
How Do Your Neighbors Disclose Your Information:
Social-Aware Time Series Imputation

Zongtao Liu
Zhejiang University

tomstream@zju.edu.cn

Yang Yang∗
Zhejiang University
yangya@zju.edu.cn

Wei Huang
Zhejiang University
hw313@zju.edu.cn

Zhongyi Tang
State Grid Zhejiang Jinyun Power

Supply Co. Ltd.
tangzhongyi0123@163.com

Ning Li
State Grid Zhejiang Jinyun Power

Supply Co. Ltd.
shiepning@163.com

Fei Wu
Zhejiang University
wufei@cs.zju.edu.cn

ABSTRACT
Different time series is measured in almost all fields including biol-
ogy, economics and sociology. A common challenge for using such
data is the imputation of the missing values with reasonable ones.
Most of existing approaches to data imputation assume that indi-
vidual’s observations are independent to each other, which is rarely
the case in real-world. In this paper, we study the social-aware
time series imputation problem. Given a social network that repre-
sents social relations between individuals, we propose a sequential
encoder-decoder-based framework and build a connection between
the missing observations and the social context. In particular, the
proposed model employs the attention mechanism to incorporate
social context and temporal context into the imputation task. Ex-
perimental results based on two real-world datasets demonstrate
that our approach outperforms 11 different baseline methods.

CCS CONCEPTS
•Mathematics of computing→ Time series analysis; • Infor-
mation systems → Social networks; • Computing method-
ologies → Neural networks.

KEYWORDS
time series, missing data imputation, social networks
ACM Reference Format:
Zongtao Liu, Yang Yang∗, Wei Huang, Zhongyi Tang, Ning Li, and Fei Wu.
2019. How Do Your Neighbors Disclose Your Information: Social-Aware
Time Series Imputation. In Proceedings of the 2019 World Wide Web Confer-
ence (WWW ’19), May 13–17, 2019, San Francisco, CA, USA. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3308558.3313714

1 INTRODUCTION
Time-series modeling has been extensively studied and applied in a
broad range of applications, such as financial marketing [51], bioin-
formation [19, 22], and wearable sensors [33]. Among these studies,

∗Corresponding author: Yang Yang, yangya@zju.edu.cn.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313714

A

B

C

15 21112 217

17 ?

? 215

19 270

281

A

B

C

15 20911 208

19 229

? 217

18 275

18 288

time time

A

B

C

10 21918 278

20 230

? 220

15 278

15 280

time

?

t1 t2 t3

Figure 1: An illustration of the social-aware time series im-
putation problem.We are given anetworkwhere each vertex
denotes an individual, and we create an edge between two
individuals if the distance between their living places is less
than a threshold. Each person has a multivariate observa-
tion at every timestamp (two-dimensional in our case), with
some missing values (colored in red and marked as “?”), to
indicate her electricity consumption. The goal is to impute
the missing values by building surrounding and temporal
influences.

one fundamental issue is that time series data often inevitably car-
ries missing observations due to various reasons, such as anomaly
events, security issues, communication errors, privacy, and so on.
Missing observations cause serious damages to the analysis and
model results based on them, and thus it is necessary to impute
these values.

On the other hand, the social network, a natural way of repre-
senting personal relationships, has turned out to be valuable and
has recently attracted considerable research efforts [14, 30]. Time
series data also plays an important role in social network analysis,
as individuals in a social network generate a huge amount of data,
which evolves over time. Meanwhile, homophily, a widely recog-
nized organizing principle of social networks, suggests that people
with common behavior patterns or similar interests are more likely

https://doi.org/10.1145/3308558.3313714
https://doi.org/10.1145/3308558.3313714

1.5

2.0

2.5

3.0

3.5

5
0

S
E

1R AttentiRn

AttentiRn

Electrical
Consumption

Real-time
 Voltage

Figure 2: The performance of the proposed method for time
series imputation. Two methods are shown here: one con-
siders social and temporal information in the context of the
attentionmechanism, and another ignores this information.
Root Mean Square Error (RMSE) is considered in the figure
(the smaller the better).

to connect with each other. Therefore, individuals’ missing obser-
vations can be guided by their neighbors’ data, which is the basis
of our work.

To address the problem of time series imputation, various ap-
proaches have been explored in the past few decades. For example,
one practical method is to replace the missing values with the
mean value of observations at adjacent timestamps. Similar meth-
ods include smoothing [38], interpolation [1, 45], and spline [36],
which are simple and practical when data evolves smoothly. How-
ever, these methods can not capture the complex patterns of a
time series; therefore, they fail to perform imputation. Recently,
deep neural networks-based methods have been employed for data
imputation [13, 15, 50]. These methods benefit from their strong
prediction ability as well as their ability to capture temporal depen-
dencies. However, to the best of our knowledge, there is a lack of
research on the incorporation of social information and deep models
to better perform time series imputation, which we believe is a new
promising direction.

In this paper, we study the problem of social-aware time series
imputation, which is nontrivial and gives rise to several challenges.
Figure 1 demonstrates an example. In particular, given a social
network, in which each vertex indicates an individual, there is an
undirected edge between two individuals if they live close together
(i.e., the distance between their living places is less than a certain
predefined threshold). We monitor the electricity consumption of
each individual, which is represented by two-dimensional vector,
composed of daily power and voltage. At time t3, individual A’s
daily power value is missing. To complete the missing value, tradi-
tional methods considerA’s previous power value at the timestamps
t1 and t2, which, however, are also missing. Fortunately, observa-
tions of A’s neighbors provide us with a clue for the missing value.
For instance, it is natural to assume that people live close share
similar electricity consumption patterns to some extent. We call this
“surrounding influence”. Intuitively, each of individual v’s neigh-
bors has different surrounding influence on v’s observations. The

first challenge in this study is therefore how to identity the sur-
rounding influence and model the connection between the missing
observations and social context of an individual.

Returning to our example, the missing observations of individual
C at time t3 are affected by C’s observations at t1 and t2. We call
this “temporal influence”, which has different effects for different
timestamps. For instance, if some of C’s family leave for a trip
during t2, and return at t3, the electricity usage of C’s family at t1
shall be closer to that at t3 and has a larger influence than that at t2.
How to quantify and differentiate temporal influence at different
timestamps is the second challenge in this work.

Another factor that influences data imputation in our example
is the time intervals between t1, t2, and t3. Most existing time-
series imputation methods assume that the elapsed time between
the elements of a time series is equal, which may not hold true
in practice. How to handle irregular time intervals is our third
challenge.

To address the above mentioned challenges, we propose an novel
model based on a deep encoder-decoder architecture. It utilizes the
attention mechanism to incorporate surrounding influence and
temporal influence in the time series imputation task. As Figure 2
shows, the experimental results show that with the help of sur-
rounding influence and temporal influence, we can obtain a clear
improvement in imputation performance. Furthermore, we apply
Time-Aware Long Short-Term Memory (LSTM), which acts as the
basic component of our model for handling the time irregularity
issue. See details in Section 3.

