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Abstract
This paper proposes CrossLink, a novel framework for cross-domain
link prediction. CrossLink learns the evolution pattern of a specific
downstream graph and subsequently makes pattern-specific link
predictions. It employs a technique called conditioned link gener-
ation, which integrates both evolution and structure modeling to
perform evolution-specific link prediction. This conditioned link
generation is carried out by a transformer-decoder architecture, en-
abling efficient parallel training and inference. CrossLink is trained
on extensive dynamic graphs across diverse domains, encompassing
6 million dynamic edges. Extensive experiments on eight untrained
graphs demonstrate that CrossLink achieves state-of-the-art per-
formance in cross-domain link prediction. Compared to advanced
baselines under the same settings, CrossLink shows an average
improvement of 11.40% in Average Precision across eight graphs.
Impressively, it surpasses the fully supervised performance of 8
advanced baselines on 6 untrained graphs. Project Page is here.

CCS Concepts
• Computing methodologies → Artificial intelligence; • Infor-
mation systems→ Data mining.

Keywords
Dynamic Graph, Link prediction

†Yang Yang is the corresponding author.
∗Equal Contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’25, Sydney, NSW, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1274-6/2025/04
https://doi.org/10.1145/3696410.3714792

ACM Reference Format:
Xuanwen Huang*, Wei Chow*, Yize Zhu, Yang Wang, Ziwei Chai, Chun-
ping Wang, Lei Chen, and Yang Yang. 2025. Enhancing Cross-domain Link
Prediction via Evolution Process Modeling. In Proceedings of the ACM Web
Conference 2025 (WWW ’25), April 28-May 2, 2025, Sydney, NSW, Australia.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3696410.3714792

1 Introduction
Dynamic graphs are widespread in the real world [5, 47], their
nodes representing entities and dynamic edges denoting complex
interactions between them [20]. For example, in recommendation
systems, users have dynamic interactions with items, forming user-
item dynamic graphs [20]. In social networks, interactions between
users create user-user dynamic graphs [18]. Consequently, dynamic
graph modeling has recently attracted significant attention from
the academic community and has become an important branch of
graph research [47].

Link prediction (LP) is a crucial task in dynamic graph modeling.
In real world, many interaction-related applications can be formed
by this task [5, 20]. For example, predicting a user’s purchase inter-
est can be represented as an LP on a user-item network [45], where
an edge denotes a purchase relationship. Similarly, friend recom-
mendations can be represented as LP on user-user networks [42].
However, current methods mainly consider single graph setting
[14]. In this setting, the graph model is trained using supervised
learning on a given graph and then makes inferences on the same
graph (referred to as End2End setting). This approach has several
notable limitations when applied in real-world scenarios: (1) High
human/time costs: The End2End setting requires independently
training different models for each graph. Each training process
demands careful design and optimization of hyperparameters by
experts. Additionally, the training process is time-consuming. (2)
Unsuitability for small datasets: The End-to-End setting typically
requires a substantial number of samples for satisfactory domain-
specific performance. This makes it ill-suited for small-scale applica-
tion scenarios, such as B2B businesses or situations involving large
graphs with limited data. (3) Inability to learn more knowledge
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from different applications: Graphs in different applications may
contain complementary knowledge. For instance, users purchasing
items and users listening to music are both projections of human
behavior. Therefore, learning from both user-item graphs and user-
music graphs can help themodel better understand behavior-related
knowledge. However, End2End training is limited to a single graph.

Therefore, this paper aims to explore a novel problem: how to
perform cross-domain link prediction on dynamic graphs? In this
setting, a single graph model is trained once using multiple graphs
and then directly applied to predict links on unseen downstream
graphs (in this paper, “domain” is equivalent to “graph”). Compared
to End2End setting, cross-domain link prediction offers several clear
advantages: (1) Only one model must be trained, which can be
applied across various scenarios/graphs. (2) Since the inference
stage does not require additional training, this setting is naturally
suitable for scenarios with insufficient training samples. (3) By
training on multiple graphs, the model can acquire a broader range
of knowledge.

However, cross-domain link prediction faces a fundamental chal-
lenge: how to model ambiguous structures. Different graphs are
interdependent [14, 46], meaning the same structure may hold dif-
ferent meanings and evolve differently across various graphs. As
shown in Figure 1, Graph A typically follows a triadic closure process
[13, 18, 26, 48], where two nodes with common neighbors are more
likely to form edges, while Graph B exhibits a contrasting pattern.
Consequently, even if the node pair (red and blue nodes) in Graph
A and Graph B has the same local structure, their ground truths
are different. We refer to this type of local structure, which has di-
verse ground truths across various graphs, as ambiguous structure.
Current methods usually consider single graph settings [14, 46],
focusing on predicting future edges between two nodes solely based
on their local structure. Therefore, these methods struggle to ef-
fectively model ambiguous structures under cross-domain setting.
This limitation not only impedes the model’s ability to accurately
learn the meaning of ambiguous structures in multiple graphs but
also hinders its capability to infer future edges correctly in tar-
get graphs, especially when the graphs contain many ambiguous
structures.

Differing from current methods that are limited to local struc-
ture, this paper delves into cross-domain link prediction from a
perspective of continual evolution [1, 21]. Intuitively, within the
same graphs, their current evolution rule tends to consistent with
their previous evolution pattern [1]. Therefore, if a model can input
its historical evolution process, extract the implicit evolution pat-
tern, and utilize it to infer future structure, naturally, this model can
excel in cross-domain link prediction and understand ambiguous
structures. As illustrated in Figure 1, solely considering the local
structure, a model cannot predict edges between the red and blue
nodes. However, if the model can capture the historical evolution
process of the corresponding graph and comprehend the associated
patterns, it can discern the meaning of the input structure and make
accurate predictions.

In line with this perspective, we propose CrossLink, a novel
framework designed to enhance cross-domain link prediction by
modeling evolutionary processes. CrossLink incorporates a con-
ditional link generation task to integrate evolutionary modeling
with link prediction, allowing for evolution-specific link prediction

that effectively addresses structural ambiguity in cross-domain sce-
narios. More specifically, CrossLink interprets the graph evolution
process as a continuous and concurrent link prediction task for all
nodes. It represents this process through an evolution sequence that
includes sampled link prediction tasks from the graph’s history,
denoted as [pair1, 𝑦

𝑡1
1 , ...pair𝐾 , 𝑦

𝑡𝑘
𝐾
], where 𝑝𝑎𝑖𝑟𝑖 denotes the 𝑖-th

node pair, and 𝑦𝑡𝑖
𝑖
indicates the emergence of an edge between the

nodes of the pair after 𝑡𝑖 . This sequence, along with the relationship
between node pairs and their corresponding labels, reflects the
underlying evolution pattern. When a target link prediction task
is encountered, the framework integrates the new node pair into
the evolution sequence, creating a merged sequence, represented
as [...pair𝐾 , 𝑦

𝑡𝐾
𝐾
, pair𝑛𝑒𝑤 , ?]. Consequently, evolution-specific link

prediction becomes the task of predicting the next label in this
sequence based on all prior elements, a process we term conditional
link generation (CLG). To achieve CLG, CrossLink initially vector-
izes the local structure of each node pair within the sequence using
a structural component. It then employs a transformer-decoder
architecture to predict the next edge label based on the entire se-
quence. Furthermore, CrossLink takes advantage of dynamic graph
characteristics and includes careful engineering implementations
[31] to enable parallel training and efficient inference.

We utilized six dynamic graphs from diverse domains, com-
prising a total of 6 million edges, to train CrossLink. Extensive
experiments are conducted on eight untrained graphs to assess the
effectiveness of CrossLink in cross-domain link prediction. When
compared to five advanced dynamic graph models operating under
cross-domain settings with the same training graphs, CrossLink
demonstrated an 11.40% improvement in terms of link prediction av-
erage precision (AP) across the eight datasets. More remarkably, the
cross-domain performance of CrossLink surpasses full-supervised
performance of eight advanced baselines on six datasets. Detailed
ablation studies indicate that CrossLink indeed improved by learn-
ing evolving patterns. Furthermore, analysis of training data show-
cases CrossLink’s potential for scale-up to larger datasets and more
parameters.

Our contributions are outlined as follows:
• Pioneering exploration of cross-domain link prediction, which is
promising and can benefit broad applications.

• We propose a transformer-based model, CrossLink, which con-
ducts cross-domain link prediction by integrating evolution pro-
cess modeling, achieving state-of-the-art performance.

• Comprehensive experiments on 14 datasets and 8 advanced base-
lines, providing valuable insights to the community.

2 Related Work
Dynamic link prediction. Dynamic graphs can model temporal
interactions in various real-world scenarios [15], and link predic-
tion is a crucial task with widespread applications [19]. Leveraging
node representation for predicting edges has been widely employed
in numerous applications [15]. Some studies focus on learning
dynamically representing nodes based on self-supervised meth-
ods [13, 48]. With the advent of Graph Neural Networks (GNNs),
some research endeavors to tackle link prediction through end-
to-end learning. However, since GNNs are primarily designed for
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Figure 1: (a) shows a case of structure conflict. Graph A follow a triadic closure process, while Graph B exhibits a contrasting
process. (b) shows current methods cannot address this conflict. and (c) shows how prediction via modeling evolution, and it
can address structure conflict.

static graphs [12, 39], various approaches have been proposed to in-
corporate time-aware structures with GNNs, such as time encoders
[44] and sequence models [20, 29, 35] More recently, some studies
have proposed link prediction by employing neighbor sampling
and unifying the representation using sequential models [41, 46]
to achieve state-of-the-art performance on dynamic graphs [14].
However, these methods are often limited to single datasets. Cur-
rently, the exploration of cross-domain link prediction still stays
in statistic [36] or static graphs [4, 9, 11]. Therefore, this paper
concentrates on cross-domain link prediction on dynamic graphs,
aiming to benefit diverse real-world applications.

