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ABSTRACT
Electricity theft, the behavior that involves users conducting illegal
operations on electrical meters to avoid individual electricity bills, is
a common phenomenon in the developing countries. Considering its
harmfulness to both power grids and the public, several mechanized
methods have been developed to automatically recognize electricity-
theft behaviors. However, thesemethods, whichmainly assess users’
electricity usage records, can be insufficient due to the diversity of
theft tactics and the irregularity of user behaviors.

In this paper, we propose to recognize electricity-theft behav-
ior via multi-source data. In addition to users’ electricity usage
records, we analyze user behaviors by means of regional factors
(non-technical loss) and climatic factors (temperature) in the corre-
sponding transformer area. By conducting analytical experiments,
we unearth several interesting patterns: for instance, electricity
thieves are likely to consume much more electrical power than
normal users, especially under extremely high or low temperatures.
Motivated by these empirical observations, we further design a
novel hierarchical framework for identifying electricity thieves. Ex-
perimental results based on a real-world dataset demonstrate that
our proposed model can achieve the best performance in electricity-
theft detection (e.g., at least +3.0% in terms of F0.5) compared with
several baselines. Last but not least, our work has been applied by
the State Grid of China and used to successfully catch electricity
thieves in Hangzhou with a precision of 15% (an improvement from
0% attained by several other models the company employed) during
monthly on-site investigation.
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Figure 1: An example of electricity theft. The power is supplied to
different transformer areas (area 1, area 2). The climate in area 2 is
hotter than that in area 1; thus, the power consumption is higher.
In order to avoid high electricity bills, several households in area 2
try to pilfer the electricity.

1 INTRODUCTION
Electrical power is an important national energy resource [4]. One
of the barriers to the stable provision of electrical power is elec-
tricity theft. Formally speaking, electricity theft refers to the illegal
operations by which users unauthorizedly tamper the electricity
meter or wires to reduce or avoid consumption costs. Electricity
theft not only results in unbearable economic losses to the power
suppliers, but also endangers the safety of electricity users, the
electrical systems, and even the public at large. As reported in [31]1,
electricity theft and other so-called “non-technical loss” result in
a staggering $96 billion in losses globally per year; moreover, a
shocking statistic is that in 2012, GDP in India was reported to drop
1.5% as a result of electricity theft, while Uttar Pradesh, the most
populous state in India, lost 36% of its total electric power to theft
of this kind [30].

Great efforts have been made to detect and prevent electricity
theft. The most intuitive way of doing this is to utilize hardware-
driven methods: in short, to find out how the thieves are pilfering
the power, then design and upgrade the meter structures accord-
ingly [11, 15, 19]. For instance, Guo et al. [19] surveys and summa-
rizes the most commonly used electricity pilfering methods, which
include changing the structure or wiring mode of the meter; then
some countermeasures associated with the electrical meters are

1Source report is conducted by Northeast Group LLC.
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proposed, including installing a centralized or fully closed meter
box for residents. However, there are three major drawbacks of
these hardware-driven methods: 1) they require expert domain
knowledge to specify the techniques that the electricity thieves
use; 2) it is difficult to design a general meter structure, as different
regions may often have different pilfering tactics; 3) these methods
lose their effectiveness once thieves change their tactics.

To address these problems, data-driven methodologies have been
applied to the task of electricity-theft detection. Before reviewing
the existing works on this topic, it is necessary to explain one
associated technical term : non-technical loss (NTL) [5]. In practice,
losses in a utility distribution grid are classified as technical and non-
technical. Technical loss is mainly caused by unwanted effects (e.g.,
heating of resistive components, radiation, etc.), and is unavoidable2.
By contrast, non-technical loss is defined as the energy that is
distributed but not billed; in other words, this type of loss is caused
by issues in the meter-to-cash processes. Although disparate issues
may contribute to non-technical losses, a large proportion of the
reasons that cause NTL are related to the electrical power pilfering
and frauds [14]. It is therefore straightforward to detect electricity
theft from abnormal NTL records [1, 35]. NTL provides transformer-
area information. To capture individual patterns, many existing
work have utilized electricity usage records or NTL as input [12,
20, 21, 25, 29, 39], and applied various machine learning techniques
(e.g., SVM, CNNs, RNNs) to identify electricity theft. However,
most of these methods have failed to obtain good performance,
due to the diversity and irregularity of electricity usage behavior,
which is almost impossible to fully understand either using NTL or
electricity usage records alone.

Motivated by the abovementioned concerns, in this paper, we
propose to recognize electricity-theft behavior by bridging three dis-
tinct levels of information: micro, meso, and macro. At the micro-
and the meso-level, we seek to capture users’ abnormal behav-
ior from electricity usage records and NTL respectively. At the
macro-level, moreover, we creatively study how climatic conditions
influence electricity-theft behavior. We then effectively integrate
these three levels of information into a uniform framework. Our
work achieves significant progress in the real-world application of
electricity-theft detection by deploying the proposed model in State
Grid of China3 and improving the theft detection performance

To be more specific, we employ a multi-source dataset, which
contains two years’ worth of daily electrical power consumption
records from 311K users in Zhejiang province, China during June
2017 to April 2019, along with the corresponding daily NTL records
and climatic condition data in all transformer areas covered by those
users. In addition, we have 4,501 (1.45%) electricity-theft labels rep-
resenting 4,626 cases of electricity theft (note that a single user may
pilfer electrical power several times within the relevant timespan),
all of which were confirmed during several large-scale on-site in-
vestigations conducted by State Grid staff over the two years in
question. Our empirical observations find that: 1) at the macro-level,
climatic condition (or more specifically, temperature, which is our
main focus on in this paper) affects users’ electricity consumption
to some extent, while users belonging to different groups may show

2See https://en.wikipedia.org/wiki/Losses_in_electrical_systems for details.
3The state-owned electric utility of China, and the largest utility in the world.

different levels of correlations between electricity usage and tem-
perature; 2) as previous works have pointed out [1, 35], NTL is an
important factor in detecting electricity thieves at the meso-level;
our detailed analysis shows that abnormal NTL patterns in the
transformer areas are a strong signal on electricity theft; 3) at the
micro-level, since electrical power consumption fluctuates with
time, we can clearly see the temporal relationships within the in-
dividual electricity usage, such that the unusual patterns during a
specific period may indicate abnormal user behavior. These find-
ings are hierarchically illustrated in Figure 1, which indicates that
users consume more electric power as the temperature gradually
increase (due to e.g. the usage of air conditioners). In order to avoid
high electricity bills, some users may employ some tactics to pil-
fer electricity, which leads to some abnormal fluctuations in their
electricity-usage sequences as recorded by the smart meters. At
the same time, the NTL of the corresponding transformer area can
reveal anomalies related to abnormal electricity usage.