We further test the proposed model on two real-world datasets.
We compare 11 different state-of-the-art baseline methods and find
that our model consistently outperforms others. More detailed
results can be found in Section 4.

Accordingly, our contributions are as follows:

• We propose a novel time series imputation framework that
takes both surrounding influence and temporal influence
into consideration.
• We apply a variant LSTM as the basic component of our
model for handling irregular time intervals.
• We construct sufficient experiments under various missing
conditions based on two real-world datasets. Experimental
results exhibit our method’s advantage over eleven baseline
methods.

Organization. The remainder of this paper is organized as follows.
We first formulate the problem and give the necessary definitions.
We then introduce the proposed model, including the model struc-
ture, the learning algorithm, and its applications. Subsequently, we
present the experimental results. Finally, we review some relevant
research and conclude the work.

2 PROBLEM DEFINITION
Let G =< V ,E > be a social network, where V is the set of users,
and each edge ei j ∈ E indicates thatvi ∈ V has a social relationship
with vj . For each user v , her behavior data is measured by a sensor
periodically, denoted as X = {x1,x2, ...,xT } ∈ RT×D . For each
timestamp t ∈ {1, 2, ...,T }, xt indicates the t-th observations withD
channels (or variables), and xdt represents the t-th observation in the

d-th channel. In the real world, many observations are missing or
erroneous. Tomark the missing data in the time series, we introduce
an indexmt for missing ones at timestamp t , wheremt = 0 if xt
is not observed, otherwisemt = 1. We also maintain an observed
sequence of X as X ′ = {xs1 ,xs2 , ...,xsL }, where sl represents the
timestamp of l-th observations, and the corresponding interval
sequence ∆, where

δl =

{
1, l = 1
sl − sl−1, l , 1 (1)

In this work, we are interested in the missing data imputation
task of time series data from users in social networks, where we
impute the missing data given the social network G, time series
dataset D = {Xn ,Mn }

N
n=1, where Xn = {x

(n)
1 , ...,x

(n)
T }, Mn =

{m
(n)
1 , ...,m

(n)
T }.

8
5.98.3

4 3.5 5.6
9.28.3

10101 1
masking sequence M

original sequence X
8

5.98.3
X4 X 3.5 5.6
XX 9.28.3

observed sequence X’

221 1
time interval sequence Δ

Figure 3: An example of the whole sequence X , masking M ,
observed sequence X ′, and time intervals ∆.

3 OUR APPROACH
Recently, recurrent sequences generated by data through an atten-
tion mechanism have shown very good performance in multiple
tasks, such as neural translation [10, 28], speech recognition [6], and
image caption generation [27]. To some extent, our task can also be
viewed as a recurrent sequence generation task that generates the
complete sequence X ∗ using the original sequences X from a user
v and her social network G. We design an attention mechanism
considering two types of information, i.e., surrounding influence
and temporal influence, to learn a sequence model for the imputa-
tion task. To handle the time irregularity due to missing data, we
use a variant LSTM cell considering different time intervals.

In this section, we describe the details for our proposed model
Social-Aware Time Series Imputation (STI). Figure 4 shows the
architecture of our proposed model.

3.1 Social Attention Network
In order to capture the surrounding influence patterns for impu-
tation, we leverage the attention mechanism to align the useful
information from users with similar behavioral patterns. We also
shows our solution to handle the time irregularity in the sequences
with missing values. This part of our proposed model is called Social
Attention Network.

LSTM and variant LSTM. To extract recurrent series patterns
from the original sequences with non-uniformed time intervals, we
first review a variant LSTM cell. The LSTM [21] recently shows its
good properties in modeling series data with recursive relations. For

instance, it can avoid the vanishing gradient problem by introducing
the gate mechanism. Given the input xt , the output of hidden state
ht is computed as below:

дt = tanh(Wдxt +Uдht−1 + bд) (2)
it = σ (Wixt +Uiht−1 + bi) (3)

ft = σ (Wf xt +Uf ht−1 + bf) (4)
ot = σ (Woxt +Uoht−1 + bf) (5)

ct = ft · ct−1 + it · дt (6)
ht = ot · tanh(ct) (7)

where ht , ct ∈ RH , H is the cell size, σ (·) is the logistic sigmoid
function, and i , f , o, and д represent input gate,forget gate, output
gate and cell state respectively. The three gates control the data
flow through the cell. In particular, the input gate i regulates the
extent to which a new value data is fed into the cell, the forget
gate f regulates the extent to which the history is forgotten, and
the output gate o decides the extent to which the value is used to
compute the output activation.

By introducing the gate structure, the LSTM unit is capable of
handling long-term dependency, but the structure has implicitly
assumed that the elapsed time between the elements of a sequence is
uniformly distributed. Hence, the time irregularity in a sequence is
not considered as being part of its structure, while it often occurs in
the sequences with missing elements, that is, the interval sequence
∆ is non-uniform.

To capture the patterns with time irregularity using LSTM, many
studies have proposed modifications to original LSTM to incorpo-
rate the elapsed time into the standard LSTM. One method involves
imputing data to maintain the regular time gaps. Based on this idea,
some studies impute data by sampling from the observed elements,
and many studies have also explored imputing data that is learned
in the optimization process. However, the imputation method can
have a serious influence on performance as the imputed data might
not reflect reality well. Another way of handling the time irregu-
larity is to modify the structure of LSTM to utilize the time gaps.
Pham et al. [34] multiplies the output of the forget gate by д(δ), i.e.,
ft = д(δt) · ft . Another way of considering the time irregularity
is to adjust the memory cell by applying the short-term memory
discount. The mathematic expressions of such an adjusted memory
are as follows:

cst = tanh(Wdct−1 + bd) (8)
ĉst = c

s
t−1 · д(δ) (9)

clt−1 = ct−1 − c
s
t−1 (10)

c∗t−1 = c
l
t−1 + ĉ

s
t (11)

c̃ = tanh(Wcxt +Ucht−1 + bc) (12)
ct = ft · c

∗
t−1 + it · c̃ (13)

Firstly, the short-termmemory component (cst) is computed by a net-
work. This decomposition process is data-driven, and its parameters
are updated at the mean time with the rest of the network parame-
ters. Secondly, the short-term memory is discounted by a weight
factor д(δ) to obtain the discounted short-term memory (ĉst). Here,

… …

T-LSTM T-LSTM T-LSTM

Memory

t1 t2 t3 t4… …

T-LSTM T-LSTM T-LSTM

Memory

t1 t2 t3 t4

… …

T-LSTM T-LSTM T-LSTM

Memory

t1 t2 t3 t4

xt
… …

…

Social Attention Network Temporal Attention Network

… …

T-LSTM T-LSTM T-LSTM

Memory

t1 t2 t3 t4

… LSTM

Output Layer

LSTM LSTM …

A
B

C

D

Figure 4: An illustration of our model, Social-Aware Time Series Imputation (STI). Our model mainly consists of two com-
ponents: Social Attention Network (left) and Temporal Attention Network (right). In the social attention network, we first
compute the fix sized memory representations of neighbors’ temporal data, and then use the concatenation with the current
hidden states of the user to generate the social context vector. In the temporal attention network, we directly feed users’
memory representation with the current hidden states to generate the temporal context vector. The concatenation of current
hidden states, social context vector and temporal context vector is used to predict the target missing elements.