Cross-domain model. Currently, foundation models have been
widely researched in various fields. For example, BERT [8], GPT[3,
34], and LLAMA [37] in natural language processing (NLP); CLIP
[33], and SAM [17] in CV. These methods have gained significant
success in various applications. Since their pre-training tasks nat-
urally support task-specific descriptions [2] (e.g., prompts [43]),
one trained model can be applied to a variety of downstream tasks
[24]. However, the exploration of foundational models in graphs
is confined solely to static graphs [10, 22, 23]. These inspire us to
build a cross-domain link prediction model for dynamic graphs,
where task-specific descriptions are typically the evolution of the
graph.

3 Background
Dynamic graph: We represent domains as D = {0, 1, ...}. Each
domain 𝑑 ∈ D corresponds to a dynamic graph, expressed as a
sequence of evolving links denoted by E𝑑 = {(𝑒1, 𝑡1), (𝑒2, 𝑡2), ...}.
Here, 𝑒𝑖 signifies a dyadic event occurring between two nodes 𝑢𝑖 , 𝑣𝑖 .
We also assume that each node 𝑢𝑖 exclusively belongs to a specific
domain 𝑑𝑖 , represented as 𝑑𝑖 = 𝜙 (𝑢𝑖 ). For a node 𝑢𝑖 ∈ E𝑑 , 𝑑𝑖 = 𝑑 .
Link Prediction on E𝑑 : the task of dynamic link prediction is
defined as using the previous edge set E𝑡

𝑑
= {(𝑒𝑖 , 𝑡𝑖 ) | 𝑡𝑖 ≤ 𝑡} to

predict the future edges E′𝑡
𝑑
= {(𝑒𝑖 , 𝑡𝑖 ) | 𝑡𝑖 > 𝑡}.

From a machine learning perspective, the link prediction model
can be defined asF (E𝑡

𝑑
), where E𝑡

𝑑
serves as the input for themodel.

Most past works focus on single domain scenarios, which means
the F (·) is also trained by E𝑡

𝑑
, i.e., End2End training. However,

this paper focuses on a more challenging task: cross-domain link
prediction, which problem can be formalized as follows:

Problem definition: Consider two sets of domains: D𝑡𝑟𝑎𝑖𝑛 and
D𝑖𝑛𝑓 𝑒𝑟 . The objective of this paper is to train one model, denoted
as F̃ (·), utilizing multi-graphs from D𝑡𝑟𝑎𝑖𝑛 . For each untrained
dynamic graph from 𝑑 ∈ D𝑖𝑛𝑓 𝑒𝑟 at timestamp 𝑡 , F̃ (·) can directly
predict E′𝑡

𝑑
based on E𝑡

𝑑
without the need for any further training

process.

4 Proposed Method: CrossLink
4.1 Overview
This paper centers on proposing a model that is capable of cross-
domain link prediction. Intuitively, diverse graphs encompass vari-
ous physical meanings in cross-domain scenarios, which are harm-
ful for training on numerous graphs and cross-domain generalizing.
Hence, we introduce CrossLink, designed for training and inference
on diverse datasets. The core idea of CrossLink is straightforward:
it conducts link prediction based on the evolving patterns of the
corresponding graph. CrossLink trained by conditional link gen-
eration (CLG) that can integrate the modeling of the evolution and
link prediction and using caching.

Outline: When conducting a specific link prediction on a given
graph, the CrossLink framework unfolds as follows: (1) Depict the
graph’s evolution process via a sequence of link prediction tasks
with ground-truths; (2) Perform evolution-specific link prediction
based on both nodes’ representations and the evolution process.
Then in the training stage, we merge (1) and (2) as conditioned link
generation for parallel training. And in inference, we adapt caching
(1) by KV-caching to accelerate (2).

4.2 Represent Graph Evolution by Sequence
We next show the details of how CrossLink represents the evolution
process of a graph by a sequence of link prediction tasks. The
evolution of a graph involves an ongoing process of sequential link
generation. Naturally, graphs in different domains exhibit distinct
generation sequences. Therefore, CrossLink directly models the
historic generation sequences of the graphs to learn the evolution
pattern.
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Figure 2: Framework of CrossLink. (a) Models the graph’s evolution process via a sequence of link prediction tasks with ground
truths; (b) Evolution-specific link prediction based on both nodes’ representations and the evolution process.

Consider a dynamic graph E𝑡
𝑑
in the domain 𝑑 ∈ D at timestamp

𝑡 . CrossLink can sample a series of node pairs from this graph.
Formally, the sampled edge pairs are represented as:

Ẽ𝑡𝐾
𝑑𝐾

= {...(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖 , 𝑦𝑡𝑖𝑢𝑖 ,𝑣𝑖 ) ...(𝑢𝐾 , 𝑣𝐾 , 𝑡𝐾 , 𝑦
𝑡𝐾
𝑢𝐾 ,𝑣𝐾 )} (1)

where 𝑡𝑖 < 𝑡𝑖+1 < 𝑡𝐾 < 𝑡 , 𝑑𝑖 = 𝑑𝐾 = 𝑑 , and 𝑦𝑡𝑖𝑢𝑖 ,𝑣𝑖 ∈ {0, 1} denotes
whether 𝑢𝑖 is connected to 𝑣𝑖 at timestamp 𝑡𝑖 . This sequence of
pairs is a subset of the whole link generation process of E𝑡

𝑑
, which

reflects the intrinsic evolution pattern of the graph in domain 𝑑 .
The evolution pattern especially is the correlation between the

historical structure of two nodes and their future edge. Therefore,
CrossLink uses a graph encoder to obtain the representation of all
nodes in Ẽ𝑡𝐾

𝑑𝐾
. Formally, for a pair (𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖 , 𝑦𝑡𝑖𝑢𝑖 ,𝑣𝑖 ), we derive the

representations of 𝑢𝑖 and 𝑣𝑖 at timestamp 𝑡𝑖 :

𝑍
𝑡𝑖
𝑢𝑖 , 𝑍

𝑡𝑖
𝑣𝑖 = GraphEncoder(G𝑡𝑖𝑢𝑖 ,G

𝑡𝑖
𝑣𝑖 ,T (𝑡∗)) (2)

Where G𝑡𝑖𝑢𝑖 is the local subgraph of 𝑢𝑖 before 𝑡𝑖 . Since the primary
focus of this paper is not on representing the dynamic graph struc-
ture, we use GraphEncoder(·) as a general notation for a dynamic
graph representation method, see more details in Appendix A.1. In
this paper, we employ DyGFormer [46] as the instance of the graph
encoder. Then, we can obtain the representation of Ẽ𝑡𝐾

𝑑𝐾
:

P(Ẽ𝑡𝐾
𝑑

) = {(𝑍 𝑡0𝑢0 , 𝑍
𝑡0
𝑣0 , 𝑦

𝑡0
𝑢0,𝑣0 )...(𝑍

𝑡𝐾
𝑢𝐾 , 𝑍

𝑡𝐾
𝑣𝐾 , 𝑦

𝑡𝐾
𝑢𝐾 ,𝑣𝐾 )} (3)

Here, P(Ẽ𝑡𝐾
𝑑

) is denoted as the evolving sequence in this paper,
which contains rich information about E𝑡

𝑑
. On one hand, the struc-

ture distribution of graph of E𝑡
𝑑
can be described by 𝑍 𝑡𝑖𝑢𝑖 . On the

other hand, the evolving pattern can be reflected by the correlation
between node representation and corresponding 𝑦𝑡∗𝑢∗,𝑣∗ .

4.3 Link Prediction based on Graph Evolution
Next, CrossLink simultaneously models the gained evolving se-
quence and the representation of the target node to perform evolution-
specific link prediction via a transformer.

Let 𝑢𝐾+1, 𝑣𝐾+1, 𝑡𝐾+1 denote an edge in domain 𝑑 to be predicted,
where 𝑡𝐾+1 > 𝑡 . According to our assumption, the predicted𝑦𝑡𝐾+1

𝑢𝐾+1,𝑣𝐾+1

is not only related to the temporal structure of 𝑢𝐾+1 and 𝑣𝐾+1 but
also to the evolution pattern. To gain a better understanding of
the structure of 𝑢𝐾+1 and 𝑣𝐾+1, CrossLink employs the same graph
encoder GraphEncoder(·) as in Eq. 2 to model the representation
of nodes 𝑢𝐾+1 and 𝑣𝐾+1 before timestamp 𝑡𝐾 , denoted as 𝑍

𝑡𝐾+1
𝑢𝐾+1 and

𝑍
𝑡𝐾+1
𝑣𝐾+1 . Therefore, 𝑍

𝑡𝐾+1
𝑢𝐾+1 exists in the same representation space as

nodes in the sampled evolution pattern, making it easier to model
their correlation.

Next, CrossLink integrates the representation of the predicting
node pair with the graph evolution pattern represented by P(Ẽ𝑡𝐾

𝑑
).