Despite the interesting insights provided by our empirical obser-
vation, the question of how to integrate multi-source information
into a uniform framework remains a challenging one. To capture
the temporal and spatial correlations of multi-source sequences,
one straightforward method involves first concatenating them at
each temporal point, then adopting a single latent representation
to capture the overall patterns, such as multiscale recurrent neu-
ral networks (MPNN) [18]. However, concatenation from different
sources widens the feature dimensions, which precludes capturing
the significant influences of macro- or meso-level information on
micro-level information (Section 3). Therefore, we propose a hier-
archical framework, named Hierarchical Electricity-theft Behavior
Recognition (HEBR), to extract features and fuse them step by step
(Section 4). Experimental results of the electricity-theft detection
task on a real-world dataset demonstrate the effectiveness of the
proposed HEBR method (Section 5).

Most excitingly, HEBR has been employed for real-time electricity-
theft detection in the State Grid of China. During the monthly
on-site investigation in August of 2019, we successfully caught elec-
tricity thieves in Hangzhou, China, and punished them instantly by
checking the suspected samples predicted by HEBR, representing
an improvement in precision from 0% to 15% (Section 5.4). The
success of the proposed model in this real-world application further
illustrate its validity. Accordingly, the contributions of this paper
can be summarized as follows:

• We analyze electricity-theft behaviors from three distinct levels
of information based on multi-source data.

• Based on observational studies, we propose the Hierarchical
Electricity-theft Behavior Recognition (HEBR)model, which iden-
tifies electricity theft by fusing different levels of information,
and validate its effectiveness using a real-world dataset.

• We apply HEBR to catch electricity thieves on-site and achieve
significant performance improvements.

2 PROBLEM DEFINITION
Let U be a set of users, while A is the set of corresponding trans-
former areas; that is, each user u ∈ U belongs to a specific trans-
former area a ∈ A based on the regional location. An area a usually
contains hundreds of users. Each useru has electricity usage records

https://en.wikipedia.org/wiki/Losses_in_electrical_systems
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withT observations within a certain timespan, which we refer to as
Xe
u = {xe1 , ..., x

e
T }. Each area a ∈ A has the NTL records, denoted

as Xl
a = {xl1, ..., x

l
T }, and the observation sequence of climatic con-

ditions, written as Xc
a = {xc1 , ..., x

c
T }. The denotation x∗t ∈ Rd∗

represents different quotas with various dimensions (see details
in Section 3.1). In light of the above, we can define the problem
addressed in this paper as follows:

Definition 2.1. Electricity-theft detection. Given a specific user
u who belongs to the transformer area a, the goal is to estimate
P(Y|Xe

u ,X
l
a ,X

c
a ), which is the probability that u pilfers electrical

power (Y = 1) or not (Y = 0).

In the following sections, we will conduct observational studies
on the multi-source sequences to obtain potential insights. Based on
these intuitions, we then propose a novel hierarchical framework
for recognizing electricity-theft behavior.

3 EMPIRICAL OBSERVATIONS
Although existing data-driven electricity-pilfering-detection meth-
ods seek to capture the characteristics of users’ electrical power
consumption, it is rather difficult in real-world applications to effi-
ciently catch electricity thieves if we only observe the user’s elec-
trical power consumption records; this is due to the diversity, com-
plexity and irregularity of electricity-theft behavior. Therefore, we
compile a multi-source dataset, with additional NTL and tempera-
ture records for each transformer area, in order to analyze the traces
of users’ electricity usage. The associated observational findings
and insights are presented in this section.

3.1 Dataset Description
Our dataset comprises three parts: the two sets of electricity-related
records are provided by State Grid Zhejiang Power Supply Co. Ltd.4,
while the temperature records are collected from the official weather
website. The overall statistics are summarized in Table 1.
ElectricityUsageRecords. This dataset covers the daily electrical
power consumption records of 310,786 users in total, ranging from
June 2017 to April 2019. For each user, we have the total, on-peak
and off-peak electricity usage (kW·h) records for each day within
the relevant timespan.
Non-Technical Loss Records. This dataset contains the daily
meso-level electrical records from a total of 3,908 transformer
areas, covering all of these 311K users, and has the same time range
as the usage dataset. More specifically, for each area, the daily
amount of electrical power (kW·h) lost due to non-technical loss
(NTL) is recorded.
Temperature Records. We obtained the temperature records for
all prefecture-level cities in Zhejiang during the same timespan as
above from theWeather Radar5. For each city, these records contain
the maximum and minimum temperatures (℃) for each day.
Labels of Electricity Thieves. Among all users, 4,501 (1.45%)
were confirmed by State Grid staff to be electricity thieves during
their on-site investigations; it should be noted that there are a
total of 4,626 electricity-pilfering cases, since a single user may be

4http://www.sgcc.com.cn/ywlm/index.shtml
5http://en.weather.com.cn

(a) A case of electricity usage

(b) Electricity usage before
 and after on-site checking

(c) PDF of slope w.r.t linear 
regression of electricity usage

kW
·h

Figure 2: A study of micro-level factors and electricity theft. (a)
presents a case of electricity usage with the red bar indicating the
time at which the thief was caught. (b) presents the statistics of all
users pertaining to electricity usage before and after on-site check-
ing, while the trends of the usage are shown in (c). We can therefore
see that the behaviors of electricity thieves are different from those
of normal users.

caught committing theft several times during the two years. We
then regard all remaining users (98.55%) as normal, i.e., as having
engaged in no pilfering behavior over the entire timespan. While
it is possible that a few users who adopt subtle ways to pilfer
electricity, which are not caught; these cases bring in the noise but
are very rare. We take these confirmed cases as ground-truth and
collect the timestamps when electricity thieves were caught for
detailed analysis and experiments.