д(·) is a heuristic decaying function which is monotonically non-
increasing. Different types of д(·) can be chosen according to spe-
cific application domains. For instance,д(δ) = 1/δ is appropriate for
datasets with small elapsed times, and д(δt) = 1/loд(e+δ) is prefer-
able for datasets with large elapsed times [34]. We tried several
functions д(·) but did not observe a drastic difference in the experi-
mental results; however, д(δ) = 1/δ performed slightly better that
other functions. Thus, we choose the decaying function д(δ) = 1/δ
in this work. Finally, to obtain the adjusted memory, the comple-
mentary subspace of the long-term memory (clt−1 = ct−1 − c

S
t−1) is

combined with the discounted short-term memory. This variant is
proposed in [7], named Time-Aware LSTM (T-LSTM).

Social Context Representation. Attention-based RNNs have
been successfully applied in many tasks. These models iteratively
feed their inputs by selecting relevant contents at each step. We in-
troduce our extensions to this mechanism to extract useful patterns
from social context.

For each user v , we have a group of sequences {X̂ (1) , X̂ (2) , ...,

X̂ (P) } collected from her neighbors v̂ = {v̂(1) , v̂(2) , ..., v̂(P) }. We ex-
tract their observed sequences M̂ = {M̂(1) , M̂(2) , ..., M̂(P) } and time
interval sequences ∆̂ = {∆̂(1) , ∆̂(2) , ..., ∆̂(P) }. For each neighbor
v̂(p) , a T-LSTM network described in Section 3.1 is used to encode
its original series data, which takes observed sequence X̂ ′

(p) and

interval sequence ∆̂(p) as input and produces a sequence of hidden
states ĥ(p) = {ĥ1(p) , ..., ĥs (p) } by the means of following iterative
process:

hs (p) , cs (p) = T − LSTM (x ′s (p) ,δs (p) ,hs−1(p) , cs−1(p)) (14)

It is important to note that the network parameters of T-LSTM are
shared for all neighbors.

The decoder is a standard LSTM network that reconstructs the
complete sequence X ∗. Given the recurrent states h∗s , we can cal-
culate the social context vector â. The context vector, also known
as attention vector, is a weighted average of the source states. In
the studies, Bahdanau et al. [5] and Luong et al. [28] proposed
context-based models that calculate the context vector by com-
paring encoder and decoder at each step. Such computations are
expensive. To leverage the attention mechanism without sacrificing
too much efficiency, a memory-based attention model was explored
in [10]. In the current work, we choose the memory-based attention
method to efficiently calculate the social context vector.

In the memory-based attention method, a fixed-size memory
representation is updated during the encoding. The memory repre-
sentation is matrix C ∈ RK×H , where K is the number of temporal
context vectors and a hyper-parameter in this model, and H is the
size of the cell states.C is a linear combination of the encoder states,
weighted by a score vector αs ∈ RK :

Ck =

|S |∑
s=0

αskhs (15)

αsk = so f tmax (Wαhs · ls) (16)

whereWα ∈ R
K is a parameter matrix, and ls is a vector of position-

encodings that prevents the learned context from being symmetric.
In particular, the position-encodings are used to force the first few
context vectors C1,C2... to focus on the start of the sequence and
the last few vectors ...Ck−1,Ck to focus on the end of the sequence.
Similar to network parameters of T-LSTM,Wα is shared for all
neighbors. We adapt the formula proposed in [10] to obtain ls :

Lks = (1 −
k

K
) (1 −

s

S
) +

k

K

s

S
(17)

where, k ∈ {1, 2, ...,K } is the context vector index, and S is the max-
imum sequence length across all source sequences. Hence, given
the social context, we can compute their memory representations
Ĉ = { ˆC(1) , Ĉ(2) , ..., Ĉ(P) }. We define the concatenation of these ma-
trix as C̃ , sized KP × H .

In the decoding step, we set the social context vector â, in each
step, by the means of linear combination of the rows in C̃ weighted
by a score vector β̂ .

â =
K∑
i=0

β̂iC̃i (18)

β̂ = so f tmax (Wβ̂h
∗) (19)

where h∗ represents the current hidden states of the decoder, and
Wβ̂ is the parameter matrix. In each step of the decoding, the current
stateh∗t is computed by feeding the previous stateh∗t−1, the previous
cell state c∗t−1 , and previous output x∗t−1 to decoding unit:

h∗t , c
∗
t = LSTM (x∗t−1,h

∗
t−1, c

∗
t−1) (20)

3.2 Temporal Attention Network
In the social attention network, we extract social contextual in-
formation from user v’s social network. Another important factor
that should be considered for imputation is temporal influence,
that is, how a user’s historical and future behaviors can relate to
her current state. Similar to the social attention network, we use
a memory-based attention network to capture such influence. We
name this part of our proposed model Temporal Attention Network.

Given a specific user, we extract her observed sequence X ′ and
interval sequence ∆. Like extracting memory representation before,
we also compute its memory matrix C . More specifically, we first
feed X ′ and ∆ into another T-LSTM:

hs , cs = T − LSTM (x ′s ,δs ,hs−1, cs−1) (21)

Hence, we get their hidden states h = {h1, ...,hs }, then we calculate
memory representation C by (15).

In the decoding phase, we similarly compute the temporal con-
text vector a. A slight difference is that its input is the memory
representation of a single user, rather than the concatenation of
memory representations from her neighbors:

a =
K∑
i=0

βiCi (22)

β = so f tmax (Wβh
∗) (23)

3.3 Learning and Imputation
We concatenate the hidden representation h∗t , social context vector
ât , and temporal context vector at , which preserves the informa-
tion from current states, social context and temporal context for
predicting the targets. We then feed the concatenation to a fully
connected layer and get the final prediction value.

x∗t = ϕ (h∗t , ât ,at) (24)

where, ϕ (·) is a non-linear function that maps the concatenation to
the observations.

The decoding phase aims to generate the whole sequence and to
minimize potential error in estimating the missing values. However,

Algorithm 1 training procedure

while not converged do
draw a mini-batch of sequences X(n) and their corresponding
social context sequence sets X̂(n)

// forward pass to encoder network
compute social context vector â(n) and temporal context vector
a(n)

//we omit the symbol of batch size (n) in the following state-
ments
for t in 1, 2, ...,T do

sample p ∼ U (1)
if p > γ then
h∗t , c

∗
t = LSTM (x∗t−1,h

∗
t−1, c

∗
t−1)

else
h∗t , c

∗
t = LSTM (x∗t−1 · (1−mt−1)+xt−1 ·mt−1,h∗t−1, c

∗
t−1)

end if
x∗t = ϕ (h∗t , ât ,at)

end for
compute the loss function L
// backward pass
compute gradients and apply updates

end while

we cannot compute the observation that is truly missing in the
sequence. Instead, we only calculate the error between the estimates
and the actual observations. Thus, the total loss/error for the entire
dataset D is the partial mean squared error (the l2-regularization
term is omitted in the following expression):

L (XN ,X ∗N) =
N∑
n=1

[
T∑
t=1

D∑
d=1

m
(n)
t × (x

d (n)
t − x

∗d (n)
t)2)] (25)

To train this model, we process social context X̂ to social at-
tention network and original sequence X to temporal attention
network, keeping track of each output and the latest hidden state.
The first hidden states h∗0 of decoder is given by the last hidden
states of the temporal context networks . To make the model con-
verge faster and avoid over-fitting, we adopt a mixed strategy to
feed the input data into the decoder. For some observations, we use
the real target values as each next input if they are not missing;
otherwise, we use the decoder’s estimates as the next input. For
the missing elements, we directly give the decoder’s estimates. The
fraction of samples trained using the real target values is denoted
as γ . In the section of experiment, we set γ = 0.9.