Given that evolution patterns are described in sequence form, for
consistency, the predicting node pair is also treated as a sequence,
facilitating their combination through sequence concatenation. Sub-
sequently, CrossLink employs a Transformer to sequentially model
them, formalized as:

{...𝐻𝑣𝐾+1 } = Transformer( [P(Ẽ𝑡𝐾
𝑑

) | |𝑍 𝑡𝐾+1
𝑢𝐾+1 , 𝑍

𝑡𝐾+1
𝑣𝐾+1 ]) (4)

This is a 12-layer decode-only Transformer (with causality mask-
ing), adopted by many foundation models such as GPT-2 [34]. Its
sequential modeling aligns with the graph evolving process as well
as our target, namely link prediction based on evolution. Therefore,
we use the last hidden state𝐻𝑣𝐾+1 to predict the next token, as𝐻𝑣𝐾+1
contains all input information and the final prediction result for-
malized as 𝑦′𝑡𝐾+1

𝑢𝐾+1,𝑣𝐾+1 = 𝑓𝜃 (𝐻𝑣𝐾+1 ), it optimized by cross-entropy
with the ground truth, i.e., CE(𝑦′𝑡𝐾+1

𝑢𝐾+1,𝑣𝐾+1 , 𝑦
𝑡𝐾+1
𝑢𝐾+1,𝑣𝐾+1 )).

4.4 Training and Inferring
Parallel training by conditioned link generation: Revisiting
the representation used to model the evolving P(Ẽ𝑡𝐾

𝑑
), where each

sampled pair is ordered by timestamp, i.e., in
{...(𝑍 𝑡𝑖−1𝑢𝑖−1 , 𝑍

𝑡𝑖−1
𝑣𝑖−1 , 𝑦

𝑡𝑖−1
𝑢𝐾 ,𝑣𝑖−1), (𝑍

𝑡𝑖
𝑢𝑖 , 𝑍

𝑡𝑖
𝑣𝑖 , 𝑦

𝑡𝑖
𝑢𝐾 ,𝑣𝑖 )...}, 𝑡𝑖−1 < 𝑡𝑖 .

Additionally, since 𝑍 𝑡𝑖𝑢𝑖 and 𝑍
𝑡𝑖
𝑣𝑖 represent the structure before 𝑡𝑖

if we use 𝑍 𝑡𝑖𝑢𝑖 and 𝑍
𝑡𝑖
𝑣𝑖 to predict 𝑦𝑡𝑖𝑢𝑖 ,𝑣𝑖 , this process can be treated

as a link prediction task based on a shortened evolving pattern.
Formally, let P(Ẽ𝑡𝑖−1

𝑑
) ⊂ P(Ẽ𝑡𝐾

𝑑
) denote all sampled node pairs
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before 𝑡𝑖 . This link prediction task can be expressed as:

{...𝐻𝑣𝑖 ...} = Transformer( [P(E𝑡𝑖−1
𝑑

) | |𝑍 𝑡𝑖𝑢𝑖 , 𝑍
𝑡𝑖
𝑣𝑖 | |...]) (5)

Since CrossLink employs a decoder-only transformer, the sequence
following of 𝑍 𝑡𝑖𝑣𝑖 does not influence the result of 𝐻𝑣𝑖 . Consequently,
based on 𝐻𝑣𝑖 , we can reuse the prediction head to make a link pre-
diction of the following content of 𝑡𝑖 , denoted as 𝑦′𝑡𝑖𝑢𝑖 ,𝑣𝑖 = 𝑓𝜃 (𝐻𝑣𝑖 ).

Optimizing 𝑦′𝑡𝑖𝑢𝑖 ,𝑣𝑖 offers several advantages. On the one hand,
it can enhance the robustness of link prediction with evolution,
as it essentially optimizes the prediction results based on evolv-
ing sequences of different lengths and combinations. On the other
hand, it also can enhance the modeling evolution. Link prediction
is modeling the evolution pattern of dynamic graphs. Therefore,
the intermediate result of link prediction can reflect the character-
istics of evolution patterns. Meanwhile, the modeling of evolution
patterns is optimized by successor link prediction which is based
on evolution patterns. Therefore, this optimization is typically a
multi-domain training model for better-comprehending evolu-
tion patterns.

Therefore, considering one sample in domain 𝑑 , the loss of
CrossLink:

L𝑑 (𝑢𝐾+1, 𝑣𝐾+1, 𝑡𝐾+1) =
𝐾+1∑︁
𝑖=1

CE(𝑦′𝑡𝑖𝑢𝑖 ,𝑣𝑖 , 𝑦
𝑡𝑖
𝑢𝑖 ,𝑣𝑖 )) (6)

Where 𝑑𝑖 = 𝑑𝐾+1 = 𝑑 , and 𝐾 + 1 is the max evolving sequence
number. Since the last predicting pair also has ground truth, so all
the pairs essentially generate the next ground-truth current nodes’
representations and previous involution process. Thus, we term the
entire process of Eq (6) as conditioned link generation (CLG).

Finally, considering the multi-domain setting, the whole loss of
CrossLink is: L𝑎𝑙𝑙 =

∑D𝑡𝑟𝑎𝑖𝑛
𝑑=0 L𝑑 (∗). It is worth noting that dif-

ferent domains would not be cross-sampled. Each computational
process of L𝑑 (∗) occurred within a single graph in domain 𝑑 . Al-
gorithm 1 in the Appendix shows more details. Time augmenta-
tion: To minimize the disparity in the physical meaning of different
graphs, we conduct time normalization for each subgraph G𝑡𝑖𝑢𝑖 used
in Eq (2). In G𝑡𝑖𝑢𝑖 , each time 𝑡𝑢,∗ is normalized by 𝑡𝑢,∗ =

𝛼 (𝑡𝑖−𝑡𝑢,∗ )
𝑡𝑖

,
where the 𝛼 is hyper-parameters. Additionally, to enhance the mod-
els’ robustness to the temporal aspects and improve their ability
to learn from evolving processes in link prediction, we introduce a
time shuffle. For all times in one sequence, the normalized time is
shuffled using two random seeds, 𝑡𝑢,∗ = 𝛽 (𝑡𝑢,∗ + 𝛾). Since the ran-
dom seeds are consistent for one sequence, CrossLink comprehends
the temporal meaning by modeling the context of the sequence.

Efficient inference: In inference on a downstream graph, the
construction of Ẽ𝑡𝐾

𝑑
in Eq (4) occurs only once. Subsequently, it can

be reused for all link predictions. All computation results related to
Ẽ𝑡𝐾
𝑑

, including intermediate results in the decode-only transformer,
can be cached. Thus, the time complexity during inference is only
𝑂 ((𝐾 + 1)𝐶) for each prediction, based on caching. Here, 𝐾 + 1
represents the sequence length in self-attention, and𝐶 accounts for
all other matrix operations. With the incorporation of engineering
optimizations, CrossLink, once trained, can effortlessly conduct
efficient inference on very large-scale graphs.

5 Experiment
5.1 Experimental Settings
To assess the efficacy of CrossLink in cross-domain link prediction,
we conduct an experiment involving 14 datasets and 9 baselines
under 2 settings.

Datasets: Referencing prior research and current benchmarks
[14, 46], this paper selects 14 unique and distinct graphs. As Table
3 shows, each link prediction task can be associated with a spe-
cific real-world application. Six graphs, namely Mooc, Wikipedia
(abbreviated as Wiki), LastFM, Review, UN Vote, and Reddit, are
randomly chosen for training, collectively comprising eight mil-
lion dynamic edges. The remaining eight graphs used for zero-shot
inference include Enron, UCI, Nearby, Myket, UN Trade, Ubuntu,
Mathoverflow (abbreviated as Mathover.), and College. Due to the
varying features of nodes across different datasets, we standardize
the node and edge features of all data to be 0. Further details can
be found in Appendix C.1.

Baselines: We select eight state-of-the-art (SOTA) dynamic
graph models as our baselines, including TGAT [44], TGN [35],
DyRep[38], Jodie[20], CAWN[41], GraphMixer[7], TCL[40], and
DyGFormer[46]. It’s important to note that TGN, DyRep, and Jodie
are exclusively utilized under the End2End setting, as their designs
are not suitable for cross-domain settings. For additional informa-
tion, please refer to the Appendix C.2.

Training setting and evaluation metrics: This experiment
mainly involves 2 training settings. (1) Cross-domain: all models
are trained using the same set of six training graphs and evaluated
on the other eight evaluated datasets. (2) End2End: independently
train on the train-set and early stopping based on the validation set
of 8 evaluated graphs. To enable a comparative analysis of cross-
domain link prediction with End2End training, we chronologically
split each evaluation dataset into training, validation, and testing
sets at a ratio of 70%/15%/15%. Additionally, we employ random
negative sampling strategies for evaluation, a common practice in
previous research. We report different performances of different
models under different settings on the test-set sets. Due to the
inclusion of extensive datasets and experiments, all the reported
results are the Average Precision (AP) on the test set.

Implementation details: Our experiment is conducted based
on DyGLib [46], see Appendix C.2 for more details.

5.2 Experiment Result
To assess CrossLink’s effectiveness in cross-domain link predic-
tion, we conduct a comparison with baselines in a cross-domain
setting. In this setting, CrossLink and the baselines are trained by
six graphs and subsequently evaluated on other eight untrained
graphs. We further compare the cross-domain performance with
full-supervised baselines (End2End), where baselines are trained
by the train-set of each evaluated graph. Importantly, both settings
utilized the same test sets. The reported results showcase the best
End2End performance across the 8 baselines. Table 1 reveals three
key insights from the experiment results:

Insight 1. Link prediction is a generalized task across differ-
ent domains: (1) Existing baselines naturally demonstrate cross-
domain transferability in link prediction. Compared to random
prediction, all methods exhibit a 40.33% improvement after training
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Table 1: Performance of various methods regarding cross-domain link prediction. We report their Average Precision (average of
3 runs and omit by %) across eight graphs. Methods above the double horizontal lines present adopt cross-domain settings,
and “SOTA (End2End)” denotes the best performance of eight baselines in End2End training (See details in Table 7). Bold and
underline indicate the best and the second best performance respectively, and ± represents the variance. All subsequent tables
utilize the same notations and metrics.