3.2 Micro-level: User Observation
We first examine the micro-level electricity usage records to see
whether abnormal patterns or characteristics in the user behavior
exist that indicate electricity theft.

To better understand pilfering behaviors, we first have to rec-
ognize the time periods during which the thieves were pilfering
electricity. According to the timestamps of on-site investigations,
the records for each electricity theft can be divided into two parts:
before and after being caught. For convenience we refer to the spe-
cific timestamp as a checkpoint. We further assume that a thief was
stealing the power during the last 30 days before the checkpoint,
then returning back to a normal state in the following 30 days after
the checkpoint. This is based on the domain knowledge that we

Table 1: Overall statistics of the datasets.

Metric Statistics
#(users) 310,786

#(transformer areas) 3,908
#(electricity thieves) 4,501

#(pilfering-cases) 4,626
#(prefecture-level cities) 11
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have chosen a month as the timespan, since an electricity thief of-
ten steals power for a long time (probably for a period longer than
one month), and once caught and punished, he/she would instantly
cease engaging in pilfering behavior and behave normally. To give
a concrete example, Figure 2a presents a case of an electricity thief
who was caught in the middle of October 2018 (red bar). We can
see an abnormal pattern in the middle of September, showing that
he had a sudden peak of electricity usage, while he had almost no
off-peak electrical power usage during Sep. and Oct. Moreover, in
this case, there is no significant decreasing trend of electricity usage
before he was caught; in practice, however, users would probably
use less electricity in Sep. and Oct. due to the temperature drop.
These clues may revel the thief’s abnormal state or behavior.

In light of the above assumption and case study, we provide an
overview of the electricity consumption of both electricity thieves
and normal users in Figure 2b, 2c. We draw the distributions of
daily power usage at different times (before and after being caught)
in Figure 2b; for each group of settings, we show the average value
along with the standard error bar. We can clearly see that for elec-
tricity thieves, there is a significant increment of electricity usage
after being caught compared with before (the two histograms on the
left-hand side). This is reasonable, since pilfering behavior would
reduce the electricity that they actually consume. An opposite trend
is exhibited by the normal users in that the usage before and after
the checkpoint seems unchanged; in other words, the characteris-
tics of the electrical power consumption behaviors of normal users
are relatively stable.

Another obvious observation from Figure 2b is that electricity
thieves exhibit a much higher level of electricity usage compared
with normal users, although pilfering behavior would cut down the
recorded value of electrical power consumption. One reasonable
explanation for this phenomenon comes from the idea that people
typically engage in risky behavior only when they expect a higher
benefit. As for this scenario, users whose electricity consumption is
high are expected to have a far stronger motivation to steal power,
as they would reduce their costs significantly through engaging in
pilfering behavior. By contrast, if a user uses a very small amount
of electricity, there is no need for him/her to undertake such illegal
operations since this behavior would also be economically foolish,
as once being caught, the user would be fined vast amounts.

To further illustrate the differences in the stability of electricity
usage between electricity thieves and normal users, we conduct
a linear regression on electricity usage during the three months
before the theft was identified. For better visualization and expla-
nation, we set a restriction on the checkpoint: in short we only
sample the thieves who were caught during October. Under these
settings, user are expected to reduce electricity usage stably at the
end of Aug. and Sep. compared with Jul. due to the drop in temper-
ature, such that the linear regression may be able to capture this
decreasing trend. We use a probability density function (PDF) [32]
to compare the distributions of slopes in the linear regression. As
Figure 2c shows, the gap of PDF curves between electricity thieves
and normal users represent the different trends in electricity usage.
More specifically, and in line with our commonsense expectations,
the usage of the majority of normal users (80.30%) exhibits a nega-
tive slope; by contrast, for electricity thieves, the peak of the PDF

(a) A case of electricity usage with NTL

(b) The statistics of all users before and after on-site checking 
Figure 3: The study of meso-level factors to electricity theft. (a)
presents an electricity-usage case with NTL and the red bar indi-
cates the time of being caught as thief. (b) presents the statistics of
all users and transformer areas. Both of them illustrate that the ab-
normal increment of NTL can be caused by pilfering electricity.

lies around 0, while nearly half of them even have a positive slope,
which is entirely opposite to the common cases.

Combined with the analysis mentioned above, we can conclude
that electricity thieves have a higher level of electrical power con-
sumption with less stability.

3.3 Meso-level: Area Observation
Although we can observe several differences between electricity
thieves and normal users in terms of electricity usage, due to the
fact that user behaviors are very complicated and may be affected
by many factors, focusing only on those micro-level differences
prevents us from efficiently identifying electricity thieves. Here,
another intuitive element of knowledge is that the transformer
area records the overall electricity consumption of different users,
i.e., non-technical loss (NTL). Hence, in order to reveal the meso-
level characteristics of electricity thieves, we conduct an analysis
combining regional information with individual electricity usage.

We begin with a real-world case study of an electricity theft in
Figure 3a. The user was caught as a thief in the middle of August
(red bar). A clear and interesting observation is that the trend of
correlations between the user’s electricity usage and NTL before
he was caught is completely opposite to that of the period after
on-site checking was conducted. More specifically, before the user
was caught, the less electricity usage his records showed (probably
a large part of the power used was stolen), the higher the NTL of
the transformer area would be; after on-site checking, however, the
NTL of the area became relatively stable.

We can confirm this finding on the whole dataset by observing
the correlations between the averaged NTL of all transformer areas
and the individual electricity usage of all users during the period
before and after on-site checking (Figure 3b). In more detail, we
move the sliding window to retrieve the electricity usage of each
thief: 1) 50 days before, and 2) 30 days after the checkpoint. We then
sample the usage records of all normal users in the same transformer
area and during the same period as the thief. Again, we can see



Understanding Electricity-Theft Behavior via Multi-Source Data WWW ’20, April 20–24, 2020, Taipei, China

Jan Feb Mar Apr
May Jun Jul

Aug Sep Oct
Nov Dec

0

50

100

150

200

250
#(

El
et

ric
ity

 th
ie

ve
s) 193

99

48
68 74 88

119
142

112
83

168
184

Figure 4: Number of electricity thieves in each month.

that the electricity usage of normal users (green line) are rather
stable during the observed timespan; for electricity thieves (orange
line), however, their averaged power consumption significantly
increased once theywere caught, while the NTL of their transformer
areas dropped accordingly. It gives us the clue that the NTL in the
transformer area may be a signal for indicating whether there are
electricity thieves in this area, and additionally, that capturing such
correlations could be helpful in electricity-theft detection.

