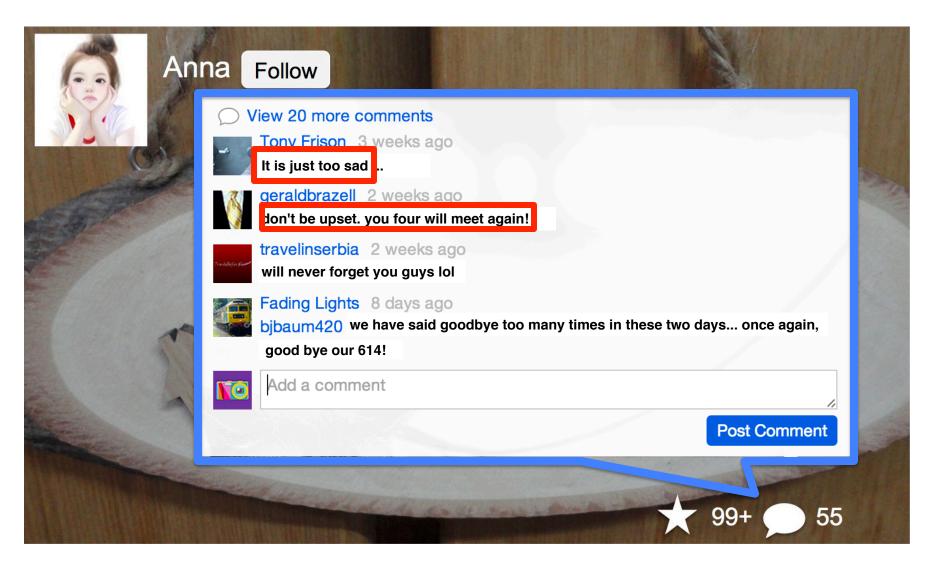
Computational Models for Social Influence and Diffusion

Yang Yang and Jie Tang
Zhejiang University
Tsinghua University

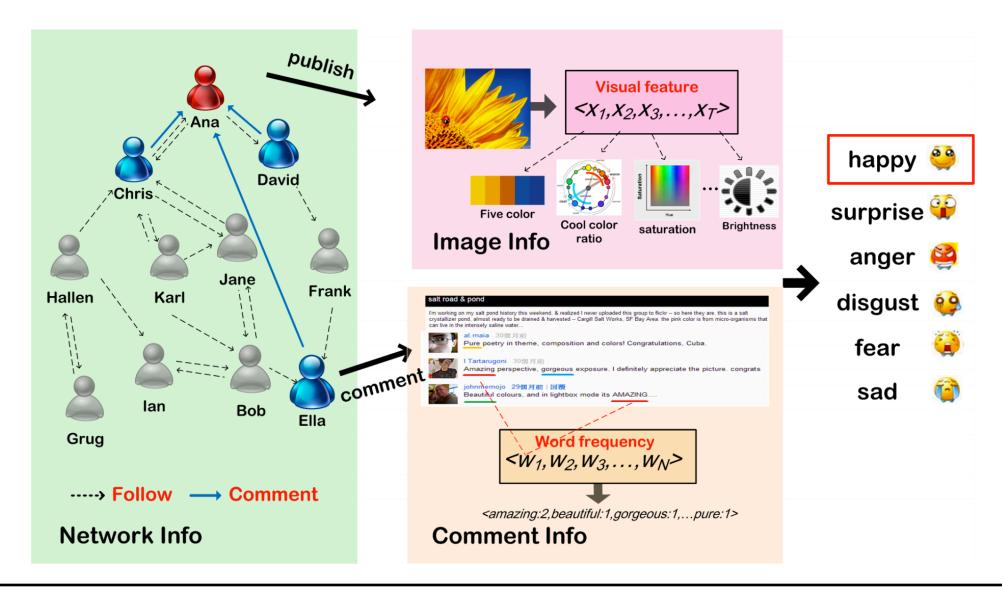
Homepage: http://keg.cs.tsinghua.edu.cn/jietang/

Part II:

User Emotion Influence and Influence based Network Embedding


Yang Yang, Jia Jia, Boya Wu, and Jie Tang. **Social Role-Aware Emotion Contagion in Image Social Networks.** AAAI, 2016.

Yang Yang, Jia Jia, Shumei Zhang, Boya Wu, Qicong Chen, Juanzi Li, Chunxiao Xing, and Jie Tang. **How Do Your Friends on Social Media Disclose Your Emotions?** AAAI, 2014.


Was Anna Happy When She Published This Photo On Flickr?

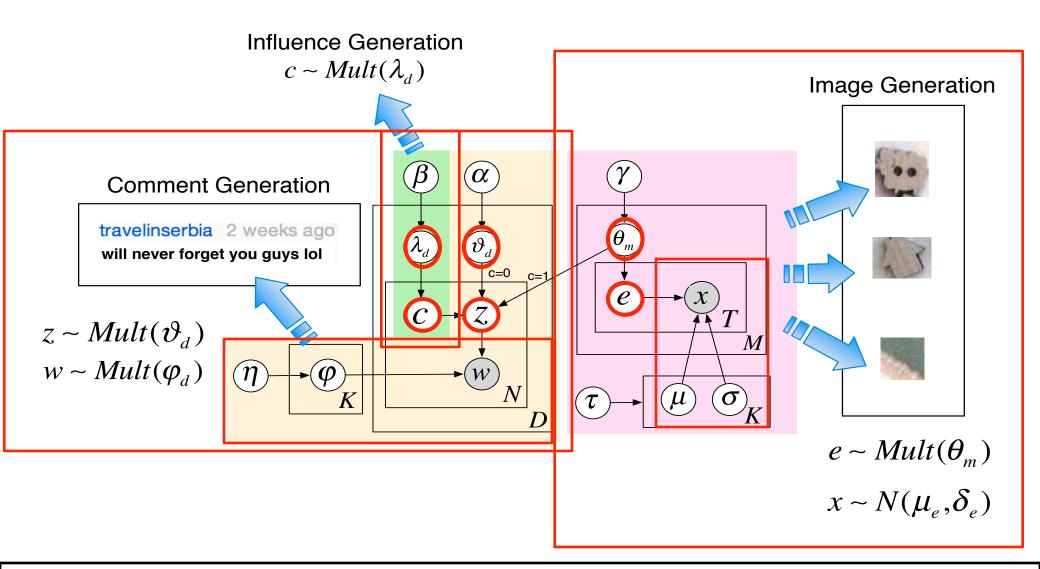
To What Extent Your Friends Will Disclose Your Emotions?