After the model is well-trained, we can use it to impute the
missing elements. Like in the learning phase, we process the social
context X̂ and original sequence X to the encoder and obtain the
candidate context vector C̃ and C . For the decoder, we give the
original values when data is observed; otherwise, we give estimates
in order to use as much information as possible from the original
sequences.

4 EXPERIMENTAL RESULTS
4.1 Datasets Description
We employ two datasets from the State Grid, the major electric
power company in China, to construct our experiments. Before
introducing our datasets, we highlight several facts about electric-
ity data collection. Electricity data, including values of real-time
current, voltage, and power, is measured by watt-hour meters. Each
meter periodically transmits different types of data to its corre-
sponding data collector. Usually, a collector receives data from
several meters that are geographically close. For instance, these
meters are assembled in different rooms on the same floor of a
building. Hence, we can consider that the meters connecting to the
same collector record the electricity usage of people or families
with social relationships. Therefore, given a user v (corresponds to
a meter), we define v’s neighbors, which have social relations with
v , as other users that share the same collector with v . More details
of our datasets are described below:
• Electrical Consumption (EC) : This dataset is provided
by the State Grid. In total, it includes the daily electrical
consumption recorded by 80,000 watt-hour meters. This data
spans from January 1st 2018 to March 31st 2018. The length
of each series is 90.
• Real-Time Voltage (RV) : This dataset, provided by the
State Grid, consists of around 20,000 electricity load series,
each ofwhich describes voltage values in three phases, recorded
every 45 minutes in each day, from June 1st 2018 to June
30th 2018. Each sequence has 32 time stamps.

To reduce computational complexity, we at most consider 8
neighbors of a user, which are selected randomly.

4.2 Baselines and Metrics
4.2.1 Comparative Baselines and Implementation Details. We com-
pare our model with multiple baselines:
• Mean, Median: We take the mean and median values of the
observations in each channel to replace the missing data.
• Linear, Cubic: Linear interpolation and cubic interpolation
are two interpolation methods that are used to impute the
data.
• KNN: This method uses k-nearest neighbor to find similar
samples and imputed unobserved data by calculating the
weighted average of similar observations.
• MICE [11]: This is a method that combines the multiple im-
putation technique [37] with the chained equation approach
to impute the missing data.
• MissForest [40]: This is a non-parametric imputation method
that uses random forests trained on the observed values to
predict the missing values.
• Soft-Impute [29]: This approach iteratively updates the miss-
ing elements by efficiently solving the convex relaxation of
the approximate matrix completion problem.
• GRU-D [13]: This is a GRU-based model that incorporates
masking and time intervals inside the GRU architecture
to capture the informative missing data. We implement it
slightly different from the original model proposed in [13].
Rather than use the hidden features of the last cell to predict

the label, we use the hidden features in each cell to predict
the next observations.
• LSTM-Impute [26]: This method initializes the missing ele-
ments with mean values, and updates them by training an
RNN model with a LSTM unit.
• VAE [47]: This is a MCMC-based missing data imputation
technique with a trained Variational Autoencoder (VAE).
• STI : This is our proposedmodel.We initialize our model with
different parameters for different datasets. For the RV dataset,
we use a 1-layer 32-unit T-LSTM encoder and a 1-layer 32
unit LSTM decoder. The memory size is also 32. The model
is optimized using an Adam optimizer with a learning rate
of 1 × 10−3 in the encoder and 5 × 10−3 in the decoder, and
the batch size is 256. For the EC dataset, we set all LSTM
dimensions to 16 and the memory size to 16. Again, we train
the model using an Adam optimizer with a learning rate of
2 × 10−4 in our encoder and 2 × 10−3 in our decoder, and
the batch size is 512. We set the dropout rate as 0.2 (0.8 keep
probability).

4.2.2 Evaluation Metrics: We use Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE) to measure our model. Their for-
mulas are:

MAE =

∑
|x − x∗ |

n

RMSE = sqrt (

∑
(x − x∗)2

n
)

where x is a prediction, x∗ is the ground truth, and n is the number
of cases.

4.3 Performance Comparison with Randomly
Missing Elements

To evaluate the performance of our model on these two datasets,
we first assume that elements are randomly missing. With a miss-
ing rate θ , we randomly drop values for each time series from a
Bernoulli distribution U(θ). We experiment with θ varying from
0.2 to 0.6. In the training phase, we select the observed sequences
for training our model, and use the dropped values to test its per-
formance.

Table 1 reports the performance of our proposed method com-
pared to all the other competing methods mentioned in Section 4.2.1
on the RV and EC datasets. Our proposedmodel significantly outper-
forms all comparative methods by achieving the lowest RMSE and
MAE on these datasets. Another finding is that performance drops
as the missing rate increases, which might be caused by the less
information these models can learn with. Specifically, the simple im-
putation methods (Median and Mean) do not perform well, because
they only use the observed values to complete the fixed values in
each channel. For interpolate-based methods (Linear and Cubic),
they further consider the intra-stream information at the nearest
timestamp, and thereby achieve better performance. However, they
lack the insight of inter-stream information. KNN, SoftImpute, Miss-
Forest, and MICE are traditional imputation methods that consider
both intra-stream and inter-stream useful information. However,
they fail to capture the complex temporal dependence. Therefore,
our proposed method significantly outperforms those methods.

