv preprint arXiv:2503.09516, 2025.

[21] Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and
Robert McHardy. Challenges and applications of large language models. arXiv preprint
arXiv:2307.10169, 2023.

[22] Yuanyuan Liang, Keren Tan, Tingyu Xie, Wenbiao Tao, Siyuan Wang, Yunshi Lan, and Weining
Qian. Aligning large language models to a domain-specific graph database. arXiv preprint
arXiv:2402.16567, 2024.

[23] Yuanyuan Liang, Tingyu Xie, Gan Peng, Zihao Huang, Yunshi Lan, and Weining Qian. Nat-
nl2gql: A novel multi-agent framework for translating natural language to graph query language.
arXiv preprint arXiv:2412.10434, 2024.

[24] Geling Liu, Yunzhi Tan, Ruichao Zhong, Yuanzhen Xie, Lingchen Zhao, Qian Wang, Bo Hu, and
Zang Li. Solid-sql: Enhanced schema-linking based in-context learning for robust text-to-sql.
arXiv preprint arXiv:2412.12522, 2024.

[25] Jiawei Liu and Lingming Zhang. Code-rl: Reproducing r1 for code with reliable rewards. 2025.

[26] Yang Liu, Xin Wang, Jiake Ge, Hui Wang, Dawei Xu, and Yongzhe Jia. Text to graph query
using filter condition attributes. Proceedings of the VLDB Endowment. ISSN, 2150:8097.

[27] Peixian Ma, Xialie Zhuang, Chengjin Xu, Xuhui Jiang, Ran Chen, and Jian Guo. Sql-rl:
Training natural language to sql reasoning model by reinforcement learning. arXiv preprint
arXiv:2504.08600, 2025.

[28] Justin J Miller. Graph database applications and concepts with neo4j. In Proceedings of the
southern association for information systems conference, Atlanta, GA, USA, volume 2324,
pages 141-147, 2013.

[29] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730-27744, 2022.

[30] Makbule Gulcin Ozsoy, Leila Messallem, Jon Besga, and Gianandrea Minneci. Text2cypher:
Bridging natural language and graph databases. arXiv preprint arXiv:2412.10064, 2024.

[31] Mohammadreza Pourreza, Shayan Talaei, Ruoxi Sun, Xingchen Wan, Hailong Li, Azalia
Mirhoseini, Amin Saberi, Sercan Arik, et al. Reasoning-sql: Reinforcement learning with sql
tailored partial rewards for reasoning-enhanced text-to-sql. arXiv preprint arXiv:2503.23157,
2025.

[32] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[33] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

12

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin,
Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé,
et al. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona
Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma
3 technical report. arXiv preprint arXiv:2503.19786, 2025.

Bing Tong, Yan Zhou, Chen Zhang, Jianheng Tang, Jing Tang, Leihong Yang, Qiye Li, Manwu
Lin, Zhongxin Bao, Jia Li, et al. Galaxybase: A high performance native distributed graph
database for htap.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. arXiv preprint arXiv:2206.07682, 2022.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqgian Hong, Bryan Dai, Joey Zhou,
Kai Qiu, Zhirong Wu, and Chong Luo. Logic-rl: Unleashing 1lm reasoning with rule-based
reinforcement learning. arXiv preprint arXiv:2502.14768, 2025.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqgian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Yuhang Zhou, Yu He, Siyu Tian, Yuchen Ni, Zhangyue Yin, Xiang Liu, Chuanjun Ji, Sen
Liu, Xipeng Qiu, Guangnan Ye, et al. 73-nl2gql: A model coordination and knowledge graph
alignment approach for nl2gql. 2024.

13

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Abstract and Section [I] Introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section [5Limitations.

14

Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We report the setup throughout the paper as well as in the Section [3.4] and
Appendix [B]
Guidelines:

* The answer NA means that the paper does not include experiments.