Problem

Yang Yang, Jia Jia, Shumei Zhang, Boya Wu, Qicong Chen, Juanzi Li, Chunxiao Xing, and Jie Tang. **How Do Your Friends on Social Media Disclose Your Emotions?** AAAI, 2014.

Predicting Users' Emotional Status

- Input: An image social network G=<V, M, D, E, R, L>, where V is a set of users, M is a set of images, D is a set of comments, E represents following relationships between users, each element in R (v, m, t) denotes that user v publishes image m at time t, and an edge in L (v, d, m) indicates that user v leaves a comment d under image m.
- We use a matrix Y to denote users' emotional status, where y_{vt} indicates v's emotion at time t. y_{vt} ∈{happiness, surprise, anger, disgust, fear, sadness}
- Task: Given G, Y, a time stamp t, our goal is to learn


$$f: G = (V, M, E, R), t, Y_{\cdot 1 \dots t-1} \to Y_{\cdot t}$$

Challenges

 How to model the image information and content information jointly?

 How to learn the association between the implied emotions of different comments?

Emotion Learning Method

Yang Yang, Jia Jia, Shumei Zhang, Boya Wu, Qicong Chen, Juanzi Li, Chunxiao Xing, and Jie Tang. **How Do Your Friends on Social Media Disclose Your Emotions?** AAAI, 2014.

Generative Process

```
Input: the hyper-parameters \alpha, \beta_0, b_0, b_1, \gamma, \eta, and \tau, the
          image-based social network G
 foreach image m \in M do
      foreach visual feature x_{mt} of m do
                                                                                          Visual feature
           Generate e_{mt} \sim \text{Mult}(\theta_m);
                                                                                            generation
           Generate x_{mt} \sim N(x_{mt}|\mu_{e_{mt}t}, \delta_{e_{mt}t});
      end
      foreach comment d, where a_{md} \in A do
           foreach word w_{di} of d do
                Generate c_{di} \sim \text{Mult}(\lambda_d);
                if c_{di} == 0 then
                                                                                         User influence
                     Generate z_{di} \sim \text{Mult}(\theta_d);
                                                                                            generation
                end
                if c_{di} == 1 then
                     Generate z_{di} \sim \text{Mult}(\theta_m);
                end
                Generate w_{di} \sim \text{Mult}(\varphi_{z_{di}})
                                                                                         User comment
           end
      end
                                                                                            generation
 end
Algorithm 1: Probabilistic generative process in the
```

proposed model.

Learning Algorithm

- We employ Gibbs sampling to estimate unknown parameters.
 - The posterior for sampling the latent variables for each word:

$$P(z_{di}, c_{di} = 0 | \mathbf{z}_{\neg di}, \mathbf{c}_{\neg di}, \mathbf{w}) = \frac{n_{z_{di}d}^{\neg di} + \alpha}{\sum_{z} (n_{z_{d}}^{\neg di} + \alpha)}$$

$$\times \frac{n_{c_{di}d}^{\neg di} + \beta_{c_{di}}}{\sum_{c} (n_{c_{d}}^{\neg di} + \beta_{c})} \times \frac{n_{z_{di}w_{di}}^{\neg di} + \eta}{\sum_{c} (n_{z_{di}w_{di}}^{\neg di} + \eta)}$$

#(c_{di} is sampled associated with i-th word in d)

– The posterior for sampling the latent emotion:

$$\begin{split} P(e_{mt};\mathbf{e}_{\neg mt},\mathbf{x}) &= \frac{n_{me_{mt}}^{\neg mt} + \gamma}{\sum_{e}(n_{me}^{\neg mt} + \gamma)} \times \frac{\Gamma(\tau_{2} + \frac{n_{e_{mt}t}t}{2})}{\Gamma(\tau_{2} + \frac{n_{e_{mt}t}t}{2})} \times \\ & \frac{\sqrt{\tau_{1} + n_{e_{mt}t}^{\neg mt}} [\tau_{3} + \frac{1}{2}(n_{e_{mt}t}^{\neg mt}s_{e_{mt}t}^{\neg mt} + \frac{\tau_{1}n_{e_{mt}t}^{\neg mt}(\overline{x}_{e_{mt}t}^{\neg mt} - \tau_{0})^{2}}{\tau_{1} + n_{e_{mt}t}^{\neg mt}})]^{(\tau_{2} + \frac{n_{e_{mt}t}^{\neg mt}}{2})} \\ & \frac{\sqrt{\tau_{1} + n_{e_{mt}t}} [\tau_{3} + \frac{1}{2}(n_{e_{mi}t}s_{e_{mt}t} + \frac{\tau_{1}n_{e_{mt}t}(\overline{x}_{e_{mt}t} - \tau_{0})^{2}}{\tau_{1} + n_{e_{mt}t}})]^{(\tau_{2} + \frac{n_{e_{mt}t}t}{2})} \end{split}$$

use Stirling's formula to calculate gamma function

Learning Algorithm (cont.)