3.4 Macro-level: Climate Observation
Previous work [23] has demonstrated the influence of climatic con-
ditions on user behavior (taxi ordering). It would be interesting to
determine whether some relationship between climate and elec-
tricity usage exists in our scenario, or whether the macro-level
factors affect users’ electrical power usage in a non-trivial way.
Accordingly, we present the statistics of the seasonal effects on
electricity-pilfering behavior (Figure 4), which reveal that most
pilfering cases were caught in winter (Dec., Jan.) and summer (Jul.,
Aug.). This leads to the straightforward conclusion that the climatic
conditions would influence the user behavior of electricity usage,
especially for the electricity thieves. Inspired by the practical ex-
periences, temperature is the only climatic variable we consider in
the present research, since the most obvious difference between
winter and summer is the temperature factor, and it is believed that
temperature will influence users’ daily behavior in an intuitive way.
We use the averaged value of maximum and minimum in a day to
represent the daily temperature; this setting is used throughout the
entire paper unless otherwise indicated.

We first illustrate that a correlation does indeed exist between
temperature and users’ electricity usage, as shown in Figure 5a.
We indicate the averaged daily total electricity consumption of all
users over one year with an error bar (blue line), while the orange
line indicates the temperature each day. Total electricity usage
fluctuates with the temperature, as some sharp peaks and valleys
are coincident; the most obvious correlations between these two
factors is that extremely high or low temperatures are associated
with increased electricity consumption. This would appear to be a
commonsense observation since extreme temperatures are of course
associated with the increased usage of high-powered appliances
such as air conditioning or heaters; here we verify this assumption
by means of a brief visualization.

We next examine the relationships between temperature and
electricity usage among different groups of users. In Figure 5b, we
aggregate the daily total electricity usage based on the temperature
of that day, then draw a boxplot with respect to our two user groups

(a) The correlations between temperature and total electricity usage

(c) A case of electricity 
thieves

(d) A case of normal 
users

2018 2019

(e) Distrubution of
L2-loss function

(b) Electricity usage distribution in different temperatures

3.3
3.4 4.1 4.2 3.5 2.8 2.2 2.1 3.1

2.6
2.6

4.5
*

ºC

Figure 5: The study of macro-level factors to electricity theft. (a)
presents the strong correlations from climatic conditions to user be-
haviors. (b)-(e) illustrate the electricity-usage irregularity of thieves
under different temperature conditions. The floating numbers in
(b) indicate the Wasserstein distance of distribution between the
thieves and normal users.

of interest, i.e. electricity thieves and normal users. In line with
what we have observed in Section 3.2, we again find that electricity
thieves have a much higher level of electrical power consumption
regardless of the temperature. Furthermore, additional observation
reveals the specific influence of temperature on electricity pilfer-
ing, as the gap of daily total electricity usage between thieves and
normal users is significantly larger under extremely high or low
temperatures compared with average temperatures: if we regard a
temperature lower than 0℃ or higher than 30℃ as extreme condi-
tions (as is accepted by the public), the average gap of daily total
electricity usage between thieves and normal users under extreme
conditions is 4.51kW·h, while that for non-extreme conditions (be-
tween 0 and 30℃) is 3.03kW·h (a decrease of 32.8%); moreover, if we
restrict the temperature span to between 10℃ and 25℃, the average
gap becomes 2.70kW·h. We further compute the Wasserstein dis-
tance (dw ) [9] of electricity usage distributions between thieves and
normal users under different temperatures, and find that distances
for extreme temperatures (dw=4.5 (>30℃)) are much larger than
other cases (e.g., dw=2.1 (19 − 21℃)). This verifies our conclusion
from a statistical perspective that electricity thieves are likely to
consume much more electrical power than normal users, especially
under extremely high or low temperature conditions.

Finally, we take a deeper look into these correlations by means of
several case studies. We choose a typical electricity thief along with
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a normal user in the same transformer area as examples, then show
the pairs of daily total electricity and temperature in the form of 2-D
figures. For better visualization and illustration, we also draw the
second-order regression curve in both Figure 5c and 5d. Again, the
trends of the normal user’s curve is consistent with our experience
suggesting that very high or low temperatures are associated with
elevated electricity consumption, and the points are well fitted to
a specific quadratic curve (Figure 5d); by contrast, the scatterplot
for the case of the electricity thief seems disordered (Figure 5c). It
is better to explore such correlations by merging users together
within different groups; however, since the scale of each user’s
electricity consumption may vary substantially, the scatterplot of
the data for all normal users may not well fit to a quadratic curve.
An alternative approach would to individually fit the points for
each user, then show the gap in the distributions of the fitting loss
between normal users and electricity thieves (Figure 5e). The two
PDFs simply reveal the fact that scatters of normal users can be
fitted more easily to a quadratic curve than thieves.

Summarizing from the abovementioned observations, we can
conclude that the analysis based on the combination of electricity
usage, NTL and temperature can yield extra information related
to electricity-theft behavior, and can also give us strong insights
and motivations to consider the correlations among these three
different levels of factors when detecting electricity theft.

4 OUR APPROACH
In this section, we integrate the insights gained from empirical
observations (Section 3) into a hierarchical framework, named Hier-
archical Electricity-theft Behavior Recognition (HEBR), to capture
the behavioral patterns from multi-source observation sequences.
Overview. Motivated by Section 3, we model the user behaviors
based on three distinct levels of information, as follows:
• Macro-level. We define Xc

a ,a ∈ A, to represent the observation
sequence of temperature, which reflects the climatic conditions
that may influence users’ electricity consumption patterns.

• Meso-level. We define Xl
a ,a ∈ A, to represent the observation

sequence of non-technical loss (NTL), which indicates the real-
time status of the corresponding transformer area.