Dataset Missing Rate 0.2 0.3 0.4 0.5 0.6

Method MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

EC

Mean 3.3787 4.3235 3.3794 4.3263 3.3810 4.3295 3.3850 4.3375 3.3913 4.3498
Median 3.2818 4.5337 3.2850 4.5394 3.2905 4.5478 3.3015 4.5654 3.3151 4.5838
Linear 1.5783 2.5173 1.6246 2.5835 1.6674 2.6431 1.7249 2.7246 1.7972 2.8248
Cubic 2.0246 3.1914 2.1461 3.4118 2.2667 3.6288 2.4358 4.0081 2.6691 4.7918
KNN 2.2455 3.3251 2.4224 3.5077 2.5762 3.6617 2.7576 3.8407 2.9672 4.0431

SoftImpute 2.4018 3.5193 2.6459 3.7814 2.8377 3.9767 2.9746 4.1007 3.0319 4.1303
MissForest 4.0659 5.3842 4.0528 5.3695 4.0474 5.3664 4.0294 5.3412 4.0068 5.3174

MICE 3.4634 4.5654 3.4590 4.5777 3.4578 4.5919 3.4538 4.6152 3.4550 4.6591
VAE 1.5375 2.3085 1.5883 2.4382 1.6504 2.4979 1.6882 2.6148 1.7374 2.6515

LSTM-Impute 3.0315 4.2238 3.1687 4.3324 3.2529 4.3206 3.4526 4.5627 3.7708 4.7990
GRU-D 1.7024 2.5568 1.9385 2.7868 2.0511 2.9136 2.0780 2.9304 1.9568 2.8918
STI 1.4667 2.2172 1.4864 2.2574 1.5207 2.3745 1.5696 2.3924 1.6159 2.4505

RV

Mean 4.0893 5.0340 4.0957 5.0435 4.1076 5.0581 4.1184 5.0835 4.1547 5.1397
Median 4.0250 5.2811 4.0465 5.2929 4.0701 5.3301 4.0975 5.3541 4.1594 5.4246
Linear 2.0697 3.4058 2.1316 3.4778 2.2179 3.5714 2.3255 3.7051 2.5487 3.9549
Cubic 2.7329 4.4551 2.8801 4.7857 3.0976 5.3014 3.3495 5.8316 3.9971 7.7123
KNN 3.1175 4.3509 3.3162 4.5230 3.5550 4.7334 3.8224 4.9665 4.1645 5.2793

SoftImpute 4.0263 5.1599 5.4152 6.9389 6.4592 8.4186 6.4171 8.4777 5.3860 7.0291
MissForest 4.1727 5.3729 4.1825 5.3942 4.2012 5.4243 4.2203 5.4701 4.2952 5.5940

MICE 4.3518 5.7909 4.3806 5.8305 4.4099 5.8764 4.4302 5.9083 4.4641 5.9477
VAE 2.3001 3.2631 2.7272 4.5136 3.3440 6.4581 3.6293 6.7901 4.4053 8.8703

LSTM-Impute 3.0315 4.2238 3.1687 4.3324 3.2529 4.3206 3.4526 4.5627 3.7708 4.7991
GRU-D 2.8582 4.1190 3.0640 4.3150 3.1822 4.3652 3.1583 4.4811 3.5772 4.7590
STI 2.0008 2.9426 2.0787 3.0858 2.1258 3.1306 2.2795 3.3187 2.4963 3.5972

Table 1: Performance of different models in imputation using the EC and RV datasets.The best results are in boldface, and the
second-best results are underlined.

For neural networks-based methods, our method outperforms
VAE, LSTM-Impute, and GRU-D. LSTM-Impute performs poorly in
our evaluation, and its performance on the EC dataset is even worse
than some traditional imputation methods. This might be because
replacing the missing elements with average values can influence
the original temporal distribution, which harms performance. GRU-
D designs a recurrent architecture that uses both time intervals
and masking information to update the missing data. However, it
overlooks the importance of global temporal contextual information.
VAE is a good approach for replacing missing data, but it lacks the
modeling of temporal patterns. The best performance of our method
demonstrates that incorporating social and temporal contextual
information through the attention encoder is helpful for imputation.

4.4 Ablation Analysis
This section aims to demonstrate the effectiveness of the different
components of our proposed model. We first list some variants of
our models:

• STI : This is our complete model. We have described the
parameter settings for this model in Section 4.2.1.
• STI - social: This model drops the social context vector in
the output layer.

• STI (LSTM): This variant uses the original LSTM as the en-
coder instead of T-LSTM. The remaining settings for this
variant are the same as for our proposed model.
• STI - social - temporal: This variant removes both temporal
and social contexts in our proposed model, i.e., an RNN with
a LSTM cell.

The result of different variants under various settings is reported in
Table 2. We can observe the improvement due to adding the social
attention network in most cases. This finding suggests that the
factor of social relations is helpful, especially on the RV dataset. We
also note that our model without social attention network still out-
performs most cases when we drop our attention encoder, which
demonstrates the importance to model temporal influence in a
proper way. We also observed that when we replace the T-LSTM en-
coder as a LSTM encoder, performance drops. Therefore, using the
T-LSTM encoder is helpful.

4.5 Parameter Analysis
In this section, we explore how the hyper-parameters influence the
performance of our model. We fix the remaining hyper-parameters
of our models when we vary one hyper-parameter. We present the
results for the EC and RV datasets with the same missing rate of
0.5. Figure 5(a) and Figure 5(c) report the relationship between cell
size H and final performance. We observed that our model, with

Dataset Missing Rate 0.2 0.3 0.4 0.5 0.6

Method MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

EC

STI 1.4667 2.2172 1.4864 2.2574 1.5207 2.3745 1.5696 2.3924 1.6159 2.4505
STI - social 1.4628 2.2337 1.4985 2.3364 1.5463 2.3432 1.5672 2.4208 1.6161 2.4593
STI (LSTM) 1.4732 2.2894 1.4982 2.3165 1.5471 2.3747 1.5837 2.4231 1.6626 2.4938

STI - temporal - social 1.5066 2.3134 1.5384 2.4002 1.5822 2.4175 1.5903 2.4510 1.6851 2.5350

RV

STI 2.0008 2.9426 2.0787 3.0858 2.1258 3.1306 2.2795 3.3187 2.4963 3.5972
STI - social 2.0487 3.0071 2.1167 3.1362 2.1383 3.1392 2.2912 3.3465 2.5390 3.6977
STI (LSTM) 2.0584 2.9972 2.0916 3.1781 2.1498 3.1482 2.2826 3.2925 2.5219 3.5675

STI - temporal - social 2.0641 3.0035 2.1920 3.1756 2.2661 3.2115 2.3573 3.3520 2.6095 3.7819
Table 2: Ablation analysis for the EC and RV datasets. The best results are in boldface and the second-best results are under-
lined.

0 1 2 3 4 5 6 7 8
log2(H)

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2 MAE

RMSE

(a) Varing cell size H on EC dataset.

0 1 2 3 4 5 6 7
log2(K)

1.6

1.8

2.0

2.2

2.4

MAE
RMSE

(b) Varing memory size K on EC dataset.

0 1 2 3 4 5 6 7 8
log2(H)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5 MAE
RMSE

(c) Varing cell size H on RV dataset.

0 1 2 3 4 5 6 7
log2(K)

2.4

2.6

2.8

3.0

3.2

3.4

3.6

MAE
RMSE

(d) Varing memory size K on RV dataset.