Update for parameters of topic modeling part:

$$\theta_{dz} = \frac{n_{zd} + \alpha}{\sum_{z'} (n_{z'd} + \alpha)} \qquad \theta_{me} = \frac{n_{zm} + \gamma}{\sum_{e'} (n_{e'm} + \gamma)}$$
$$\lambda_{dc} = \frac{n_{cd} + \beta_c}{\sum_{c'} n_{c'd} + \beta_{c'}} \qquad \varphi_{zw} = \frac{n_{zw} + \eta}{\sum_{w'} (n_{zw'} + \eta)}$$

 The update for Gaussian parameters are hard to compute. We approximate Gaussian parameters by their expectations.

$$\mu_{et} \approx E(\mu_{et}) = \frac{\tau_0 \tau_1 + n_{et} \bar{x}_{et}}{\tau_1 + n_{et}}$$

$$\delta_{et} \approx E(\delta_{et}) = \frac{2\tau_2 + n_{et}}{2\tau_3 + n_{et} s_{et} + \frac{\tau_1 n_{et} (\bar{x}_{et} - \tau_0)^2}{\tau_1 + n_{et}}}$$

Flickr Data

- 354,192 images posted by 4,807 users
 - For each image, we also collect its tags and all comments.
 - We get 557,177 comments posted by 6,735 users in total
- Infer emotion of users by considering both image and tag/comments

Emotion Inference

Averagely +37.4% in terms of F1

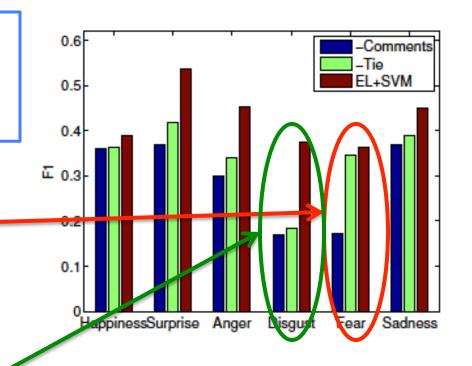
Table 2:	Performance	of emotion	inference
rabic 2.	1 CHOHHance	or cinonon	micronico.

Emotion	Method	Precision	Recall	F1-score	Emotion	Method	Precision	Recail	9 01 F 1
	SVM	0.242	0.279	0.259		SVM	0.192	0.236	0.212
Happiness	PFG	0.337	0.312	0.324	Disgust	PFG	0.309	0.374	0.339
	LDA+SVM	0.333	0.727	0.457		LDA+SVM	0.223	0.223	0.223
	EL+SVM	0.367	0.410	0.388		EL+SVM	0.331	0.432	0.374
Surprise	SVM	0.197	0.037	0.063	Fear	SVM	0.204	0.264	0.230
	PFG	0.349	0.340	0.345		PFG	0.301	0.408	0.347
	LDA+SVM	0.218	0.048	0.078		LDA+SVM	0.211	0.225	0.217
	EL+SVM	0.425	0.516	0.466		EL+SVM	0.371	0.343	0.356
Anger	SVM	0.188	0.105	0.135	Sadness	SVM	0.225	0.365	0.278
	PFG	0.191	0.142	0.163		PFG	0.357	0.286	0.317
	LDA+SVM	0.222	0.109	0.146		LDA+SVM	0.257	0.278	0.267
	EL+SVM	0.390	0.370	0.380		EL+SVM	0.561	0.617	0.588

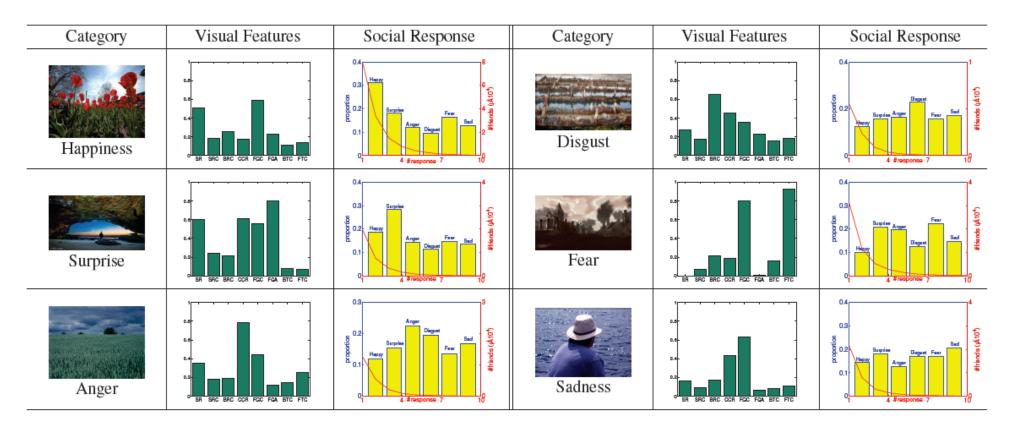
SVM: regards the visual features of images as inputs and uses a SVM as a classifier.

PFG: considers both color features and social correlations among images.

LDA+SVM: first uses LDA to extract latent topics from comments, then uses visual features, topic distributions, and social ties as features to train a SVM.

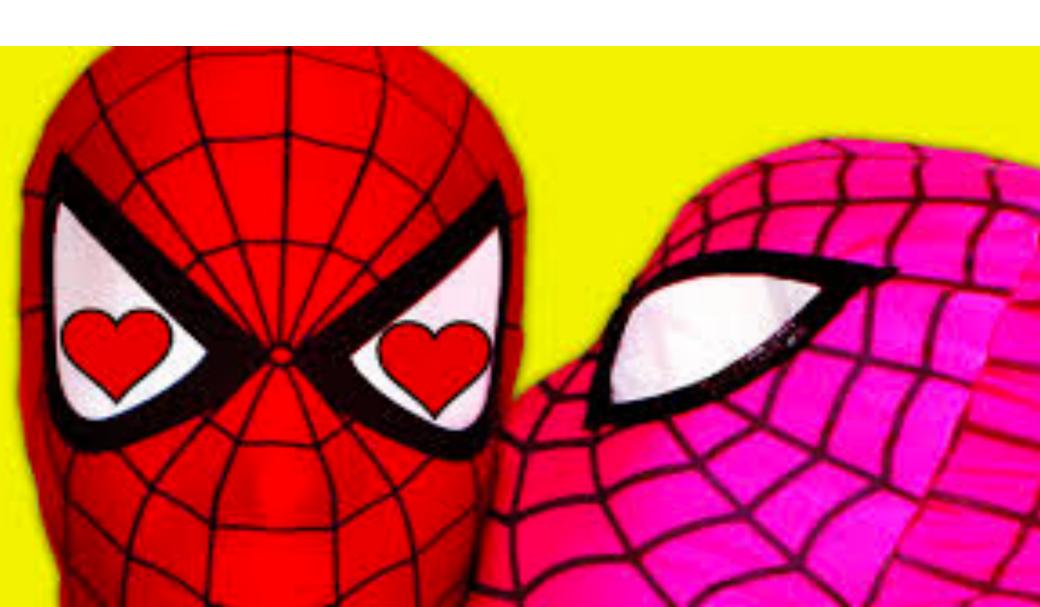

To What Extend Your Friends Can Disclose Your Emotions?