• Micro-level. We define Xe
u ,u ∈ U, to represent the observation

sequence of users’ electricity usage, which presents the trace of
individual electrical power consumption behaviors.

The empirical observations demonstrate that the macro- and meso-
level information influence themicro-level behaviors to some extent.
In order to integrate the multi-source information so as to capture
the abnormal behavioral patterns of electricity thieves, intuitively,
we develop a hierarchical framework to extract features from their
respective different sources, and fuse them step by step.

4.1 Model Description
Whenmodeling the multi-source sequences, a straightforward base-
line can be established by first concatenating them at each temporal
point, then using a single latent representation to capture the over-
all patterns, such as MRNN [18]. However, concatenation from
different sources widens the feature dimensions, which may pre-
clude capturing the significant correlations between different levels
of information. More specific, in our scenario, different users in the
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Climate&User Ϟ Area&User 

Figure 6: Architecture of HEBR. Given a multi-source observation
sequence (climate, area and user), HEBR constructs a three-level
framework: at each level, different sequences are inputted into dif-
ferent recurrent layers respectively, the latent representations of
which are fused in pairs. Dashed lines indicate the direction of the
fusion. The last layer outputs the probability of electricity theft.

same transformer area may have the same observation sequence of
NTL or temperature; therefore, the straightforward concatenation
could result in a confusion of user behaviors from the regional and
climatic levels. Accordingly, we opt to better extract the indepen-
dent features of each source respectively, and then conduct the
pairwise information fusion.

In Figure 6, we present the architecture of the proposed HEBR
framework. In addition to input and output, HEBR contains three
levels of feature extraction and hierarchical fusion, which aim to
capture different levels of influence between data sources. Each
level is described in more detail below.
• Level 1: Captures the temporal patterns in the observation se-
quence independently (e.g. the patterns in temperature (hc ), NTL
(hl ) and user’s electricity usage (he )), and fuses them in pairs
(hc → he , hl → he ). It aims to model the influence from macro-
or meso-level factors on user behaviors respectively.

• Level 2: Captures the temporal patterns after preliminary fusion
at Level 1 (e.g. user-climate (hec ) and user-area (hel )) respectively,
and then fuses the patterns of hec → hel . It aims to uniform the
influence from macro and meso level on user behaviors.

• Level 3: Captures the overall temporal patterns in the multi-
source sequence (hecl ). The hierarchically fused information
is integrated to capture the behavioral patterns, which can be
applied to estimate the probability of electricity theft.

Note that we do not fuse the representations hc and hl in the first
level. This is because our observational studies (Section 3) suggest
that these two distinct levels of information are uncorrelated, al-
though they are closely related to user’s electricity usage. Here,
we aim to capture how these two factors influence user electricity
consumption behavior.

Based on the hierarchical construction, HEBR can conduct fea-
ture extraction and fusion in each level and gradually integrate the
information between multiple sources. As for the operations in each
level, we define a uniform formulation: given the sequential input
I(k )t and another source I′(k )t in the k-th level, the feature extraction
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Input of current source
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Multi-step Fusion & 
Attention
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Figure 7: The architecture of recurrent and fusion layers on multi-
source sequences. The sequential inputs of another source I′ are in-
tegrated into the current ones I by means of the above architecture,
which is a uniform component in Figure 6.

and hierarchical fusion can be formulated as follows:

h(k )t = Frecurrent
(
WI→h · I(k )t , h

(k )
t−1

)
,

h′(k )t = Frecurrent
(
WI′→h′ · I

′(k )
t , h′(k )t−1

)
,

I(k+1)
t = αt · Fact

(
Ffuse

(
h(k )t ,Wh′→h · h′(k )t

)) (1)

h(k )t denotes the latent representation of I(k)t in the k-th level at tem-
poral point t , which is updated by function Frecurrent based on its
previous memory h(k)t−1 and current input I

(k )
t , while the apostrophe

(′) denotes the same meaning of the sequences from another source.
W∗ are the trainable weighted matrices, and the function Ffuse
aims to fuse the information from I′(k )t into the current sequence
I(k )t , then outputs the intermediate representations by means of
an activation function (Fact). Moreover, αt denotes the attention
coefficient from h′t to ht , which tries to automatically discover
the attention weights from I′ to I based on “end-to-end” learning.
We will introduce the details of model inference and learning for
detecting electricity thieves in the next section.

4.2 Model Inference and Learning
Herein, we adopt neural networks to implement HEBR, the param-
eters of which are learned by minimizing some specific loss. As
for capturing the temporal patterns, we can apply several existing
methods to implement the recurrent layer Frecurrent (see details in
Table 6 of Section 5.3). As for the fusion function Ffuse, we propose
a new hierarchical fusion mechanism, containing multi-step fusion
and attention operations, to effectively bridge the information from
different sources. More details are introduced in the next paragraph.
Hierarchical fusion mechanism. In order to capture the cor-
relations between different levels of information, we propose a
multi-step fusion mechanism. The intuition here is that the influ-
ence between two distinct levels of sequences may be time-delayed.
For instance, in addition to being affected by today’s temperature,
a user’s electricity usage is also probably related to yesterday’s
weather; one concrete example is that if the previous day was very
hot, people will tend to turn on the air conditioning for a longer
time, even if today is colder. Therefore, we should try to fuse more
information in the temporal interval rather than just at the current
temporal point. More specifically, as shown in Figure 7, the current

latent representation ht ∈ Rdh and that from another data source
h′t ∈ Rdh′ are fused via the following formulation:

Ffuse
(
ht , h′t

)
=

(
ht ⊙Wh′→hh

′
t−1

)
⊕

(
ht ⊙Wh′→hh

′
t
)

(2)

where ⊕ denotes the concatenation operator and ⊙ is the pooling op-
erator. For the t-th time step,

(
ht ⊙Wh′→hh′t−1

)
and

(
ht ⊙Wh′→hh′t

)
capture how h′t−1 and h′t respectively influence ht .