Figure 5: Model parameter analysis. (a), (b) testing on EC dataset and (c), (d) testing on RV dataset. The Missing ratio is set as
0.5. (a), (c) presents the sensitivity of cell size H and (b), (d) shows the sensitivity of memory size K .

a cell size that is too small (less than 4 on both datasets) or too
large (more than 32 on RV) can decrease imputation performance.
Hence, choosing a proper cell size H is crucial. Memory size K is
another crucial hyper-parameter. Figure 5(b) and Figure 5(d) present
how K influences the model’s performance. For memory-based
attention, memory size K can be considered as a trade-off between
computational time and representational power. A large K allows
the model to compute complex source representations, while a
small K of 1 limits the source representation to a single vector. Britz
et al. [10] showed that a larger K can achieve better performance
in neural translation task. In our experiment, we find that within a
certain range, the performance increases as the K increases in size.
However, we also note that performance drastically drops when K
becomes relatively large. This might be related to the over-fitting
phenomenon, whereby the capability of representation becomes
large.

We also explore how varying Ks influences the learning proce-
dure. Figure 6 shows that a larger K tends to have a faster conver-
gence in terms of training loss on both two datasets.

4.6 Generalization Analysis
In the previous sections, we use the full dataset to train the model,
and it achieves very good performance. However, in many real-
world senarios, the method is impractical due to the huge scale of
historical data and the new data that is being collected continuously.
Based on these concerns, we conduct a new experimental setting to
explore how our model performs when trained with a subset of col-
lected data. In particular, we randomly draw 1/n (n = 1, 2, 4, ..., 64)
from the EC dataset with a missing rate of 0.5 , and use this data
to train the model. Then we use the trained model to fill the miss-
ing elements in the full datasets. Figure 7 presents the results. Not
surprisingly, performance drops as our model is trained with less
data in both metrics. However, we also observe that the degree of
the drop is relatively slight. For instance, using only 1/32 (around
2.5K time series) of the datasets, our model can still outperform
other baselines. This suggests that our model has a good capacity
for generalization.

4.7 Comparison of Performance using
Simulated Real-World Missing Data

In the previous section, we experiment with the assumption that
elements are randomly missing and observed that our method
outperforms other baselines with various missing rates. However,

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0
×104

0 50 100 150 200
epoch(s)

3.0

3.5

4.0

4.5

5.0

5.5

6.0
K=1
K=4
K=16
K=64

(a) Training curve on the EC dataset. 0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0
×102

0 50 100 150 200
epoch(s)

1

2

3

4

5

6
K=1
K=4
K=16
K=64

(b) Training curve on the RV dataset.

Figure 6: Comparison concerning varing memory size K for
the training loss curve on EC and RV datasets. It shows that
a larger K tends to converge faster.

1 1/2 1/4 1/8 1/16 1/32 1/64
fraction of samples to train model

1.6

1.8

2.0

2.2

2.4

2.6

MAE
RMSE

Figure 7: Comparison of performance when applying a sub-
set of the whole EC dataset with amissing rate of 0.5 to train
our model. The x-axis indicates the fraction of samples is
used. The y-axis indicates the two evaluation metrics.

in the real-world, completely random missing is rare in time series ,
because data is usually missing in blocks. To evaluate the accuracy
of our method in completing the elements missing in real-world
situations, we establish a new setting in the EC dataset. Firstly, we
extend the time span of the EC dataset from the first 90 days to the
first 180 days in 2018. We then partition the extended dataset into
two parts, named EC-A and EC-B , each of which has consecutive
data for 90 days. We extract the masking matrix from EC-A and
EC-B, and name themMA andMB , respectively. We drop the values
of the elements in EC-A that correspond to its successor’s (i.e., from
the 91st day to the 180th day in 2018) masking matrixMB . If those
elements are present in EC-A, their values are used as a ground
truth to measure the performance of our predictions. If a time series
is all observed in EC-B, then we drop this series in our datasets. In
total, the dataset used in this section consists of around 20K time
series. In this section, we do not randomly drop some non-missing
elements to generate ground truth, as real-world missing patterns
are not random. Figure 8 shows an example of how to drop missing
elements.

Table 3 reports the comparison between the levels of perfor-
mance of the different models on this dataset. Our model achieves
state-of-the-art performance on this dataset and its improvement
on the performance of other baseline methods is significant. This

8
5.9

…
8.3…

6.34 3.5 X 5.6
6.89.2 X8.3 8.3

1.7…
7.4…

X6.8 1.6 8.6 5.3
X6.4 3.39.6

1… 1111 0 … 10111 1Mask

Data

day 1 to day 90 in 2018 day 91 to day 180 in 2018

Figure 8: An illustration of ground truth generation on the
EC dataset to simulate real-world missing data.

finding demonstrates that our model can also achieve a good per-
formance in the real-world situations in which the elements are
not randomly missing. The performance of our model that does
not consider social influence is lower than our complete model, but
it still remains competitive concerning these benchmarks. Linear
Interpolation is still a competitive method, and following are three
neural imputation models. Another interesting finding is that while
the performance of our model on this dataset is slightly better than
that on the EC dataset, with a missing rate of 0.4, many baseline
methods (e.g. MICE, Cubic) performs worse than they do under
the same condition. This again demonstrates the adaptability and
stability of our model under different missing conditions.

Method MAE RMSE Method MAE RMSE

Mean 2.7626 4.1134 Median 2.8156 4.4493
Linear 1.7112 2.9973 Cubic 9.2609 67.5511
KNN 2.5144 3.9050 SoftImpute 2.5384 3.9342
MICE 2.8304 4.3208 MissForest 3.2628 4.9611
VAE 1.7067 3.0243 LSTM-Impute 2.4445 3.8235
GRU-D 1.9298 3.3543 STI - social 1.6223 2.6731
STI 1.5837 2.6412

Table 3: Performance on the EC dataset with simulatedmiss-
ing data.The best results are in boldface, and the second-best
results are underlined.

5 RELATEDWORK

Time Series Modeling. For modeling time series data, plenty of
parametric methods are proposed, including the auto-regressive
models [4, 39], the kernel models [25], and the hidden Markov
models [46, 49]. Recently, many time series model based on neural
networks have been explored [21, 31]. More recent works explore
to use deep learning methods to extract high-level representation
of time series data [43, 44].

Traditional imputation methods for time series data. Over
the years, quite a few imputation methods for time series data have
been explored. The majority of them have concentrated on recon-
structing missing elements by utilizing the temporal relationship
within each data stream, such as the EM algorithm [18],the Miss-
Forest, [40] and the kernel method[35]. Multiple imputation [11]
was also developed with these imputation methods to reduce un-
certainty, by repeating the imputation procedure several times and

giving the averaged estimates. However, running multiple models
to fit the measured data during imputation introduces a great deal
computational cost, which is a practical concern.

Imputationmethods based on recurrent neural networks.Re-
cently, recurrent neural networks (RNNs) have achieved the state-of-
the-art performance in many tasks with sequential data, including
machine translation and speech recognition. RNNs generate a se-
quence of hidden states ht , as a function of the previous hidden
states ht−1 and the input for position t . RNNs with LSTM or GRU
units enjoy several benefits like capturing long-term sequential
dependencies and supporting variable-length data input. The RNNs
for missing data have also been studied in many works and have
been applied in speech recognition [2] and mortality prediction
[13]. Previous works in this area [8, 41] have tried to first replace
the missing elements with fixed values (such as the mean), most
recent observations or values learned by other imputation algo-
rithms, and then use the RNNs to update the initial data. However,
the input sequences with pre-imputed values might have a differ-
ent data distribution from the original ones, which can influence
final performance when applying the RNNs to fit the data with
pre-imputed values.