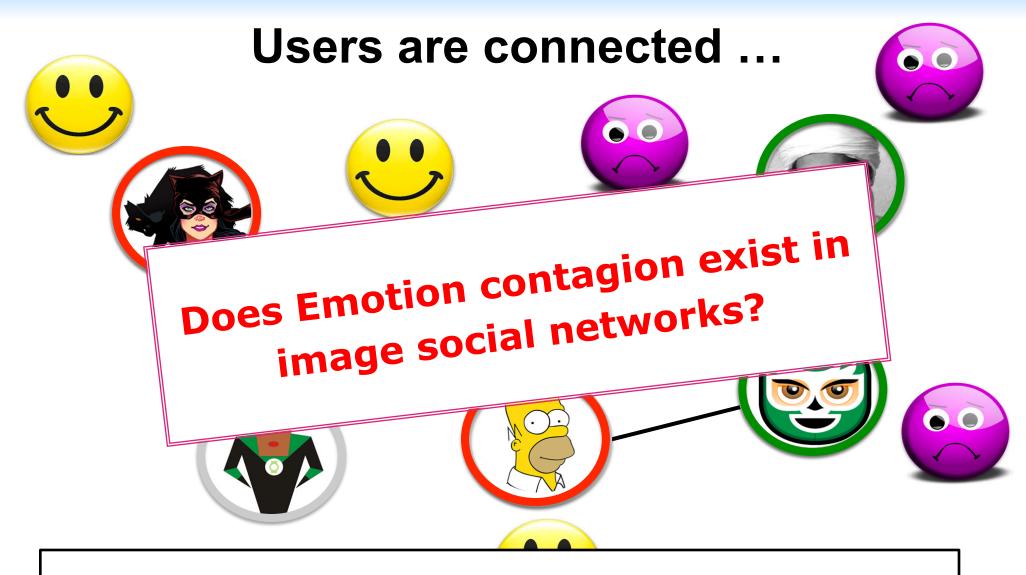
-Comments stands for the proposed method ignoring comment information


-Tie ignores social tie information

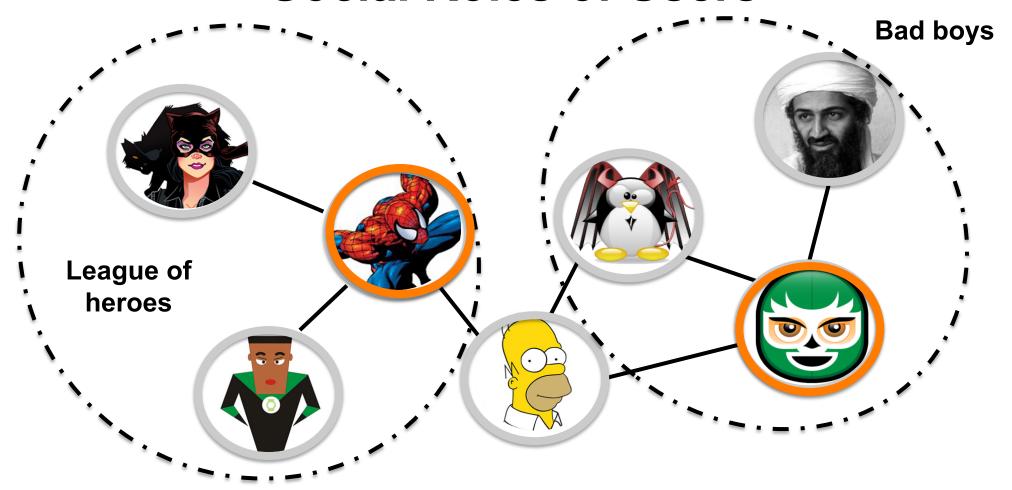
Fear images have similar visual features with Sadness and Anger.

Homophily suggests that friends with similar interests tend to have similar understanding of disgust




Image Interpretations

- Our model demonstrates how visual features distribute over different emotions. (e.g., images representing Happiness have high saturation)
- Positive emotions attract more response (+4.4 times) and more easily to influence others compared with negative emotions.

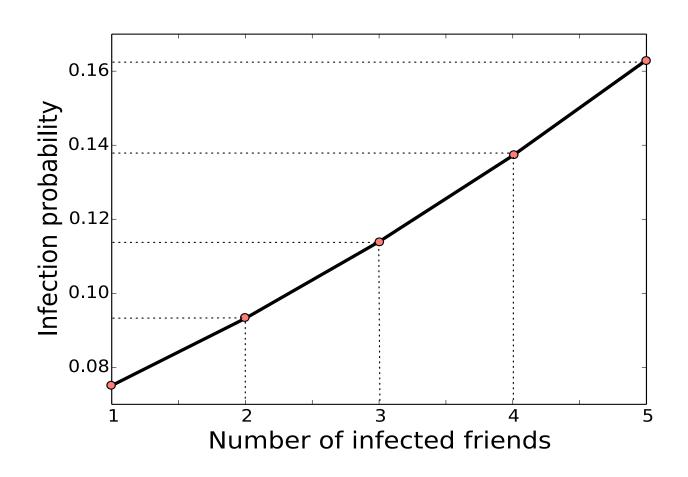

What will Happen after Spiderman Posts this Photo?

Emotion Contagion: The cascade of users' emotional statuses influence each other

Social Roles of Users

Opinion leaders: users taking central positions in communities

Social Roles of Users


Structural hole spanners: users bridge otherwise disconnected communities

Three Qs to Answer

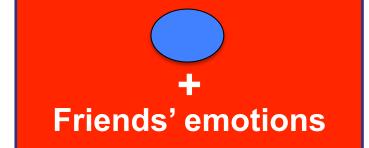
- Q1: Does emotion contagion exist in image social networks?
- Q2: Will social roles influence emotion contagion?
- Q3: How to better predict the emotional status of users in social networks by considering emotion contagion?