Enron UCI Nearby Myket UN Trade Ubuntu Mathover. College

Random 54.85 ±9.26 55.17 ±9.14 52.22 ±9.38 53.06 ±7.05 50.43 ±6.21 53.61 ±5.98 52.47 ±9.92 55.17 ±9.26

TGAT 61.23 ±0.91 82.88 ±0.11 71.50 ±0.36 66.80 ±0.85 51.43 ±1.73 62.51 ±0.24 72.00 ±0.18 82.88 ±0.11

CAWN 81.00 ±1.05 94.16 ±0.01 69.10 ±0.34 71.46 ±0.17 56.20 ±0.58 58.18 ±0.53 68.23 ±0.37 94.16 ±0.01

GraphMixer 55.84 ±2.26 83.66 ±0.04 74.25 ±0.25 59.24 ±2.35 54.69 ±0.03 71.28 ±0.99 79.21 ±0.66 83.66 ±0.04

TCL 75.84 ±0.37 87.08 ±0.28 69.96 ±0.03 67.73 ±0.40 54.26 ±0.27 66.26 ±0.19 74.31 ±0.16 87.08 ±0.28

DyGFormer 90.80 ±0.54 93.86 ±0.19 71.74 ±0.39 71.34 ±0.46 55.17 ±2.37 65.95 ±0.82 75.70 ±0.34 93.86 ±0.19

CrossLink 91.60 ±0.47 96.02 ±0.07 89.61 ±0.92 87.72 ±0.11 60.52 ±0.29 87.44 ±0.76 89.13 ±0.33 96.04 ±0.07

SOTA (End2End) 92.47 ±0.12 95.79 ±0.17 89.32 ±0.05 86.77 ±0.00 66.92 ±0.07 84.82 ±0.03 89.04 ±0.08 94.75 ±0.03

on alternative datasets. Enron, UCI, and College stand out as easily
transferable datasets, with the best performance of methods under
cross-domain settings on these datasets being only 0.21% lower than
the performance of the End2End setting on average. These results
suggest that link prediction is a task that can be generalized across
diverse domains. (2) However, current methods show instability
under cross-domain settings. For example, GraphMixer performs
second-best in Nearby and Mathoverflow but struggles in Enron,
UCI, and Myket.

Insight 2. CrossLink gains comprehensive improvement on
cross-domain link prediction: CrossLink differs from baselines
that rely solely on the temporal structure of nodes for predict-
ing links. Instead, CrossLink takes into account both the inherent
patterns within predicting graphs and the temporal structure of
nodes in link prediction. The experiment results demonstrate that
CrossLink achieves significant improvement across various graphs.
Compared to the best performance of all baselines under the same
training setting, CrossLink showcases a remarkable improvement
of over 11.40% (on an average of eight graphs). Particularly on
datasets Nearby, Myket, Ubuntu, and Mathoverflow, the average
improvement reaches up to 19.66% on average. These results thor-
oughly illustrate the advancements of CrossLink in cross-domain
link prediction.

Insight 3. CrossLink surpasses fully supervised performance
on some graphs: Furthermore, we compare CrossLink with the
best performance of 8 baselines under End2End (SOTA of End2End).
Surprisingly, on these 8 datasets, CrossLink outperforms the SOTA
of End2End on 6 datasets, particularly on Ubuntu, with an im-
pressive improvement of nearly 13.69%. For the datasets where
CrossLink does not surpass, CrossLink is only 5.25% lower than
End2End on average. This exciting result highlights the potential of
CrossLink. Furthermore, it validates the feasibility of cross-domain
link prediction.

Besides, we also observe the performance of five baselines and
CrossLink on the test sets of six training datasets, and it also gains
the SOTA performance on them. Besides, we find that training
on more datasets indeed leads to poorer performance for some

baselines, but CrossLink does not exhibit the same phenomenon.
See more details in Table 4.

5.3 Analysis on Multi-domain Training
To delve deeper into why CrossLink performs well, we conduct
a comprehensive analysis of its training process. To present the
results more clearly, all observations are based on the four most
improved datasets, namely Nearby, Myket, Ubuntu, and Mathover-
flow. We observe the impact of the model’s different components
through ablation studies and then explore the effects of training
data and model size.

Insight 4. All components of CrossLink are important: We
conducted ablation studies to observe the influence of each compo-
nent of CrossLink. According to the results shown in Figure 3, we
have gathered several observations as follows:

• Modeling evolution drives CrossLink’s performance improve-
ment. When we exclude the evolving pattern (denoted as “w/o
evolving”), CrossLink showed an average decrease of 11.11%
across four datasets. This outcome suggests that capturing the
evolution process is the key to CrossLink’s advancement.

• Multi-task training indeed enhances CrossLink. Multi-task train-
ing aids CrossLink in better modeling the evolution sequence.
Removing the evolution-based multi-task learning led to an av-
erage AP decrease of 2.96% across these four datasets.

• Maximum evolution length can influence model performance:
we further explore the impact of the maximum evolution length
on the model (i.e., 𝐾 + 1 in Eq (4)). As observed, with a rise in the
evolution sequence length, themodel’s average ranking gradually
increases.

• Time normalization is also crucial. Eliminating time normaliza-
tion (denoted as “w/o t-norm”) results in an average decrease of
13.21% across these datasets. This indicates that although evolu-
tion is crucial, it still requires a time normalization that effectively
operates on a unified scale. Additionally, appropriately perturb-
ing the normalized time can aid the model in more effective
transfer. The removal of random shuffling (“w/o t-shuffle”) also
resulted in a decrease of 2.02%.
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Figure 3: Analysis result of CrossLink regarding multi-domain training. (a) shows the result of ablation studies, where “w/o”
removes a certain component of our model. (b) shows the performance of CrossLink adopts different maximum sequence
lengths (both training and inference). (c) indicates the performance on evaluated graphs that model solely trained by a specific
graph. See more detailed results in Table 8, Table 9, and Table 10, respectively.
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Figure 4: Performance of CrossLink with diverse settings. (a) show the performance of the model improves with more training
samples. (b) shows the performance of CrossLink is influenced by the number of training graphs. (c) shows the best-hidden
size of the model under 6M training samples. (d) further shows the best-hidden size under different training samples. See more
details in Appendix.

Insight 5. Multi-domain training can prompt the model’s
generalization: We also compare CrossLink with training on single
dataset scenarios. As illustrated in Figure 3 (c), training on single
datasets exhibits unstable performance across four datasets. In
contrast, training on multi-datasets maintains stability on these
four datasets and outperforms the best performance achieved by
training on single datasets for each evaluated dataset.

Insight 6. Large-scale and diversity of training datasets and
suitable model size also important for CrossLink:

• The model’s performance increases with the expansion of the
dataset scale. We train CrossLink under different training sizes
(measured by number of edges), which are uniformly sampled
from six training datasets. As shown in Figure 4 (a), with the
increase in the number of training samples, the model’s per-
formance across four datasets gradually rises. Besides, we also
observe changes in the model under different numbers of train-
ing datasets. As shown in Figure 4 (b), as the increase of graphs’
number, the model’s performance exhibits overall stable growth.

• The best-hidden size of the model grows with the increase of
datasets. We initially show the performance of models with dif-
ferent hidden sizes under 6M training sets. As Figure 4 (c) shows,
the best-hidden size of CrossLink is 128. We also examine the
best-hidden size under other scales of training sets. As Figure 4 (d)
shows as the increase of training datasets, the optimal parameters
of the model also decrease from 64 to 128.

• CrossLink exhibits the potential for scale-up. Based on the
above results, we observe that under the same parameters, model

performance can grow with the scale-up of training data. Besides,
as the dataset size increases, the optimal hidden size also gradu-
ally rises. This implies that if we continue to increase the scale
of training data and incorporate a larger model, we can future
improve the performance of cross-domain link prediction.
Additionally, we observed the impact of the input evolution

sequence on CrossLink and gain Insight 7 and Insight 8. For
detailed information, please refer to Appendix E.