More recent advances take time irregularity into account. In
other words, these papers model observations and intervals at the
same time [13, 15, 50]. By concatenating information of observa-
tions and time gaps, they use these concatenation as the input for
their customized RNNs. Different approaches of concatenation have
been tried in these works. For instance, Che et al. [13] concatenate
the latest observations, mean values, and time intervals as inputs
to fit the customized GRU network. However, these works lack the
insight of the temporal context of the whole time series and do not
consider incorporating temporal and social patterns .

Recurrent neural networks with irregular intervals. Most of
the proposed studies on RNNs assume that the interval between
two consecutive timestamps is a constant value. However, it may
not hold true in many real-world scenarios [7, 52]. For addressing
this issue, many studies consider modifying gate structures of the
LSTM cell [7, 24, 34]. Some studies also explore to add new gates
to better model time gaps [32, 52]. In particular, Neil et al. [32]
introduce a new gate, named time gate, and equip it with LSTM to
model time intervals between two successive user behavior. Besides,
Baytas et al. [7] adjust the memory cell of LSTM by discounting the
short-term memory, and Beutel et al. [9] incorporate time gaps in
the RNN by performing an element-wise product of model’s hidden
states with the embedding of time gaps.

Sequence modeling with attention mechanism. Learning se-
quence alignments via attention is also relevant to our work. Re-
cently, sequence-to-sequence models with attention mechanism
have achieved remarkable successes in many tasks, such as ma-
chine translation [10, 28], speech recognition [6], and image caption
generation [27].This success has motivated us to extend this mech-
anism to the time series imputation field. Attention mechanisms
can be viewed as feature extractors that allow the modeling of de-
pendencies without regard to their distance in the input or output
sequences [5]. The most popular approaches first build an encoder-
decoder architecture consisting of two RNNs and use an attention

mechanism to align the target to source tokens [5]. Recently, re-
search in this field has focused on reducing the computational
cost. Luong et al. [28] introduce various attention mechanisms
that are computationally simpler and perform just as well as the
model in [28]. Kalchbrenner et al. [23] propose a linear time archi-
tecture based on stacked convolutional neural networks. Gehring
et al. [20] also propose the use of convolutional encoders to speed
up neural machine translation. de Brébisson and Vincent [17] ex-
plore a linear attention mechanism using covariance matrices for
information retrieval. Britz et al. [10] propose an end-to-end mem-
ory network based on a recurrent attention mechanism instead
of sequence-aligned recurrence, and this method has shown good
performance on several language modeling tasks, and is used in
our model. Vaswani et al. [42] try to increase the capability of paral-
lelism of the attention mechanism by using pure attention networks
rather than recurrent structures. Location-based attention [48] has
also been studied in the field of image recognition.

Time series in social networks. Our work is also relevant to
studies on the evolution of user behavior in social networks [3,
12, 16, 30]. Using data from social networks, these studies explore
the temporal connection between individual behavior and network
properties. For instance, Asur and Huberman [3] use the time series
of users’ tweets about movies to predict movies’ revenue. McAuley
and Leskovec [30] study the process of user expertise on review
websites, and find that modeling users’ experience helps to discover
when users acquire product in rating systems. Many studies exam-
ine the spread of behaviors or health conditions based on temporal
data collected in networks [12, 16]. In particular, Christakis and
Fowler [16] examine the spread of obesity on a large social network
of 12K people over 32 years, and find that social distance tends to be
more important than geographic distance with people’s networks.

6 CONCLUSION AND FUTUREWORK
To what extent can your friends disclose your information? In this
paper, we proposed a novel social-aware time series imputation
framework, that considers social influence and temporal influence
to infer missing values in time series. To incorporate these two
factors, we designed two attention mechanisms in our model. Ex-
perimental results on real-world datasets show that our model can
consistently outperform 11 baseline methods.

There are at least two kinds of perspectives. From the social
networks side, in this paper we only exploited a small part of con-
textual information in social networks, we would like to utilize
other useful patterns such as network structures and user interac-
tions in the future work. From the practical side, we would like to
explore the use of our approach into more real-world scenes.

Acknowledgements. The work is supported by NSFC (61702447), the
Fundamental Research Funds for the Central Universities, and a research
funding from the State Grid of China.

REFERENCES
[1] Sahil Agarwal, Sanket Khade, Yogesh Dandawate, and Prasad Khandekar. 2015.

Three dimensional image reconstruction using interpolation of distance and
image registration. In IC4. IEEE, 1–5.

[2] Abdul Manan Ahmad, Saliza Ismail, and DF Samaon. 2004. Recurrent neural
network with backpropagation through time for speech recognition. In ISCIT,

Vol. 1. IEEE, 98–102.
[3] Sitaram Asur and Bernardo A Huberman. 2010. Predicting the future with social

media. In WI/IAT. IEEE Computer Society, 492–499.
[4] Anthony Bagnall and Gareth Janacek. 2014. A Run Length Transformation for

Discriminating Between Auto Regressive Time Series. Journal of Classification
31, 2 (2014), 154–178.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[6] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, and
Yoshua Bengio. 2016. End-to-end attention-based large vocabulary speech recog-
nition. In ICASSP. IEEE, 4945–4949.

[7] Inci M Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil K Jain, and Jiayu Zhou. 2017.
Patient subtyping via time-aware LSTM networks. In SIGKDD. 65–74.

[8] Yoshua Bengio and Francois Gingras. 1996. Recurrent neural networks formissing
or asynchronous data. In Advances in neural information processing systems. 395–
401.

[9] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H
Chi. 2018. Latent Cross: Making Use of Context in Recurrent Recommender
Systems. In WSDM. ACM, 46–54.

[10] Denny Britz, Melody Guan, and Minh-Thang Luong. 2017. Efficient Attention
using a Fixed-Size Memory Representation. In EMNLP. 392–400.

[11] S van Buuren and Karin Groothuis-Oudshoorn. 2010. mice: Multivariate imputa-
tion by chained equations in R. Journal of statistical software (2010), 1–68.

[12] Damon Centola. 2010. The spread of behavior in an online social network
experiment. science 329, 5996 (2010), 1194–1197.

[13] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan
Liu. 2018. Recurrent neural networks for multivariate time series with missing
values. Scientific reports 8, 1 (2018), 6085.

[14] Xi Chen, Jefrey Lijffijt, and Tijl De Bie. 2018. Quantifying and minimizing risk of
conflict in social networks. In SIGKDD. ACM, 1197–1205.

[15] Edward Choi, Mohammad Taha Bahadori, Andy Schuetz, Walter F Stewart, and
Jimeng Sun. 2016. Doctor ai: Predicting clinical events via recurrent neural
networks. In Machine Learning for Healthcare Conference. 301–318.

[16] Nicholas A Christakis and James H Fowler. 2007. The spread of obesity in a large
social network over 32 years. New England Journal of Medicine 357, 4 (2007),
370–379.