Q1: Existence

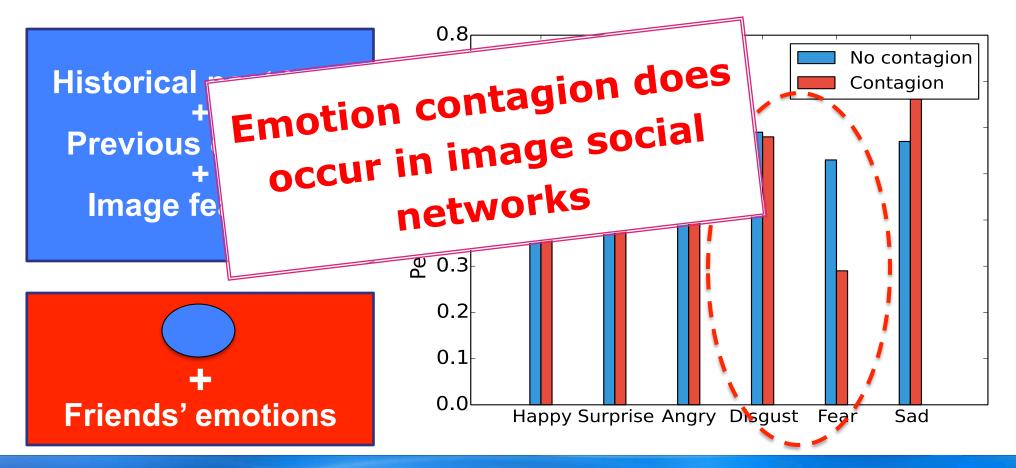
Q1.1: When your friends are happy, will you be happy?

Q1: Existence

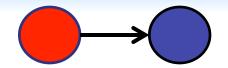
Q1.2: When predicting a user's emotional status, will her friends help?

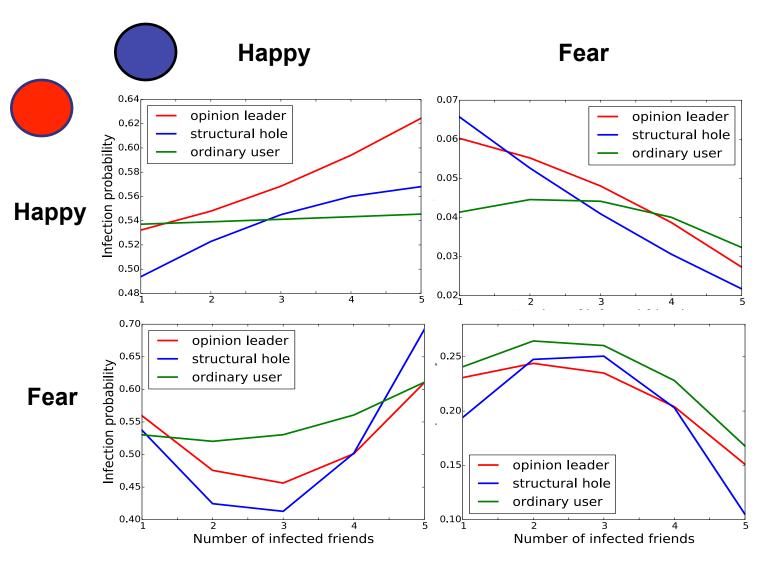

Historical post logs
+
Previous emotion
+
Image features

 Y_{vt}

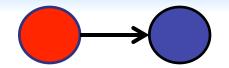

User v's emotional status at time t

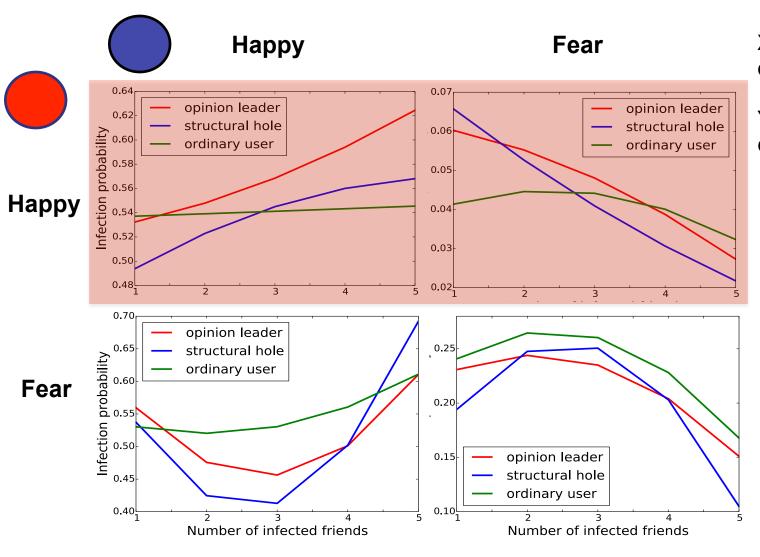
happiness, surprise, anger, disgust, fear, sadness


Q1: Existence


Q1.2: When predicting a user's emotional status, will her friends help?

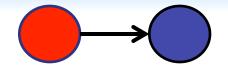
- Opinion leaders: 20% of users with largest PageRank scores;
- Structural hole spanners: 20% of users with lowest network constraint scores;
- Others are remaining as ordinary users.

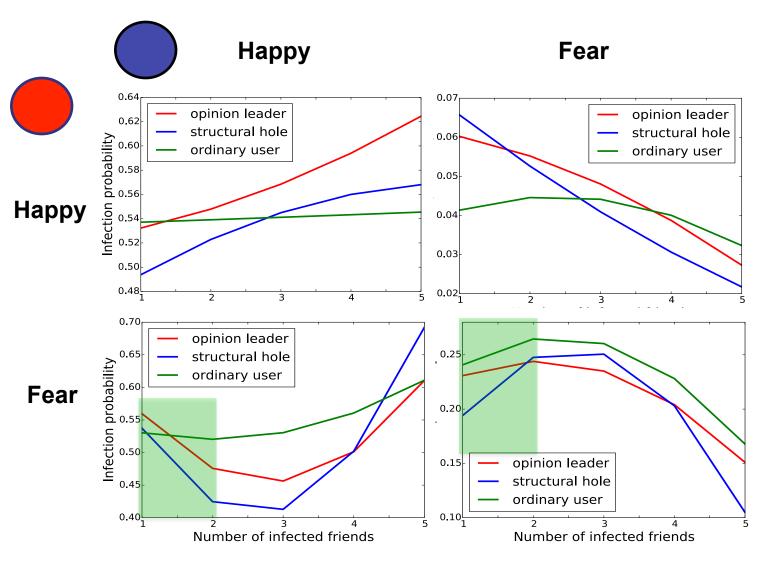




X: number of friends with different social roles.