6 Conclusion
This paper introduces CrossLink, which explicitly models the evo-
lution process of graphs and conducts evolution-specific link pre-
dictions. Extensive experiments are conducted on eight untrained
graphs, showcasing the effectiveness of CrossLink in cross-domain
link prediction. Detailed analysis results reveal that CrossLink im-
proved by model evolution and exhibits potential. The success of
CrossLink demonstrates the feasibility and generalizability of mod-
eling evolution. Besides, CrossLink’s surpassing of fully supervised
baselines and the analysis of its scalability both indicate the poten-
tial of cross-domain link prediction.
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Algorithm 1Multi-domain training of CrossLink
Input: E = {E0, ..., E |D | },𝑚
for 𝑒𝑝𝑜𝑐ℎ in Range(𝑚𝑎𝑥𝐸𝑝𝑜𝑐ℎ) do
𝑇𝑒𝑛𝑠𝑜𝑟𝐴𝑙𝑙𝐷𝑎𝑡𝑎 = []
𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ = []
for E𝑖 in E do
𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑛𝑔𝑙𝑒𝐷𝑎𝑡𝑎 = Sample(E𝑖 )
for (𝑢, 𝑣, 𝑡) in 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑛𝑔𝑙𝑒𝐷𝑎𝑡𝑎 do
𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑛𝑔𝑙𝑒𝐷𝑎𝑡𝑎 = SortByEdgeTime(𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑛𝑔𝑙𝑒𝐷𝑎𝑡𝑎)
𝑣 = NegtiveSampe(𝑢, 𝑣, E𝑖 , 𝑡 )
N𝑢 ,N𝑣,N𝑣̃ = NeighborSample(𝑢, 𝑣, 𝑣, E𝑖 , 𝑡 )
C(𝑢, 𝑣) = CooNeighbor(N𝑢 ,N𝑣 )
C(𝑢, 𝑣) = CooNeighbor(N𝑢 ,N𝑣̃ )
𝑇𝑒𝑛𝑠𝑜𝑟𝐵𝑎𝑡𝑐ℎ𝐷𝑎𝑡𝑎.add([N𝑢 ,N𝑣,C(𝑢, 𝑣), 𝑃𝑜𝑠𝐿𝑎𝑏𝑒𝑙])
𝑇𝑒𝑛𝑠𝑜𝑟𝐵𝑎𝑡𝑐ℎ𝐷𝑎𝑡𝑎.add([N𝑢 ,N𝑣̃,C(𝑢, 𝑣), 𝑁𝑒𝑔𝐿𝑎𝑏𝑒𝑙])
𝐵𝑎𝑡𝑐ℎ𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ.add(PosLabel)
𝐵𝑎𝑡𝑐ℎ𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ.add(NegtiveSampe)

end for
𝑟𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑑𝑒𝑥 = random()
𝐵𝑎𝑡𝑐ℎ𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ = 𝐵𝑎𝑡𝑐ℎ𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ[𝑟𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑑𝑒𝑥]
𝑇𝑒𝑛𝑠𝑜𝑟𝐵𝑎𝑡𝑐ℎ𝐷𝑎𝑡𝑎 = 𝑇𝑒𝑛𝑠𝑜𝑟𝐵𝑎𝑡𝑐ℎ𝐷𝑎𝑡𝑎[𝑟𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑑𝑒𝑥]
𝐵𝑎𝑡𝑐ℎ𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ = 𝑆𝑜𝑟𝑡𝐼𝑛𝑆𝑒𝑞𝐵𝑦𝑇𝑖𝑚𝑒 (𝐵𝑎𝑡𝑐ℎ𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ, 𝑠𝑒𝑞𝑁 )

end for
S,R,L = GraphEncode(𝑇𝑒𝑛𝑠𝑜𝑟𝐴𝑙𝑙𝐷𝑎𝑡𝑎)
𝑒𝑆𝑒𝑞 = Concat(S,R,L, 1) .𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (−1, 𝑠𝑒𝑞𝑁 ∗ 3, ℎ𝑖𝑑𝑑𝑒𝑛𝑆𝑖𝑧𝑒)
ℎ𝑖𝑑𝑑𝑒𝑛𝑠𝑡𝑎𝑡𝑒𝑠 = Transformer(𝑒𝑆𝑒𝑞)
ℎ𝑖𝑑𝑑𝑒𝑛𝑠𝑡𝑎𝑡𝑒𝑠 = ℎ𝑖𝑑𝑑𝑒𝑛𝑠𝑡𝑎𝑡𝑒𝑠.𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (−1, 3, ℎ𝑖𝑑𝑑𝑒𝑛𝑆𝑖𝑧𝑒)
𝑙𝑜𝑔𝑖𝑡𝑠𝑁𝑒𝑥𝑡𝐿𝑎𝑏𝑒𝑙 = ℎ𝑖𝑑𝑑𝑒𝑛𝑠𝑡𝑎𝑡𝑒𝑠 [:, 1, :]
L = CrossEntropy(𝑙𝑜𝑔𝑖𝑡𝑠𝑁𝑒𝑥𝑡𝐿𝑎𝑏𝑒𝑙,𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ)
L.backward()

end for

A Dynamic Graph Models
A.1 framework of dynamic graph
Currently, many dynamic graph models based on end2end learn-
ing gained advanced performance on link prediction tasks. These
methods learn the representation of nodes’ dynamic structure in
E𝑑𝑡 and pair-wised predicting future edges. That means their input
consists of a node pair with a timestamp {𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖 }, and they output
the probability of a link appearing between 𝑢𝑖 and 𝑣𝑖 at timestamp
𝑡𝑖 .

More specifically, these works propose various graph encoders
to represent the historical temporal structure of nodes. Therefore,
when considering a predictive edge pair 𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖 , the general frame-
work of a graph encoder is outlined as follows: (1) First, sample
local subgraphs before timestamp 𝑡𝑖 for these two nodes, denoted
as G𝑡𝑖𝑢𝑖 = {(𝑒𝑢,0, 𝑡𝑢,0), (𝑒𝑢,1, 𝑡𝑢,1), . . .} and G𝑡𝑖𝑣𝑖 . (2) Obtain the initial
node/edge features through feature construction and time features
using a Time encoder. (3) Feed these features into either a sequence-
based neural network or a graph neural network to obtain their
respective representations.

For instance, in the sampling strategy of the subgraph G𝑡𝑖𝑢𝑖 , DyG-
Former only considers one-hop neighbors [46], while CAWN [41]
utilizes several sequences based on a time-aware random walk.

Since encoding the temporal structure is not the main focus of
this paper, these processes can be briefly formalized as follows:

𝑍
𝑡𝑖
𝑢𝑖 , 𝑍

𝑡𝑖
𝑣𝑖 = GraphEncoder(G𝑡𝑖𝑢𝑖 ,G

𝑡𝑖
𝑣𝑖 ,T (𝑡∗)) (7)

Here, T (𝑡∗) ∈ R∗×ℎ represents the process of encoding all the time
𝑡∗ ∈ R∗×1 in the subgraphs regarding two nodes, 𝑍 𝑡𝑖𝑢𝑖 and 𝑍

𝑡𝑖
𝑣𝑖 are

the final node representations of nodes 𝑢𝑖 and 𝑣𝑖 at time step 𝑡𝑖 .
Subsequently, dynamic models can make link predictions based

on them, denoted as 𝑦′𝑡𝑖𝑢𝑖 ,𝑣𝑖 = 𝑓 (𝑍
𝑡𝑖
𝑢𝑖 , 𝑍

𝑡𝑖
𝑣𝑖 ), where the function 𝑓 (·)

typically employs MLPs or dot-product in previous works [7].

A.2 DyGFormer
Here are the details of DyGFormer. DyGFormer only sample nodes
1-hop neighbors. Step 1: Sample 1-hop neighbors of 𝑢 and 𝑣 :

N𝑡
𝑢 = {(𝑤𝑢,0, 𝑡𝑢,0), (𝑤𝑢,1, 𝑡𝑢,1), ...(𝑤𝑢,𝑘 , 𝑡𝑢,𝑘 )}

Step 2: Padding and Time Encoding:
C𝜃 (𝑤0) = 𝑓𝜃 (Count(𝑤0,N𝑡𝑖

𝑢 )) + 𝑓𝜃 (Count(𝑤0,N𝑡𝑖
𝑣 ))

𝑃
𝑡𝑖
𝑢𝑖 ,𝑘

= Concat(𝑥𝑢,𝑘 ,T𝜃 (𝑡𝑢,𝑘 ),C𝜃 (𝑤𝑢,𝑘 ))
𝑋
𝑡𝑖
𝑢𝑖 = {𝑃𝑡𝑖

𝑢𝑖 ,0, 𝑃
𝑡𝑖
𝑢𝑖 ,1 ...𝑃

𝑡𝑖
𝑢𝑖 ,𝐾

}
𝑋̃ 𝑡𝑢𝑖 ,𝑣𝑖 = Patch( [𝑋 𝑡𝑖𝑢𝑖 | |𝑋

𝑡𝑖
𝑣𝑖 ])

Step 3: Encoding Transformer:
𝑍
𝑡𝑖
𝑢𝑖 , 𝑍

𝑡𝑖
𝑣𝑖 = Transformer(𝑋̃ 𝑡𝑢𝑖 ,𝑣𝑖 )

B Algorithm of CrossLink
Here is the details algorithm of CrossLink, note that SortInSeqBy-
Time implies grouping according to SeqN, sorting only within
groups based on time. This randomization and grouping are primar-
ily aimed at ensuring training variability and regularity in negative
sample collection, thereby better maintaining consistency with
inference scenarios.

C Experiment setting
C.1 Datasets
We use 8 datasets collected by [32] in the experiments, which are
publicly available in the website∗:

• Wikipedia can be described as a bipartite interaction graph,
which encompasses the modifications made to Wikipedia
pages within over a month. In this graph, nodes are utilized
to represent both users and pages, while the links between
them signify instances of editing actions, accompanied by
their respective timestamps. Furthermore, each link is asso-
ciated with a 172-dimensional Linguistic Inquiry and Word
Count (LIWC) feature [30]. Notably, this dataset also in-
cludes dynamic labels that serve to indicate whether users
have been subjected to temporary editing bans.

• Reddit is a bipartite network that captures user interactions
within subreddits over one month. In this network, users
and subreddits serve as nodes, and the links represent times-
tamped posting requests. Additionally, each link is associ-
ated with a 172-dimensional LIWC feature, similar to that of
Wikipedia. Furthermore, this dataset incorporates dynamic
labels that indicate whether users have been prohibited from
posting.

• MOOC refers to a bipartite interaction network within an
online educational platform, wherein nodes represent stu-
dents and course content units. Each link in this network
corresponds to a student’s interaction with a specific content
unit and includes a 4-dimensional feature to capture relevant
information.