15

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We use publicly available datasets and the code of our work is fully provided.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We report the training and test details in the Section [3.4] Appendix [A] and
Appendix [B]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The LLMs only have one checkpoint, so we only edit once for each setting.
But we test our method and baselines under various models, settings, and datasets, therefore,
the statistical significance of the experiments can be verified and supported.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In Appendix [B]
Guidelines:

* The answer NA means that the paper does not include experiments.

17

9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We use publicly standard datasets that do not contain information about
individual people or offensive context to our knowledge.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: In Appendix [C]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

18

https://neurips.cc/public/EthicsGuidelines

12.

13.

14.

Justification: [NA]
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Section[3.2] We use publicly available artifacts.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Our code is provided.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

19

paperswithcode.com/datasets

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Table 5: Dataset description

Dataset Database Samples

biology 2289
Training soccer 1820
art 2750
terrorist attack 1436

geography 366

flight accident 189

politics 390

CypherBench company 347
fictional character 385

movie 401

nba 270

bluesky 39

buzzoverflow 120

companies 275

fincen 146

gameofthrones 148

grandstack 182

movies 203
Neo4j-Text2Cypher | neoflix 261
network 109

northwind 197

offshoreleaks 115
recommendations 253

stackoverflow?2 91

twitch 185

twitter 146

A Dataset Description

We conduct our experiments on two representative and diverse datasets: CypherBench and Neo4;-
Text2Cypher. These datasets are selected to comprehensively evaluate the generalization ability and
query generation performance of our proposed method across different domains and database schemas.
For training purposes, we construct our dataset by utilizing the training portion of CypherBench,
ensuring that the model is exposed to a wide variety of graph structures and query patterns during
learning.

Table 5| provides a detailed summary of the databases involved and the number of samples available
for each. The training dataset consists of four domains: biology, soccer, art, and terrorist attack,
comprising a total of 8,295 examples. This diverse collection enables the model to learn from a broad
spectrum of semantic structures and query intents.

The CypherBench test set, designed to evaluate zero-shot generalization, includes seven distinct
domains such as geography, flight accident, politics, company, fictional character, movie, and NBA.
Each domain presents unique challenges in terms of entity types, relationships, and query complexity,
making it a robust benchmark for assessing model performance on unseen data.

The Neo4j-Text2Cypher dataset, which covers 15 diverse domains, including real-world and synthetic
graphs like Bluesky, BuzzOverflow, Fincen, Game of Thrones, Northwind, and Twitter. With a
total of 2,380 examples, Neo4j-Text2Cypher tests the model’s ability to handle heterogeneous graph
schemas and varied user query styles .

B Implementation Details

Our training is conduct on 4 x Nvidia A800 GPUs, with full parameter optimization and gradient
checkpointing. We show some important parameter settings in Table [6]

21

Table 6: Implementation details of Cypher-RI.

Parameter Value
Base Model Qwen2.5-Coder-7B
Train Batch Size 1024
Micro Train Batch Size 8
Rollout Batch Size 128
Micro Rollout Batch Size | 16
Learning Rate le-6
Prompt Max Length 1,024
Generation Max Length 2,000
Initial KL Coefficient 0

Mixed Precision BF16
Rollout Temperature 1.0
Optimizer AdamW
Clip Ratio 0.2
Number of Rollout 8

C Social Impacts

This paper introduces Cypher-RI as a foundation model tailored for Text-to-Cypher tasks. Cypher-RI
focuses on improving the accuracy, reliability, and generalization of natural language to Cypher query
translation, enabling enhanced interaction with structured graph data. Our work aims to facilitate
user-friendly access to graph databases through natural language, without posing any potential ethical
concerns or negative social impacts.

22

	Introduction
	Method
	Reinforcement Learning
	Training Template
	Reward design

	Experiment
	Training Data
	Evaluation Datasets and Metrics
	Baselines
	Implementation Details
	Main Results
	Analysis
	Ablation Study

	Related Work
	Limitations
	Conclusion
	Dataset Description
	Implementation Details
	Social Impacts