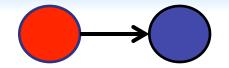
Y: probability being a certain emotion.

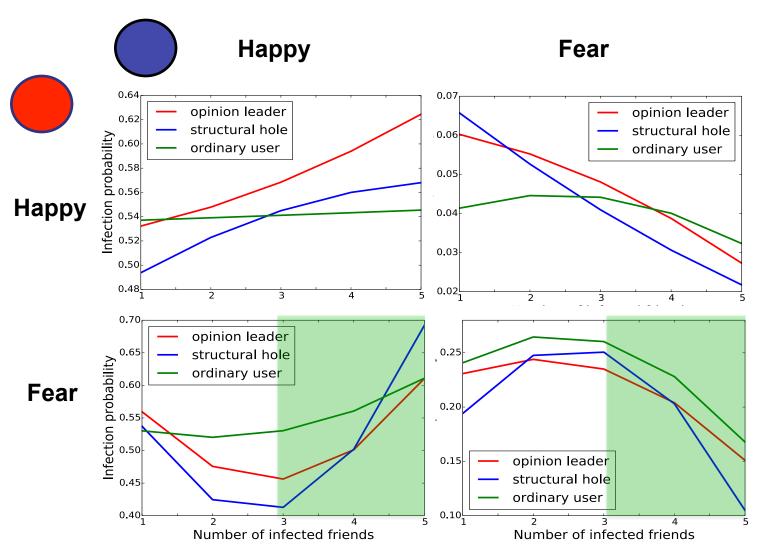




X: number of friends with different social roles.

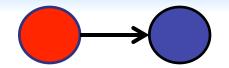
Y: probability being a certain emotion.

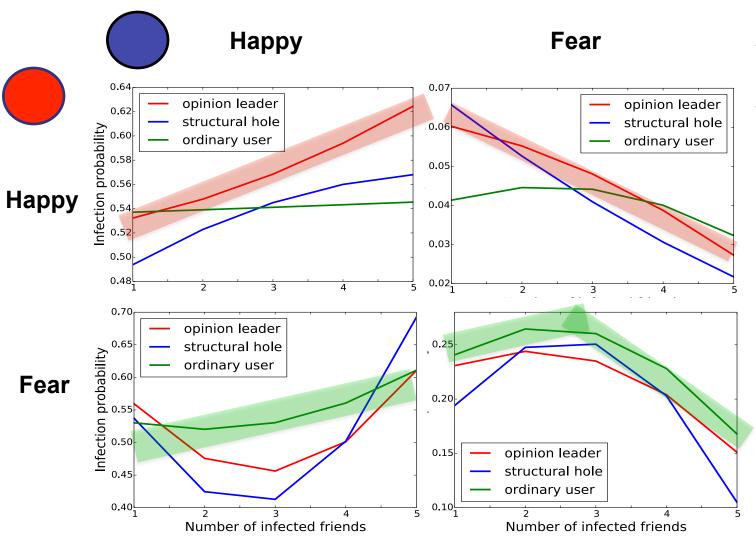

positive emotion delights friends



X: number of friends with different social roles.

Y: probability being a certain emotion.

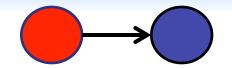


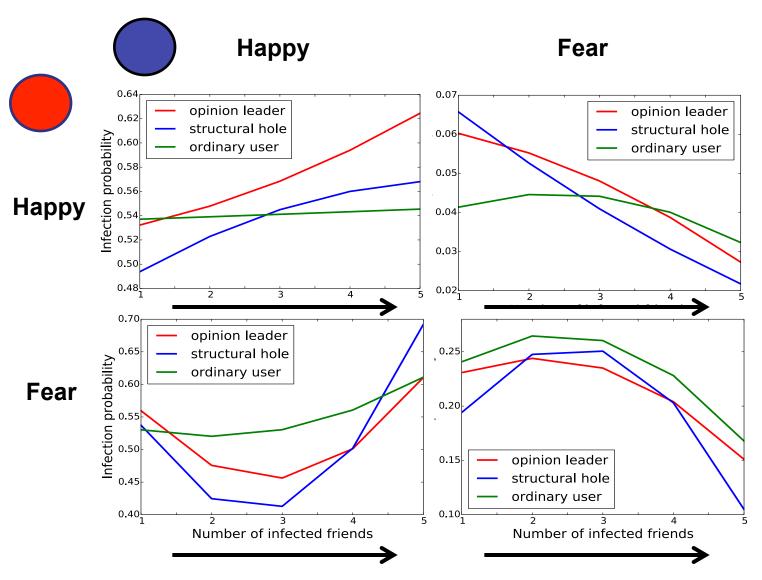


X: number of friends with different social roles.

Y: probability being a certain emotion.