• LastFM is a bipartite network that comprises data concern-
ing the songs listened to by users over one month. In this

∗https://zenodo.org/record/7213796#.Y1cO6y8r30o

https://zenodo.org/record/7213796#.Y1cO6y8r30o
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network, users and songs are represented as nodes, and the
links between them indicate the listening behaviors of users.

• Enron documents the email communications among employ-
ees of the ENRON energy corporation spanning a period of
three years.

• UCI represents an online communication network, where
nodes correspond to university students, and links represent
messages posted by these students.

• UN Trade dataset encompasses the trade of food and agri-
culture products among 181 nations spanning more than
30 years. The weight associated with each link within this
dataset quantifies the cumulative value of normalized agri-
culture imports or exports between two specific countries.

• UN Vote records roll-call votes in the United Nations General
Assembly. When two nations both vote ’yes’ on an item, the
weight of the link connecting them is incremented by one.

And, we still used other datasets collected from different places:
• Nearby. This dataset contains all public posts and comments,
and can be downloaded in website†

• Ubuntu collected by [28]. A temporal network of interactions
on the stack exchange website Ask Ubuntu‡ and every edge
represents that user 𝑢 answered user 𝑣 ’s question at time 𝑡 .

• Mathoverflow collected by [28]. A temporal network of inter-
actions on the stack exchange website Mathoverflow§ and
every edge represents that user 𝑢 answered user 𝑣 ’s question
at time 𝑡 .

• Review, as described in [14], comprises an Amazon product
review network spanning the period from 1997 to 2018. In
this network, users provide ratings for various electronic
products on a scale from one to five. As a result, the network
is weighted, with both users and products serving as nodes,
and each edge representing a specific review from a user
to a product at a specific timestamp. Only users who have
submitted a minimum of ten reviews during the mentioned
time interval are retained in the network. The primary task
associated with this dataset is predicting which product a
user will review at a given point in time.

• Myket collected by [25]. This dataset encompasses data re-
garding user interactions related to application installations
within the Myket Android application market¶.

• College collected by [27]. This dataset consists of private
messages exchanged within an online social network at the
University of California, Irvine. An edge denoted as (𝑢, 𝑣, 𝑡)
signifies that user 𝑢 sent a private message to the user 𝑣 at
the timestamp 𝑡 .

C.2 Implementation details
Our experiment is conducted based on DyGLib [46], an open-source
toolkit with standard training pipelines including diverse bench-
mark datasets and thorough baselines.
†https://www.kaggle.com/datasets/brianhamachek/nearby-social-network-all-posts
‡https://askubuntu.com/
§https://mathoverflow.net/
¶https://myket.ir/

Due to the varying number of edges in each dataset, we apply
duplicate sampling to datasets with fewer edges to ensure consis-
tency in the number of edges for each dataset. Following the setting

of [6, 46], we employ a 1:1 negative sampling strategy for the edges
of each dataset, with three random seeds in both the training and
inference phases to ensure that each method is trained or tested
with the same negative samples in each randomization.

Ourmethod and baselines utilize the default setup of DyGLib [46],
with hidden sizes of 128 for time, edge, and node, employingAdamW
as the optimizer and linear warm-up. Given the cross-domain sce-
nario and the presence of negative sampling in link prediction, we
observed that the validation set of the training data does not nec-
essarily correlate directly with the performance of the evaluated
dataset. Considering that real-world scenarios often involve train-
ing on the entire dataset and emphasize the robustness of methods,
all our models were trained for 50 epochs, and results were reported
based on the last epoch. Each model underwent three training iter-
ations with three different random seeds, ensuring consistency in
the edges and negative samples seen by all models in each epoch.

For our method, the graph encoder employed DyGFomer with
time augmentation. The transformer had 12 layers, 8 attention
heads, and a hidden size of 128. All details, including activation
functions, layer normalization, and GPT2 decoder, are consistent
throughout.

D Experiment Result
E Analysis on evolution sequence
We further analyze the properties of CrossLinkin cross-domain
inference. We first investigate the impact of the sequence length of
the evolution sequence in the evaluated graph. Subsequently, we
next explore the effects on the model if an inappropriate evolution
sequence is employed.

Insight 7. Longer evolving on target dataset can improve the
predicting performance: During the inference process, we vary
the length of the evolving pattern (denoted as seq-length). As shown
in Table 15, the model’s performance steadily increases with the
length. This aligns with intuition, as a longer evolution sequence
has more information so can better reflect the characteristics of a
graph. This result also suggests that CrossLink’s cross-domain link
prediction capability is indeed attributed to the modeling of the
evolution sequence on the target graph.

Insight 8. We can also use other graphs to activate the
model’s performance.We further investigate how themodel would
behave if link prediction is based on evolving sequences from an-
other graph. As shown in Table 16, the performance varies when
models using evolving sequences from some graphs may lead to
a decline in the model’s performance on the target dataset, while
others do not. On the one hand, this result suggests model indeed
models the evolution sequence and makes evolution-specific pre-
dictions. On the one hand, it also implies a potential advantage of
CrossLink: even when there are not enough edges on the target
dataset, we also can use the evolution sequence of graphs similar
to the target graph, thereby activating CrossLink’s link prediction
capability.

F Data support
Since most of the datasets selected in our experiments are bipartite
graphs, directly analyzing the phenomenon of triadic closure on

https://www.kaggle.com/datasets/brianhamachek/nearby-social-network-all-posts
https://askubuntu.com/
https://mathoverflow.net/
https://myket.ir/
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Table 2: Statistics of the datasets. Above the dotted line are the six pre-training datasets. #Nodes, #Links, #Src/#Dst, #N&L
respectively refer to the number of nodes, the number of links, the ratio of unique source nodes to unique destination nodes
within the dataset, and the node&link feature dimension(– means not having the feature). Bipartite and Directed indicate
whether the graph is a bipartite graph or a directed graph. / means remaining unknown.

Datasets Domains #Nodes #Links #Src/#Dst #N&L Feat Bipartite Directed Duration Unique Steps Time Granularity
MOOC Interaction 7,144 411,749 72.65 – & 4 ✓ ✓ 17 months 345,600 Unix timestamps
LastFM Interaction 1,980 1,293,103 0.98 – & – ✓ ✓ 1 month 1,283,614 Unix timestamps
Review Rating 352,637 4,873,540 1.18 – & – ✗ ✓ 21 years 6,865 Unix timestamps
UN Vote Politics 201 1,035,742 1.00 – & 1 ✗ ✓ 72 years 72 years
Wikipedia Social 9,227 157,474 8.23 – & 172 ✓ ✓ 1 month 152,757 Unix timestamps
Reddit Social 10,984 672,447 10.16 – & 172 ✓ ✓ 1 month 669,065 Unix timestamps
Enron Social 184 125,235 0.98 – & – ✗ ✓ 3 years 22,632 Unix timestamps
UCI Social 1,899 59,835 0.73 – & – ✗ ✓ 196 days 58,911 Unix timestamps

Nearby Social 34,038 120,772 0.80 – & – ✗ ✓ 21 days 99,224 Unix timestamps
Myket Action 17,988 694,121 1.25 – & – ✓ ✓ / 693,774 /

UN Trade Economics 255 507,497 1.00 – & 1 ✗ ✓ 32 years 32 years
Ubuntu Interaction 137,517 280,102 0.75 – & – ✗ ✓ 2613 days 279,840 days

Mathoverflow Interaction 21,688 90,489 0.65 – & – ✗ ✓ 2350 days 107,547 days
College Social 1,899 59,835 0.73 – & – ✗ ✓ 193 days 58,911 Unix timestamps

Table 3: The aligned real-world application by each link prediction. Above the dotted line are the six training datasets.

Type Real-world Application
MOOC Course Selecting Whether a course in a specific content unit selected by a student.
LastFM Song listened Whether a particular song was listened to by a user.
Review Product Reviewed Whether a product is reviewed in Amazon.
UN Vote Voting Whether a nation vote "yes" on an item in the United Nations General Assembly.
Wikipedia Entry Editing Whether a user edited a specific entry in Wikipedia.
Reddit Social Interaction Whether user’s interactions within subreddits.
Enron Email Communication Whether Two employees in ENRON energy corporation communicate by email.
UCI Online Communication Whether messages posted by students in a university.
Nearby Post Commented Whether a public post in Nearby is commented.
Myket App installed Whether an Android application installations within the Myket Android application market.
UN Trade International Trade Whether is a cumulative value of normalized agriculture imports or exports between two specific countries.
Ubuntu Question Answered Whether a user answered another user’s question in Ask Ubuntu.
Mathoverflow Question Answered Whether a user answered another user’s question in Mathoverflow.
College Online Communication Whether is a private message sent between students in the University of California, Irvine.

Table 4: Link Prediction AP for training on the single dataset,
comparing with training on all 6 datasets.

Dataset Train TGAT CAWN Mixer. Former. Ours

Mooc
Single 80.76 83.22 72.09 83.55 83.84
All 80.67 82.76 67.10 82.99 83.38
Impv. -0.11% -0.56% -7.44% -0.67% -0.55%

Wiki
Single 95.58 99.20 95.99 99.36 99.39
All 95.21 99.21 91.85 99.31 99.40
Impv. -0.39% -0.06% -4.51% -0.05% +0.01%

LastFM
Single 67.85 86.29 70.74 89.75 91.82
All 66.22 86.29 58.51 89.73 91.84
Impv. -2.46% +0.00% -20.90% -0.02% +0.02%

Review
Single 72.46 73.26 89.28 85.59 91.54
All 70.26 77.62 82.90 84.87 91.53
Impv. -3.13% +5.62% -7.70% -0.85% -0.01%

UN Vote
Single 50.59 53.76 50.96 56.71 55.86
All 50.87 53.98 50.96 56.53 55.63
Impv. +0.55% +0.41% +0.00% -0.32% -0.41%

Reddit
Single 91.33 98.58 91.34 98.98 99.11
All 91.57 98.49 88.12 98.93 99.11
Impv. +0.26% -0.09% -3.65% -0.05% +0.00%

Table 5: Detailed Link prediction Average Precision (AP)
on the unseen datasets across various inference sequence
lengths for amodel trained by 120maximum evolving length.
± indicates variance, and the remaining notations in the table
are consistent with those in Table 15.