[17] Alexandre de Brébisson and Pascal Vincent. 2016. A Cheap Linear Attention
Mechanism with Fast Lookups and Fixed-Size Representations. arXiv preprint
arXiv:1609.05866 (2016).

[18] Arthur P Dempster, NanM Laird, and Donald B Rubin. 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the royal statistical society.
Series B (methodological) (1977), 1–38.

[19] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-
Rodriguez, and Le Song. 2016. Recurrent Marked Temporal Point Pro-
cesses:Embedding Event History to Vector. In SIGKDD. 1555–1564.

[20] Jonas Gehring, Michael Auli, David Grangier, and Yann Dauphin. 2017. A Convo-
lutional Encoder Model for Neural Machine Translation. In ACL, Vol. 1. 123–135.

[21] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
Computation 9, 8 (1997), 1735–1780.

[22] Vijay Manikandan Janakiraman, Bryan Matthews, and Nikunj Oza. 2017. Finding
Precursors to Anomalous Drop in Airspeed During a Flight’s Takeoff. In SIGKDD.
ACM, 1843–1852.

[23] Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex
Graves, and Koray Kavukcuoglu. 2016. Neural machine translation in linear time.
arXiv preprint arXiv:1610.10099 (2016).

[24] Dejiang Kong and Fei Wu. 2018. HST-LSTM: A Hierarchical Spatial-Temporal
Long-Short TermMemory Network for Location Prediction.. In IJCAI. 2341–2347.

[25] T. Kurashima, T. Althoff, and J. Leskovec. 2018. Modeling Interdependent and
Periodic Real-World Action Sequences. (2018).

[26] Zachary C Lipton, David Kale, and Randall Wetzel. 2016. Directly modeling
missing data in sequences with rnns: Improved classification of clinical time
series. In Machine Learning for Healthcare Conference. 253–270.

[27] Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard Socher. 2017. Knowing when
to look: Adaptive attention via a visual sentinel for image captioning. In CVPR,
Vol. 6. 2.

[28] Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effective Ap-
proaches to Attention-based Neural Machine Translation. In EMNLP. 1412–1421.

[29] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. 2010. Spectral regular-
ization algorithms for learning large incomplete matrices. Journal of Machine
Learning Research 11, Aug (2010), 2287–2322.

[30] Julian John McAuley and Jure Leskovec. 2013. From amateurs to connoisseurs:
modeling the evolution of user expertise through online reviews. InWWW. ACM,
897–908.

[31] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-
danpur. 2010. Recurrent neural network based language model. In ISCA.

[32] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. 2016. Phased lstm: Accelerating
recurrent network training for long or event-based sequences. In Advances in
Neural Information Processing Systems. 3882–3890.

[33] Tim Op De Beéck, Wannes Meert, Kurt Schütte, Benedicte Vanwanseele, and
Jesse Davis. 2018. Fatigue Prediction in Outdoor Runners Via Machine Learning
and Sensor Fusion. In SIGKDD. ACM, 606–615.

[34] Trang Pham, Truyen Tran, Dinh Phung, and Svetha Venkatesh. 2016. Deepcare:
A deep dynamic memory model for predictive medicine. In PAKDD. Springer,
30–41.

[35] Kira Rehfeld, Norbert Marwan, Jobst Heitzig, and Jürgen Kurths. 2011. Com-
parison of correlation analysis techniques for irregularly sampled time series.
Nonlinear Processes in Geophysics 18, 3 (2011), 389–404.

[36] Christian H Reinsch. 1967. Smoothing by spline functions. Numer. Math. 10, 3
(1967), 177–183.

[37] Donald B Rubin. 2004. Multiple imputation for nonresponse in surveys. Vol. 81.
John Wiley & Sons.

[38] Abraham Savitzky and Marcel JE Golay. 1964. Smoothing and differentiation of
data by simplified least squares procedures. Analytical Chemistry 36, 8 (1964),
1627–1639.

[39] Mohammad Shokoohi-Yekta, Yanping Chen, Bilson Campana, Bing Hu, Jesin
Zakaria, and Eamonn Keogh. 2015. Discovery of Meaningful Rules in Time Series.
In SIGKDD. 1085–1094.

[40] Daniel J Stekhoven and Peter Bühlmann. 2011. MissForest: non-parametric
missing value imputation for mixed-type data. Bioinformatics 28, 1 (2011), 112–
118.

[41] Volker Tresp and Thomas Briegel. 1998. A solution for missing data in recurrent
neural networks with an application to blood glucose prediction. In Advances in
Neural Information Processing Systems. 971–977.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS. 5998–6008.

[43] Jingyuan Wang, Ze Wang, Jianfeng Li, and Junjie Wu. 2018. Multilevel Wavelet
Decomposition Network for Interpretable Time Series Analysis. (2018), 2437–
2446.

[44] Yunbo Wang, Zhifeng Gao, Mingsheng Long, Jianmin Wang, and Philip S Yu.
2018. PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in
Spatiotemporal Predictive Learning. (2018).

[45] Norbert Wiener, Norbert Wiener, Cyberneticist Mathematician, Norbert Wiener,
Norbert Wiener, and Cybernéticien Mathématicien. 1949. Extrapolation, interpo-
lation, and smoothing of stationary time series: with engineering applications.
(1949).

[46] Tao Wu and David F Gleich. 2017. Retrospective Higher-Order Markov Processes
for User Trails. In SIGKDD. 1185–1194.

[47] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li,
Ying Liu, Youjian Zhao, Dan Pei, Yang Feng, et al. 2018. Unsupervised Anomaly
Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications.
In WWW. ACM, 187–196.

[48] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual attention. In ICML. 2048–2057.

[49] Yun Yang and Jianmin Jiang. 2014. HMM-based hybrid meta-clustering ensemble
for temporal data. Knowledge-Based Systems 56, C (2014), 299–310.

[50] Jinsung Yoon, William R Zame, and Mihaela van der Schaar. 2017. Multi-
directional Recurrent Neural Networks: A Novel Method for Estimating Missing
Data. (2017).

[51] Chen Zhang, Yijun Wang, Can Chen, Changying Du, Hongzhi Yin, and Hao
Wang. 2018. StockAssIstant: A Stock AI Assistant for Reliability Modeling of
Stock Comments. In SIGKDD. ACM, 2710–2719.

[52] Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng
Cai. 2017. What to do next: Modeling user behaviors by time-lstm. In IJCAI.
3602–3608.

	Abstract
	1 Introduction
	2 Problem Definition
	3 Our Approach
	3.1 Social Attention Network
	3.2 Temporal Attention Network
	3.3 Learning and Imputation

	4 Experimental Results
	4.1 Datasets Description
	4.2 Baselines and Metrics
	4.3 Performance Comparison with Randomly Missing Elements
	4.4 Ablation Analysis
	4.5 Parameter Analysis
	4.6 Generalization Analysis
	4.7 Comparison of Performance using Simulated Real-World Missing Data

	5 Related Work
	6 Conclusion and Future Work
	References