"Emotional comfort" phenomena

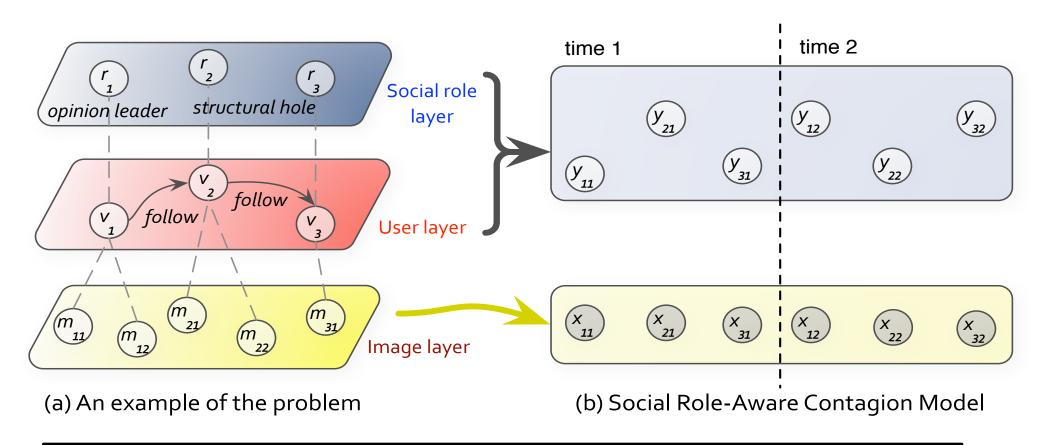



X: number of friends with different social roles.

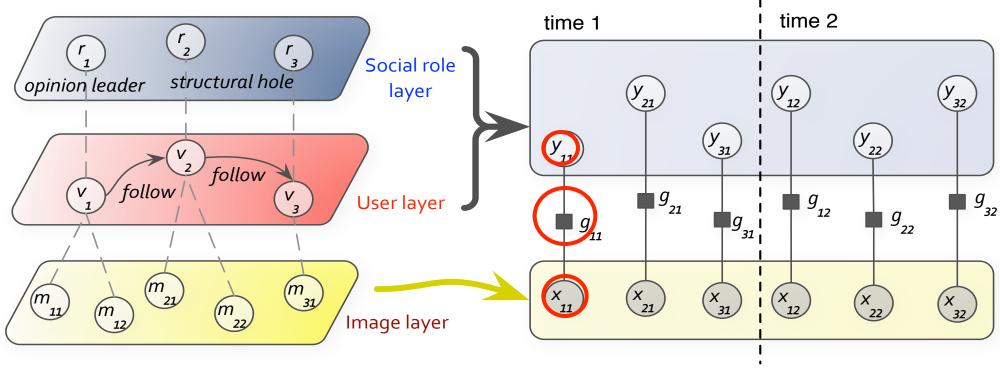
Y: probability being a certain emotion.

Opinion leaders are more influential on positive emotions

Ordinary users are more influential on negative emotions



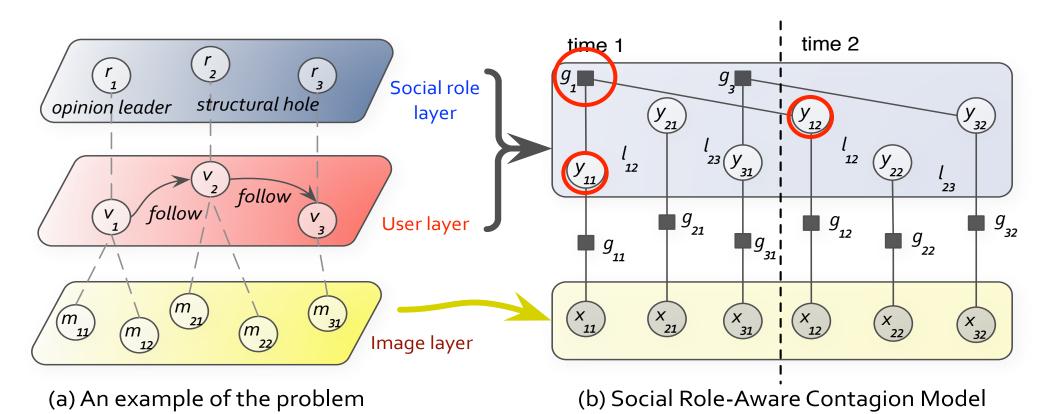
X: number of friends with different social roles.


Y: probability being a certain emotion.

Influence of opinion leaders and structural holes change faster than ordinary users.

P(Y|G): Conditional probability of users' emotional status given input data

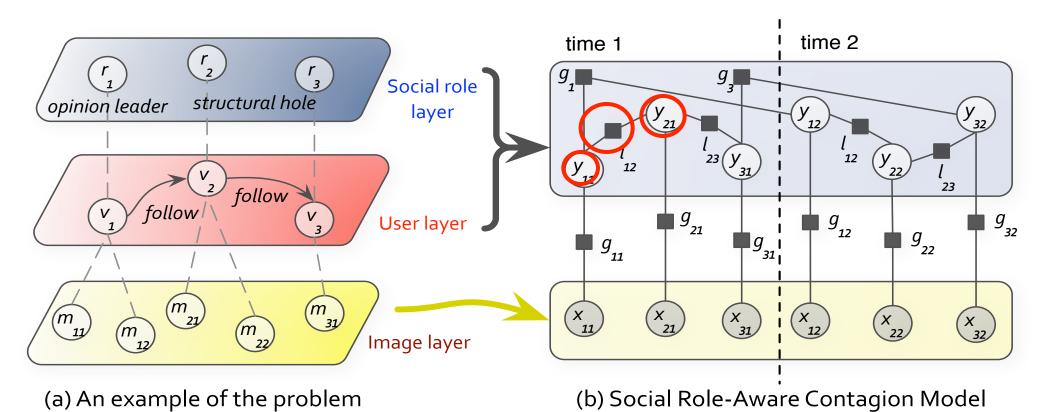
 $P(Y|G)=\pi g(.) ...$


(a) An example of the problem

(b) Social Role-Aware Contagion Model

 $g(x_{vt}, y_{vt})$: Correlation between v's emotion and the image she posts at t.

$$g(x_{vt}, y_{vt}) = \frac{1}{Z_1} \exp\{\alpha_{y_{vt}} \cdot x_{vt}\}$$


$$P(Y|G)=\pi\{g(.)h(.)\}...$$

h(y_{ut-t'}, y_{vt}): Correlation between v's emotion at time t and t-t'.

$$h(y_{vt-\Delta t}, y_{vt}) = \frac{1}{Z_2} \exp\{\beta_{\Delta t} \cdot I(y_{vt-\Delta t}, y_{vt})\}$$