However, it is impossible that the fused information at each time
step will be equally important to behavioral patterns. For exam-
ple, someone is probably an electricity theft if he consumes little
electrical power in summer or winter, but this may not be true in
autumn or spring, since users typically consume less electricity
during these months due to seasonal effects. Liu et al. [27] suggests
that models should try to measure such significant information at
different temporal points. Hence, we design an attention mecha-
nism to model the varying significance of the fused information at
different time steps: given the current fusion level k , the input of the
next level I(k+1) ∈ RT×2dh(k ) is computed by a linear combination
of the intermediate representations, weighted by a score vector
α (k+1) ∈ RT :

I(k+1) =
T∑
t=0

α (k+1)
t · tanh

(
Ffuse

(
h(k)t , h

′(k)
t

))
α (k+1) = softmax

(
Wh→α ·

T∑
t=0

Ffuse
(
h(k)t , h

′(k)
t

)) (3)

where
∑

denotes the concatenation, and Wh→α is a trainable
weighted matrix shared by all temporal points. The activation func-
tion tanh is used to activate the intermediate representations.
Model formulation. So far, we can materialize Eq 1 for HEBR by
the abovementioned definitions, the complete mathematical formu-
lations for which are as follows:

Ie = Xe
u , Il = Xl

a, Ic = Xc
a , u ∈ U, a ∈ A (4a)

het

hlt
hct

 =

Frecurrent

(
Iet , h

e
t−1

)
Frecurrent

(
Ilt , h

l
t−1

)
Frecurrent

(
Ict , h

c
t−1

)
 ,

[
Ielt
Iect

]
=

[
α el
t

α ec
t

]
· tanh


Ffuse

(
het , h

l
t

)
Ffuse

(
het , h

c
t
)
(4b)[

hect

helt

]
=


Frecurrent

(
Iect , hect−1

)
Frecurrent

(
Ielt , helt−1

) , Ielct = α elc
t · tanh

(
Ffuse

(
hec

t , hel
t

))
(4c)

helct = Frecurrent
(
Ielct , helct−1

)
(4d)

Helcu =

T∏
t=0

helct (4e)

where multi-source sequences (Xe
u ,X

l
u ,X

c
u ) initialize the input I∗,

after which three levels of feature extraction and hierarchical fusion
(Eq 4b, Eq 4c, Eq 4d) are conducted.

∏
denotes the pooling opera-

tor that aggregates the fused representation helc in each temporal
point, and the final output is the behavior embedding Helc

u of each
user u. In our experiment, we use mean pooling as the pooling
operator. As for estimating the probability of each user being an
electricity thief, we define a mapping function Ψ that maps the fea-
ture embedding into a binary vector, and turn it into the probability
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ranging from 0 to 1 by means of the softmax function, as follows:

P
(
Y | Xe

u ,X
l
a ,X

c
a

)
= softmax

(
Ψ

(
Helc

u
))

(5)

We can implement Ψ by means of fully connected networks or some
well-known classifiers.

The whole hierarchical framework can also be implemented by
HBRNN [13], which is proposed for recognizing skeleton-based
actions by combining the multi-source time series data. The main
difference compared with our approach is that HBRNN implements
fusion functions by directly concatenating two representations
at the same temporal point; by contrast, we design a multi-step
fusion mechanism for HEBR. We will validate the effectiveness of
such architecture by comparing both methods in our experiments
(Section 5.2) and additional ablation studies (Section 5.3).
Learning. We use the Adam optimizer [24] for the parameter
learning, where the objective function is defined as the binary
cross-entropy:

L = −
∑
u ∈U

Ŷu log P
(
Y| Xe

u ,X
l
a ,X

c
a

)
+

(1 − Ŷu ) log
(
1 − P

(
Y| Xe

u ,X
l
a ,X

c
a

)) (6)

where Ŷu ∈ {0, 1} is the ground truth of a user being an electricity
thief, as confirmed by on-site investigations, and P

(
Y| Xe

u ,X
l
a ,X

c
a

)
is computed by Eq 5.

5 EXPERIMENTS
In this section, we conduct experiments on a real-world dataset
(introduced in 3.1) to answer the following three questions:
• Q1: How does HEBR perform on electricity-theft detection tasks,
compared with state-of-the-art baselines?

• Q2: How does the multi-source information contribute to the
detection task?

• Q3: Can the proposed hierarchical fusion mechanism effectively
bridge the information from different sources?

5.1 Experimental Setup
Baselines. We validate the effectiveness of HEBR compared with
several different types of baselines. The first type is classification
methods based on handcrafted features, which have been commonly
used in existingwork on electricity theft detection [11, 19, 21, 35, 36].
We list the handcrafted features we consider in Table 2 and employ
the following classifiers: logistic regression (LR) [17], support vector
machine (SVM) [38], random forest (RF) [16] and extreme gradient
boosting (XGB) [6].

The second type of baseline is time series classification methods,
including:
• Nearest Neighbor : This method determines whether a user u
pilfers electrical power with reference to other users close to
u. In particular, we consider the following different metrics to
calculate the distance between two users’ time series in our ex-
periment: Euclidean Distance (NN-ED), Dynamic Time Warping
(NN-DTW) [3] and Complexity Invariant Distance (NN-CID) [2].

• Fast Shapelets (FS) [34]: This approach extracts shapelets, the rep-
resentative segments of time series, as features for classification.

Table 2: List of handcrafted features related to electricity theft.

Feature Description

Power usage Mean, variance and slope of total, on-peak and off-
peak electricity usage Xe

u
NTL Mean, variance and slope of non-technical loss Xl

a

Temperature Mean, variance and slope of maximum and minimum
temperature Xc

a

Usage vs. NTL
2
√
(Xe

u − Xl
a )

2, Euclidean distance between total us-
age and NTL
DTW (Xe

u − Xl
a ), DTW distance between total usage

and NTL

Usage vs.
Temperature

2√
(Xe

u − Xc
a )

2, Euclidean distance between total us-
age and temperatures
DTW (Xe

u − Xc
a ), DTW distance between total usage

and temperatures

• Time Series Forest (TSF) [10]: This is a tree-ensemble method for
time series classification.
As for the third type of baseline, we consider the following

competitive deep learning methodologies:
• MRNN [18]: A multiscale recurrent neural network that takes the
concatenated multi-source sequences (Xe

u ⊕ Xl
a ⊕ Xc

a ) as input.
• HBRNN [13]: This is a hierarchical recurrent neural network on
multi-source sequences, which is proposed to recognize skeleton-
based actions. For the fusion layer, it concatenates the latent
representation at the same time points (Ffuse(ht , h′t ) = ht ⊕ h′t ).