Seq Length 1 29 59 89 119
Nearby 0.8225±0.0065 0.8516±0.0033 0.8669±0.0015 0.8865±0.0133 0.8961±0.0092
Myket 0.8190±0.0139 0.8747±0.0012 0.8750±0.0035 0.8771±0.0023 0.8772±0.0011
Ubuntu 0.7191±0.0009 0.7907±0.0218 0.7879±0.0132 0.8492±0.0174 0.8744±0.0076
Mathoverflow 0.8042±0.0185 0.8434±0.0152 0.8421±0.0046 0.8731±0.0189 0.8913±0.0033

these datasets is challenging and difficult to relate to our experi-
mental results.

Therefore, we proposemeasuring a common and straightforward
phenomenon to demonstrate the differences in evolution patterns
across various graphs: the likelihood of reconnection between two
nodes. For example, if nodes 𝑎 and 𝑏 are connected by an edge,
we evaluate the probability that they will reconnect in the future.
This phenomenon also holds significant practical value. Consider
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Table 6: Detailed ink prediction Average Precision (AP) on
the unseen datasets while using no in-context (# Seq = 1) or
using the evolving pattern of other domain with sequence
length 120. ±indicates variance, and the remaining notations
in the table are consistent with those in Table 16.

Seq = 1 Using other evolving pattern
Mooc LastFM Review Reddit

Nearby 0.82255±0.0065 0.80755±0.0106 0.81995±0.0048 0.87465±0.0082 0.84335±0.0072
Myket 0.81950±0.0139 0.79295±0.0093 0.86225±0.0034 0.86625±0.0029 0.87775±0.0008
Ubuntu 0.71915±0.0009 0.75345±0.0109 0.74955±0.0128 0.88775±0.0033 0.79675±0.0110
Mathoverflow 0.80425±0.0185 0.81795±0.0183 0.81155±0.0229 0.89095±0.0053 0.83675±0.0064

Table 7: Link Prediction Average Precision (AP) for End2End
training and inferring.

Enron UCI Nearby Myket UN Trade Ubuntu Mathoverflow College
TGAT 71.12±0.97 79.63±0.70 83.20 ±0.10 76.32 ±1.03 55.80 ±1.15 76.00 ±0.12 75.18 ±0.03 85.09 ±0.32

TGN 86.53±1.11 92.34±1.04 76.62 ±4.62 85.72 ±0.88 66.84 ±1.13 50.47 ±2.39 62.53 ±1.04 88.37 ±0.27

DyRep 82.38±3.36 65.14±2.30 73.72 ±0.52 86.05 ±0.09 54.61 ±0.48 64.56 ±0.29 73.63 ±0.21 65.72 ±1.87

Jodie 84.77±0.30 89.43±1.09 80.19 ±0.40 86.30 ±0.47 58.11 ±0.61 67.25 ±0.70 77.43 ±0.09 77.08 ±0.48

TCL 79.70±0.71 89.57±1.63 82.13 ±0.43 67.52 ±1.75 54.65 ±0.08 71.93 ±0.86 74.83 ±0.21 87.03 ±0.30

CAWN 89.56±0.09 95.18±0.06 85.01 ±0.16 77.64 ±0.25 61.35 ±0.22 75.05 ±0.40 79.27 ±0.10 94.58 ±0.05

GraphMixer 82.25±0.16 93.25±0.57 89.32 ±0.05 86.77 ±0.00 54.64 ±0.05 84.82 ±0.03 89.04 ±0.08 92.44 ±0.03

DyGFormer 92.47±0.12 95.79±0.17 84.70 ±0.24 85.12 ±0.04 66.92 ±0.07 76.00 ±0.12 80.43 ±0.02 94.75 ±0.03

Algorithm 2 Reconnection Probability Calculation
1: ℎ𝑎𝑠_𝑒𝑑𝑔𝑒_𝑖𝑛_𝑓 𝑢𝑡𝑢𝑟𝑒 = 0
2: 𝑒𝑑𝑔𝑒_𝑑𝑒𝑔𝑟𝑒𝑒 = []
3: 𝑙𝑎𝑏𝑒𝑙 = []
4: for each edge (𝑢, 𝑣, 𝑡) in the graph do
5: 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑒𝑔𝑟𝑒𝑒 = degree(𝑣)

degree(𝑢 )+degree(𝑏 )
6: 𝑒𝑑𝑔𝑒_𝑑𝑒𝑔𝑟𝑒𝑒.𝑎𝑑𝑑 (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑒𝑔𝑟𝑒𝑒)
7: if there is an edge between 𝑢 and 𝑣 after 𝑡 then
8: ℎ𝑎𝑠_𝑒𝑑𝑔𝑒_𝑖𝑛_𝑓 𝑢𝑡𝑢𝑟𝑒+ = 1
9: 𝑙𝑎𝑏𝑒𝑙 .𝑎𝑑𝑑 (1)
10: else
11: 𝑙𝑎𝑏𝑒𝑙 .𝑎𝑑𝑑 (0)
12: end if
13: end for
14: 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =

has_edge_in_future
len(edge)

15: 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = pearson_correlation(𝑒𝑑𝑔𝑒_𝑑𝑒𝑔𝑟𝑒𝑒, 𝑙𝑎𝑏𝑒𝑙)
16: return 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦, 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

a real-world example: if a user purchases a product, what is the
likelihood that the same user will purchase it again?

Next, we calculate the probability of reconnection for each graph.
We then use Pearson correlation to measure the relationship be-
tween a node’s degree and the likelihood of reconnection in the
future. High Pearson correlation means node trend reconnect with
high degree neighbors.

Our pseudocode is as follows:
Conclusion 1. Different graphs have different possibilities

of reconnection.
As shown in Tables 17 and 18, different graphs exhibit varying

reconnection probabilities, which align with our intuitive under-
standing. On Reddit, where nodes represent users or subreddits

and edges indicate a user commenting on a subreddit, users often
re-engage and remain active in a subreddit. This naturally leads to
a high probability of reconnection between two connected nodes.
In contrast, in review graphs, where nodes represent users or prod-
ucts and edges indicate a user rating a product, users typically do
not need to re-rate the same product. Consequently, these graphs
inherently exhibit a low probability of reconnection.

Conclusion 2. Different Graphs Exhibit Different Recon-
nection Trends

As shown in Tables 17 and 18, the Pearson correlation between
degree distribution and reconnection likelihood varies across graphs.
On lastfm, where nodes represent users or songs and edges indicate
a user listening to a song, there is a negative correlation between
reconnection and degree. This aligns with findings in [16], which
suggest that some users prefer niche or non-mainstream music.

In contrast, on Reddit, there is a positive correlation between
reconnection and degree. This is intuitive, as users often engage
with and comment on popular subreddits, reflecting a tendency
toward activity in widely followed communities.

Conclusion 3. CrossLink canmodel these diverse evolution
patterns.

According to Conclusions 1 and 2, different graphs exhibit di-
verse evolution patterns related to reconnection. Naturally, when
CrossLink employs varying evolution patterns to make predictions
on different downstream graphs, the prediction accuracy improves
when the evolution pattern aligns more closely with the down-
stream graph.

As shown in Table 19, Nearby and ubuntu have nearly 0% recon-
nection possibility, similar to review graphs. Consequently, using
the evolution pattern of review graphs for inference achieves the
best performance. In contrast, Myket and MathOverflow share
similar reconnection probabilities but exhibit diverse Pearson cor-
relations between reconnection and degree. Thus, Myket achieves
the best performance when using the Reddit pattern (which has a
similar Pearson correlation), while MathOverflow performs best
when using the review pattern (which also shares a similar Pearson
correlation).

G Time efficiency
Our framework setting utilizes cross-domain pre-training fol-
lowed by direct inference, eliminating the need for additional
training in downstream tasks. We conducted a comparative analysis
of training and inference times on the Ubuntu platform. Consistent
with all experimental settings described in the paper, we employed a
50-epoch training regime. Through our highly parallelized training
strategy, we observed only a marginal increase in computational
overhead. While the incorporation of historical information re-
sulted in increased inference time, our approach obviates the need
for fine-tuning. Notably, even with zero-shot inference, our model
achieves a 32.6% performance improvement over DyGformer.
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Table 8: Ablation experiments for CrossLink. Each line indicates the performance for link prediction evaluated by AP when
certain aspects of our model’s design are removed.