 $P(Y|G)=\pi\{g(.)h(.)l(.)\}$

 $I(y_{ut-1}, y_{vt})$: How v's emotion at t is influenced by her friend u's emotion at t-1.

$$l(y_{ut-1},y_{vt}) = \frac{1}{Z_3} \exp\{\gamma_{r_u r_v} \cdot I(y_{ut-1},y_{vt})\}$$
 Social role sensitive parameter

Emotion Flickr dataset: Happiness 2,060,353 images, 1,255,478 users ground truth obtained by user tags Distribution of users' emotional statuses on Flickr: happiness: 46.2% Surprise surprise: 9.7% anger: 8.0% disgust: 5.3% fear:17.3% sadness: 13.5% Anger

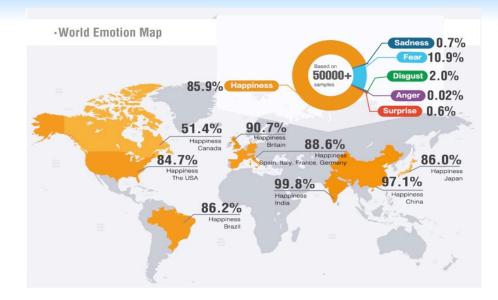
	36.0		
Emotion	Method		
	SVM		
	LR		
	NB		
Happiness	BN		
	RBF		
	CRF		
	Role-aware		
	SVM		
	LR		
	NB		
Surprise	BN		
	RBF		
	CRF		
	Role-aware		
	SVM		
	LR		
	NB		
Anger	BN		
	RBF		
	CRF		
	Role-aware		

Baselines

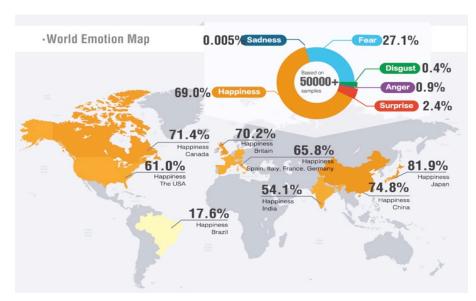
Methods do not consider emotion contagion:

SVM, Logistic Regression (LR),

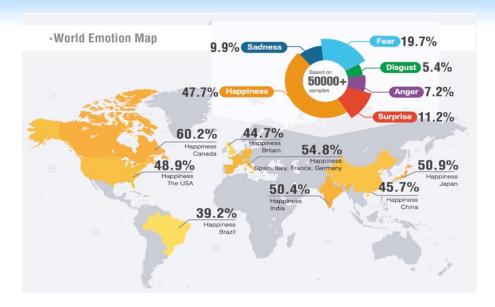
Naïve Bayes (NB), Bayesian Network (BN),

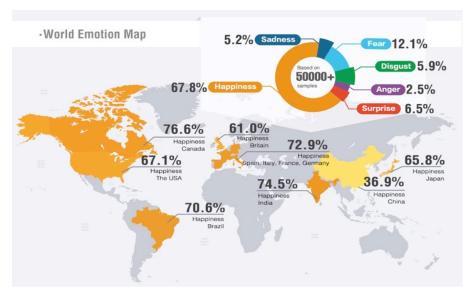

Gaussian Radial Basis Function Neural Network (RBF).

Methods ignore social role information: CRF


Our model: Role-aware

Emotion	Method	Precision	Recall	F1-score	Emotion	Method	Precision	Recall	F1-score
	SVM								
	LR								
	NB								
Happiness	BN								
	RBF								
	CRF								
	Role-aware		4.0	N / 1 1					
	SVM	Evalua	ation	Metrics	S:				
	LR								
	NB								
Surprise	BN	Pre	cision						
	RBF	Red	call						
	CRF	F1	Measur	æ					
	Role-aware								
	SVM								
	LR								
Anger	NB								
	BN								
	RBF								
	CRF								
	Role-aware								


Emotion	Method	Precision	Recall	F1-score	Emotion	Method	Precision	Recall	F1-score
Happiness	SVM	0.5490	0.4682	0.5054		SVM	0.5721	0.6223	0.5962
	LR	0.5726	0.4234	0.4868		LR	0.5902	0.5847	0.5874
	NB	0.5604	0.4679	0.5100		NB	0.5657	0.7244	0.6353
	BN	0.5605	0.5129	0.5357	Disgust	BN	0.5666	0.6811	0.6186
	RBF	0.5744	0.2676	0.3651		RBF	0.5246	0.4346	0.4754
	CRF	0.5590	0.5938	0.5759		CRF	0.8304	0.5889	0.6891
	Role-aware	0.5285	0.9327	0.6747		Role-aware	0.9758	0.9947	0.9852
	SVM	0.5103	0.4821	0.4958	Fear	SVM	0.5253	0.5521	0.5384
	LR	0.5231	0.4108	0.4602		LR	0.5523	0.4703	0.5080
	NB	0.5124	0.5324	0.5222		NB	0.5350	0.5295	0.5322
Surprise	BN	0.5241	0.4712	0.4963		BN	0.5446	0.5189	0.5315
	RBF	0.4990	0.1756	0.2597		RBF	0.5227	0.2859	0.3696
	CRF	0.5810	0.8014	0.6736		CRF	0.5074	0.2123	0.2993
	Role-aware	0.8992	0.9181	0.9086		Role-aware	0.8123	0.9996	0.8963
	SVM	0.5186	0.6371	0.5718	Sadness	SVM	0.5733	0.5740	0.5723
	LR	0.5275	0.4634	0.4934		LR	0.5664	0.4866	0.5234
Anger	NB	0.5201	0.4959	0.5078		NB	0.5632	0.4991	0.5292
	BN	0.5260	0.5207	0.5233		BN	0.5730	0.5662	0.5695
	RBF	0.5062	0.2441	0.3294		RBF	0.5344	0.4292	0.4761
	CRF	0.6036	0.8015	0.6886		CRF	0.6382	0.8726	0.7372
	Role-aware	0.9346	0.9593	0.9468		Role-aware	0.8741	0.9550	0.9128


(a) Ground truth

(c) Opinion leaders

(b) Random users

(d) Structural hole spanners