• WDCNN [39]: A wide&deep convolutional neural network for
detecting electricity theft that focuses on capturing periodic pat-
terns of users’ electricity usage.

• HEBR: The proposed method. We empirically set the dimension
of he , hl and hc in the first layer as 32, 8 and 8 respectively,
and further set the learning rate as 0.01 with the reduction via
a factor of 10 at every 20 iterations. We implement Frecurrent by
LSTM, and will study how different implementations influence
the performance later in Section 5.3.

Comparisonmetrics. Weuse precision, recall and two F-measures
(F1, F0.5) as metrics. The F-measure is a measure of a test’s accuracy
and is defined as the weighted harmonic mean of the precision and
recall of the test, with the following mathematical form:

Fβ = (1 + β2)
precision × recall

β2 × precision + recall

We prefer to use F0.5 as the metric for electricity-theft detection,
as precision is more important than recall to real application.
Implementation details. To meet the demands of the application
scenario, the input of all methods is the historical observation
sequence spanning six months. The output is the probability of
electricity theft, which can be validated in the next month. The
first 80% of samples ordered by time are used for training, and we
test different methods on the remaining samples. We also use 10%
of samples from the training set as validation set, for avoiding the
overfitting. For baselines that require a classifier, we use XGB [6]
with a batch size of 2000. We adopt a larger weight (e.g., the ratio of
negative/positive) for positive samples to address class imbalance.
All the experiments are ran on a single Nvidia GTX 1080Ti GPU.
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Table 3: Comparison of classification performance (%). The bold
indicates the best performance of all the methods.

Methods
Metrics Precision Recall F1 F0.5 Variation

Handcrafted
features

LR 9.52 7.12 8.14 8.92 ±0.08
SVM 11.11 5.21 7.09 9.06 ±0.14
RF 17.07 11.93 14.04 15.72 ±0.22
XGB 20.00 9.35 12.74 16.29 ±0.23

Time Series
Classification

NN-ED 0.00 0.00 0.00 0.00 ±0.00
NN-DTW 10.82 27.78 15.57 12.32 ±0.12
NN-CID 12.86 22.96 16.48 14.10 ±0.24
FS 2.26 20.11 4.06 2.75 ±0.85
TSF 18.67 24.12 21.05 19.55 ±0.53

Neural
Networks

MRNN 1.28 100.0 2.54 1.59 ±0.00
HBRNN 19.07 36.98 25.16 21.12 ±0.85
WDCNN 18.46 24.69 21.12 19.44 ±1.31

Ours HEBR 22.54 34.19 27.17 24.19 ±0.85

5.2 Performance Comparison
We first compare the experimental results of HEBR with other
baselines to answer Q1. As shown in Table 3, all handcraft-feature
methods perform poorly, as these methods can only capture a lim-
ited number of patterns. Relatively speaking, the ensemble methods
(i.e., XGB and RF ) performs better (an average +7% of F0.5). By au-
tomatically capturing temporal features, time series classification
methods achieve further performance improvements, especially
for recall. However, these methods cannot effectively handle multi-
source time series and therefore suffer in terms of precision. A
similar phenomenon can be observed the neural network results.
In particular, when simply concatenating all multi-source data and
inputting it into a recurrent neural network (MRNN ), we can see
that it identifies all samples as instances of electricity theft. This
suggests that improperly handling multi-source data will bring in
more noise which hurts performance. WDCNN tries to capture the
abnormal non-periodic behaviors of users, resulting in a perfor-
mance improvement. However, the performance of this method is
unstable (around 1.31 variation). As expected, moreover, models
with hierarchical structure like HBRNN and HEBR are better able
to handle multi-source data and consequently outperform other
methods. Moreover, HEBR outperforms HBRNN by +3% in terms
of F0.5. Through careful investigation, we find that with the help
of the multi-step fusion and the attention operator, HEBR can not
only better bridge the multi-source information, but have superior
interpretability, the details of which are presented in later chapters.

5.3 Model Effectiveness
Effectiveness of multi-source information (Q2). We study
whether or not the multi-source information can be effective in elec-
tricity theft detection. To do this, we remove the input sequences
of temperature and NTL respectively from HEBR. It is notable that
after each sequence is removed, the number of HEBR’s levels de-
creases; once we remove both sequences, HEBR is transformed into
a single recurrent neural network with the users’ electricity usage
records as input.

From Table 4, we can see that multi-source information is sig-
nificant: the performance drops substantially when both NTL and

Table 4: Effect of multi-source information (%).

Removed component Precision Recall F1 F0.5

Temperature 20.65 28.58 23.98 21.86
NTL 19.01 22.33 20.54 19.59
Both 10.46 16.79 12.89 11.31

HEBR 22.54 34.19 27.17 24.19

Table 5: Effect of fusion and attention operators (%).

Removed component Precision Recall F1 F0.5

Multi-step fusion 19.18 32.05 23.99 20.85
Attention 20.91 30.27 24.73 22.29
Both 18.66 29.47 22.85 20.14

HEBR 22.54 34.19 27.17 24.19

Table 6: Effect of temporal modeling (%).

Implementation Precision Recall F1 F0.5

Average pooling 15.96 32.11 21.32 17.75
Linear RNN 19.53 30.24 23.73 21.02
GRU 21.04 36.79 26.77 23.01
LSTM 22.54 34.19 27.17 24.19

temperature are simultaneously removed (-12.88% of F0.5). Notably,
temperature is slightly less sensitive than NTL to the performance
(+1.97% of F0.5).
Effectiveness of hierarchical fusion mechanism (Q3). The
proposed hierarchical fusion mechanism includes the multi-step
fusion operator and the attention operator. How do these elements
contribute to bridging the information from different data sources?
To answer question, we remove each operator in turn and assess
the subsequent impact on performance. Note that after removing
the fusion operator, we adopt a simple concatenation for the fusion
layer: Ffuse = ht ⊕ h′t .