Enron UCI Nearby Myket UN Trade Ubuntu Mathoverflow College

Network Structure w/o transformers 90.09±0.39 95.89±0.29 78.20±2.19 74.69±3.47 58.43±0.48 70.64±2.12 79.08±2.65 95.89±0.29
w/o evolving 90.84±0.72 96.08±0.07 81.21±0.14 80.03±0.86 54.72±0.49 72.96±1.88 80.45±1.70 96.09±0.07

Time Processer w/o t-norm 85.86±0.50 95.47±0.17 75.20±1.11 78.37±1.39 58.68±1.19 74.02±3.03 79.52±0.50 95.47±0.17
w/o t-shuffle 91.37±0.15 96.25±0.28 89.17±0.27 87.49±0.33 60.35±0.43 81.09 ±2.22 89.07±0.67 95.25±0.28

Training Strategy w/o multi-datasets 91.08±0.50 95.57±0.08 87.88±0.43 86.70±0.77 57.52±0.88 86.33±0.89 87.01±0.30 95.57±0.08
w/o multi-tasks 88.20±1.59 95.49±0.13 84.92±0.89 87.23±0.26 57.13±0.26 85.07±2.31 86.16±1.68 95.50±0.13

All Strategy 91.60±0.47 96.02±0.07 89.61±0.92 87.72±0.11 60.52±0.29 87.44±0.76 89.13±0.33 96.04±0.07

Table 12: The Average Precision (AP) of CrossLinktrained on
a dataset of size 3.0 million for link prediction on an unseen
dataset. Bold indicates the best results, underline indicates
the second best results, and ± represents the variance.

hidden size 32 64 128 256
Enron 90.15±0.25 90.75±0.52 90.67±0.92 90.76±0.61
UCI 96.10±0.18 96.16±0.05 96.16±0.05 95.94±0.15

Nearby 86.81±0.70 87.26±0.33 88.57±1.20 87.20±0.43
Myket 85.04±1.30 87.08±0.79 87.09±0.51 86.77±0.67

UN Trade 58.37±1.22 59.18±1.33 56.39±0.95 58.63±1.03
Ubuntu 83.32±1.50 83.91±0.40 82.55±2.41 79.55±0.73

Mathoverflow 83.58±1.45 84.06±0.29 83.88±0.37 82.95±1.15
College 96.11±0.18 96.17±0.05 95.90±0.01 95.84±0.14

Table 13: The Average Precision (AP) of CrossLinktrained on
a dataset of size 4.5 million for link prediction on an unseen
dataset. Bold indicates the best results, underline indicates
the second best results, and ± represents the variance.

hidden size 32 64 128 256
Enron 91.21±0.91 91.84±0.06 91.86±0.24 91.55±0.40
UCI 95.73±0.10 96.15±0.13 95.93±0.05 96.01±0.14

Nearby 87.71±0.13 87.96±0.49 89.49±0.29 88.65±0.47
Myket 86.17±0.43 87.39±0.49 87.52±0.47 86.77±1.33

UN Trade 57.10±2.59 59.48±0.93 58.49±1.54 59.16±0.88
Ubuntu 84.44±1.68 85.81±1.73 84.52±1.52 82.87±1.59

Mathoverflow 84.89±0.63 84.96±1.50 86.46±1.91 84.46±0.64
College 95.75±0.10 96.16±0.13 95.94±0.04 96.01±0.15

Table 14: The Average Precision (AP) of CrossLinktrained on
a dataset of size 6.0 million for link prediction on an unseen
dataset. Bold indicates the best results, underline indicates
the second best results, and ± represents the variance.

hidden size 32 64 128 256
Enron 91.76±0.41 91.49±0.38 91.60±0.47 91.47±0.68
UCI 95.69±0.19 95.85±0.22 96.02±0.07 95.60±0.06

Nearby 88.03±0.40 88.90±0.72 89.61±0.92 89.16±0.78
Myket 87.12±0.33 87.68±0.07 87.72±0.11 87.01±0.66

UN Trade 57.33±2.06 59.64±0.65 60.52±0.29 60.58±0.62
Ubuntu 85.20±1.24 87.29±0.73 07.44±0.76 86.97±1.28

Mathoverflow 86.77±1.69 86.83±0.85 89.13±0.33 89.11±0.90
College 95.71±0.19 95.87±0.22 96.04±0.07 95.61±0.07

Table 15: Performance of CrossLinkwith varying evolution
sequence lengths. Note that here the model is fixed and only
varying lengths of trained models. See more details in Table
5.

Seq length 1 29 59 89 119
Nearby 82.25 85.16 86.69 88.65 89.61
Myket 81.90 87.47 87.50 87.71 87.72
Ubuntu 71.91 79.07 78.79 84.92 87.44
Mathover. 80.42 84.34 84.21 87.31 89.13

Table 9: The performance of link prediction in terms of Av-
erage Precision (AP) under various maximum training and
inference sequence lengths is presented. The experiments
were conducted on the same six datasets with consistent set-
tings throughout. The values in the table represent the mean,
and ± indicates the variance.

Maximum of Seq Length 1 15 30 60 120
Enron 90.84±0.72 90.91±0.46 91.56±0.19 91.57±0.50 91.60±0.47
UCI 96.08±0.07 95.82±0.21 95.83±0.20 95.97±0.25 96.02±0.07

Nearby 81.21±0.14 88.12±0.29 89.62±0.29 89.46±0.22 89.61±0.92
Myket 80.03±0.86 87.47±0.20 87.67±0.39 87.45±0.45 87.72±0.11
UNtrade 54.72±0.49 58.35±0.47 58.99±0.86 60.07±0.54 60.52±0.29
Ubuntu 72.96±1.88 82.89±1.83 85.16±2.26 87.44±1.44 87.44±0.76

Mathoverflow 80.45±1.70 84.61±0.36 86.66±2.62 87.07±2.63 89.13±0.33
College 96.09±0.07 95.84±0.21 95.84±0.19 95.78±0.25 96.04±0.07

Table 10: The performance of link prediction, as measured
by the Average Precision (AP), was trained on different in-
dividual datasets and tested on another dataset. Different
rows represent the datasets used for training, while different
columns represent the datasets used for testing. The values
in the table represent the mean, and ± indicates the variance.

Mooc LastFM Review UNvote Wiki Reddit
enron 82.46±1.91 90.19±1.11 60.14±4.96 71.01±3.76 91.08±0.50 86.58±1.68
UCI 93.02±0.25 95.57±0.08 85.12±2.72 79.56±0.83 95.26±0.16 95.02±0.25

Nearby 76.66±2.02 80.41±0.52 87.88±0.43 55.67±3.13 81.12±0.17 71.97±2.24
Myket 73.60±2.64 86.70±0.77 84.47±0.23 68.14±1.88 86.38±0.24 82.86±2.20

UN Trade 52.09±2.94 57.26±0.40 54.42±4.39 51.65±0.54 57.52±0.88 57.10±0.41
Mathoverflow 80.73±0.80 76.29±3.46 86.33±0.89 61.66±2.63 85.22±0.38 75.58±0.52

Ubuntu 71.46±1.92 68.46±2.59 87.01±0.30 55.63±2.68 78.25±0.44 69.01±0.53
College 93.01±0.25 95.57±0.08 85.12±2.72 79.56±0.83 95.26±0.16 95.03±0.24
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Table 20: Performance comparison between DyGFormer and
CrossLink (ours).

DyGFormer CrossLink
End2End Training time ↓ 4100s -
Inference time ↓ 4s 10s
Total time ↓ 4104s 10s
Performance ↑ 65.95 87.44

Table 16: Performance of CrossLinkwith evolving patterns
from other graphs with 119 sequence length. For comparison,
we report the performance under the same domain while the
sequence length is only 1. See more details in Table 6.

# Seq = 1 Evolving pattern of other domain
Mooc LastFM Review Reddit

Nearby 82.26 80.76 82.00 87.47 84.33
Myket 81.95 79.30 86.23 86.63 87.78
Ubuntu 71.92 75.34 74.96 88.78 79.68
Mathover. 80.43 81.80 81.16 89.10 83.68

Table 17: Reconnection Possibility and Pearson Correlation
of Different Graphs

mooc lastfm review reddit
Reconnection Possibility 53.9% 68.2% 0.17% 54.1%
Pearson Correlation Between Degree Distribution and Reconnect 0.021 -0.105 0.0020 0.123

Table 18: Reconnection Possibility and Pearson Correlation
of Different Graphs

Nearby myket ubuntu mathoverflow
Reconnection Possibility 0% 13.5% 3.87% 10.8%
Pearson Correlation Between Degree Distribution and Reconnect - 0.141 0.008 0.031

Table 19: Link Prediction Performance (Average Precision)
When CrossLink Uses Different Evolution Patterns. The Row
Names Represent the Downstream Graphs, With Each Row
Showing the Performance of a Specific Graph When Utiliz-
ing Four Different Evolution Patterns. The Column Names
Indicate the Evolution Patterns Derived fromWhich Graphs.
(This Table Can Be Found in the Appendix of Our Paper)

mooc lastfm review reddit
Nearby 80.76 82.00 87.47 84.33
Myket 79.30 86.23 86.63 87.78
ubuntu 75.34 74.96 88.78 79.68

mathoverflow 81.80 81.16 89.10 83.68

Table 11: The Average Precision (AP) of CrossLinktrained on
a dataset of size 1.5 million for link prediction on an unseen
dataset. Bold indicates the best results, underline indicates
the second best results, and ± represents the variance.

hidden size 32 64 128 256
Enron 85.29±0.96 86.59±1.98 87.59±0.76 88.41±0.53
UCI 95.86±0.08 95.88±0.30 95.90±0.02 95.81±0.08

Nearby 83.84±0.25 86.21±0.76 85.62±0.51 84.62±1.17
Myket 86.75±0.22 87.51±0.29 87.39±0.45 86.98±0.39

UN Trade 55.21±1.77 55.51±0.48 56.62±0.88 55.97±0.23
Ubuntu 81.10±1.60 82.22±4.38 74.86±1.22 73.69±1.48

Mathoverflow 81.25±0.65 82.58±1.52 82.44±0.84 81.50±1.42
College 95.87±0.08 95.89±0.30 95.90±0.01 95.81±0.09
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