Results are presented in Table 5. From the table, we can see that
the performance clearly drops when either the multi-step fusion
operator or the attention operator is removed (-2.62% of F0.5 on av-
erage). Moreover, removing them both influences the performance
more significantly, suggesting that these two operators work well
together to bridge the information from different sources. We will
later qualitatively demonstrate the effectiveness of our proposed
hierarchical fusion mechanism through a specific application case.
Implementations of recurrent layers. Finally, we study how
different implementations of the recurrent layers in our proposed
model influence the performance. To do this, we use several com-
mon methods, such as average pooling, linear RNN [28], GRU [7]
and LSTM[22]. As shown in Table 6, the gated networks (GRU,
LSTM) outperform the linear methods (pooling, RNN), which il-
lustrates that the appropriate temporal modeling is important for
improving the performance.

5.4 Application and Case Study
In the past, the State Grid staff would employ several data-driven
models to detect electricity theft. However, these models are in-
efficient in practice. For example, in 2018, none of the electricity
thieves in Zhejiang were caught by these models. However, in order
to catch thieves, large-scale on-site investigations are very costly
and time-consuming.
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Figure 8: A case study of the attention operator shown together
with different fusion layers (α ec,el,elc ). The upper rows present dif-
ferent multi-source observation sequences, while the red bar indi-
cates the time at which the electricity theft was detected. The lower
row presents the score vector of the attention operator by heatmap.

Accordingly, in order to improve the accuracy of on-site investi-
gation and validate the effectiveness of our model, we employed
HEBR for monthly on-site investigation, in cooperation with State
Grid Hangzhou Power Supply Co. Ltd.. More specifically, HEBR
detected 20 high-risk users at the beginning of August 2019 and
suggested that the State Grid staff should investigate and collect
evidence. It turned out that our approach successfully caught three
electricity thieves out of 20 with 15% precision in practice, which
represented a significant improvement in on-site investigation pre-
cision (improved from 0%). Moreover, another six users among the
remaining 17 were identified that staff in Hangzhou strongly sus-
pected of being electricity thieves, although no clear evidence was
found during investigation. It is likely that these six users pilfered
electrical power in June or July, then restored electrical meter to its
previous condition before on-site checking.

We next present a specific case identified by HEBR to demon-
strate its effectiveness in real-world applications. In Figure 8, for a
specific user, we present temperature, NTL, the user’s electrical us-
age record, and three score vectors (α ec ,α el ,α elc ) in our model’s
fusion layers from top to bottom. We can see that the high-scoring
positions (the brighter areas of the heat map) are where the elec-
tricity usages are low, along with hot weather and high NTL. This
discovery is consistent with previous empirical observation (Sec-
tion 3): when a user consumes little electricity in hot weather, while
the NTL increases abnormally, he or she is likely to be pilfering
electricity. Moreover, when examining the fusion layers from top
to bottom, the brighter areas in the heat map (Figure 8) become
increasingly clear, suggesting that HEBR captures more accurate
patterns of multi-source information. We can see that users do not
pilfer electrical power all the time, and that the attention score re-
turns to a low point after on-site checking (red bar). From the case
study and the performance comparison in Table 3, we can see that
the attention operator can not only improve the electricity-theft
detection performance, but also provides superior interpretability.

6 RELATEDWORK
Additional related works on electricity theft. Electricity theft,
or pilfering, is known as a common phenomenon in developing

countries. Substantial effort has been expended to prevent or detect
the behavior of electricity theft. As mentioned in Section 1, there
are two main avenues of works related to electricity theft detection
or prevention. The first of these is hardware-driven methods, and
several representative works will be discussed herein. Fennell [15]
proposed a special, pilfer-proofing, system incorporating a plug-in
terminal block set and a meter box cover; Depuru et al. [11] first
conclude that electricity theft makes up a significant proportion
of non-technical loss (NTL). Secondly, rather than attempting to
improve the hardware of electricity meters, data-driven methodolo-
gies have also been proposed that focus on the analysis of electrical
power consumption records. In addition to the works referenced
in Section 1, Zheng et al. [39] propose a framework based on wide
& deep CNNs, which aims at accurately identifying the periodicity
and non-periodicity of electricity usage by utilizing 2-D electrical
power consumption data. Moreover, Costa et al. [8] apply the use
of knowledge-discovery in the database process based on artificial
neural networks to conduct electricity-theft detection. However,
the problem of how to utilize multi-source data (including electric-
ity consumption records and other related information) to conduct
electricity-theft detection remains unstudied.
Time series modeling. A basic but rather important characteris-
tic of power consumption data is that these records are time series
data. Time series modeling has been widely studied over the past
decades. One traditional avenue here is to extract efficient features
from the original data and develop a well-trained classifier, such as
TSF [10], shapelets [26, 37] etc.; another avenue has focused on deep
learning, such as RNNs and their variants (LSTM [22], GRU [18],
etc.). In addition, since the dimensions of time series features may
be large, and it is likely that different levels of correlations exist
between features, hierarchical LSTM-based models are proposed to
learn these hierarchical relationships (e.g., HBRNN [13]).
User behavior modeling. Another related domain of this work
is that of the user behavior analysis. One typical case is that of the
web search: for example, Radinsky et al. [33] develop a temporal
modeling framework to predict user behavior using smoothing
and trends. However, although these works may provide various
insights relevant to human behavior modeling, fully understand-
ing complicated user behaviors is quite difficult; thus, it may be
necessary to tailor the specific analysis to the scenario in question.

7 CONCLUSION AND FUTUREWORK
In this paper, we study the problem of electricity-theft detection and
analyze the influence of the macro-level (climate) and meso-level
(non-technical loss) factors on users’ electricity usage behavior.
We proposed a hierarchical framework, HEBR, that encodes the
correlations between different levels of information step by step.
When evaluated on real-world datasets, the proposed method not
only achieved significantly better results than other baselines, but
also helped to catch electricity thieves in practice. In future work,
we plan to explore the following aspects: 1) investigating more
factors from different sources to improve electricity-theft detection
accuracy; 2) extending HEBR to other similar scenarios.
Acknowledgments. The work is supported by NSFC (61702447), the Fun-
damental Research Funds for the Central Universities, and a research fund-
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