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ABSTRACT
Due to the ubiquity of graph data on the web, web graph mining has

become a hot research spot. Nonetheless, the prevalence of large-

scale web graphs in real applications poses significant challenges to

storage, computational capacity and graph model design. Despite

numerous studies to enhance the scalability of graph models, a no-

ticeable gap remains between academic research and practical web

graph mining applications. One major cause is that in most indus-

trial scenarios, only a small part of nodes in a web graph are actually

required to be analyzed, where we term these nodes as target nodes,
while others as background nodes. In this paper, we argue that prop-

erly fetching and condensing the background nodes from massive

web graph data might be a more economical shortcut to tackle the

obstacles fundamentally. To this end, we make the first attempt

to study the problem of massive background nodes compression

for target nodes classification. Through extensive experiments, we

reveal two critical roles played by the background nodes in tar-

get node classification: enhancing structural connectivity between

target nodes, and feature correlation with target nodes. Following

this, we propose a novel Graph-Skeleton model, which properly

fetches the background nodes, and further condenses the semantic

and topological information of background nodes within similar

target-background local structures. Extensive experiments on vari-

ous web graph datasets demonstrate the effectiveness and efficiency

of the proposed method. In particular, for MAG240M dataset with

0.24 billion nodes, our generated skeleton graph achieves highly

comparable performance while only containing 1.8% nodes of the

original graph.
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• Theory of computation→ Data compression.
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1 INTRODUCTION
The ubiquity of graph data, especially in the form of web graphs,

has made web graph mining a hot research topic. These web graphs

are crucial for various applications, including web search [5, 13],

social network [39, 40], blockchains [25–27], recommendation [28,

31], and more. However, it remains a big challenge to deploy the

graph models on large-scale graphs. In practice, web graphs can

be extremely large [42]. Take Facebook for instance, there are over

2.93 billion monthly active users [8]. Despite remarkable progress

such as node sampling [3, 14, 42], model simplification [32, 35]

to enhance the scalability of graph models on large-scale graph

mining tasks, it remains a large gap between academic research and

practical applications. One major reason is that in most industrial

scenarios, not all nodes in a web graph are actually required to

be analyzed [18]. We take DGraph, a real-world financial & social

network dataset (users as nodes, social relationships between users

as edges) [18], as an example to further illustrate this. Given a

fraudster identification task among loan users, only the users with

loan records needs to be classified, while the other users without

loan behavior do not. Under this circumstance, we term the loan

users as target nodes, while the others as background nodes. This
target & background property is prevalent in web graph mining

scenarios. Moreover, the number of background nodes is typically

much larger than that of target nodes. For instance, to predict

papers’ subject areas in MAG240M [16], only 1.4 million Arxiv

papers are concerned with classification among 240 million nodes.

Intuitively, it may not be an economical solution to deploy com-

plex graphical models on massive web data just for a small number

of node classification. It can pose significant challenges in terms of

time and memory costs, as well as model design. Alternatively, a

proper method to fetch and condense the useful background nodes

from massive web data might be a shortcut to fundamentally tackle

https://doi.org/10.1145/3589334.3645452
https://doi.org/10.1145/3589334.3645452
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the above obstacles. Nevertheless, how to fetch and condense the

informative background nodes remains an open question at present.

Background nodes can play diverse roles in target nodes classifica-

tion, yet there is little understanding of how the background nodes

impact the task performance. In this paper, we thus raise two ques-

tions: Are background nodes necessary for target nodes classification?
What roles do they play in the target classification task?

To answer these questions, we conduct a comprehensive analysis

using Graph Neural Network (GNN), one of the most popular graph

models [38], for exploring the target-background issue. First of all,

we observe a significant performance degradation when removing

all background nodes, but a negligible impact of removing back-

ground nodes that are not neighboring the target nodes. Moreover,

we find that the connection between target nodes plays a vital

role in classification. Removing the background nodes that bridge

between multiple target nodes results in a dramatic performance

decline. Additionally, even background nodes neighboring a single

target node would exhibit relatively higher feature correlation with

their corresponding target nodes and contribute to the classification.

Detail experimental results and analyses can be seen in Section 2.

This exploration reveals two key insights: First, the majority of

background nodes are redundant, while the nodes neighboring the

target nodes are crucial for target classification. Second, background

nodes contribute to the target nodes classification primarily in two

ways: i) enhance the connectivity between targets as bridging node;
ii) neighboring to single target node but have feature correlation
with the target node as the affiliation node (illustrated in Figure 1 (c)).
With this inspiration, we argue that it is possible to generate a small

and highly informative subgraph (with original target nodes and far

fewer background nodes) from original web graph. The generated

graph contains rich information for target nodes classification and is

also friendly for graph model deployment and storage. However, we

still face two challenges. (1) Extracting subgraph from original one

would inevitably cause semantic and structural information loss.

How to properly fetch the subgraph with useful background nodes?

(2) The fetched subgraph would also contain redundant structural

and semantic information. How to condense the subgraph while

preserving the essential information for target classification?

In this paper, we propose a novel Graph-Skeleton to generate a

small, synthetic and highly-informative graph for target node clas-

sification. Specifically, following the intuition of empirical analysis,

we formulate a principle for background node fetching, ensures that

the extracted subgraph maintains both the structural connectiv-

ity and feature correlation via bridging and affiliation background

nodes. After subgraph extraction, we propose three graph conden-

sation strategies to condense the redundant structural and semantic

information. The condensed synthetic graph (term as skeleton) con-
tains sufficient information for target node classification and enjoys

the benefits of small scale. Our main contributions are summarized

as follows: (1) We first address a common challenge in real-world

web applications: compressing the massive background nodes for

classifying a small part of target nodes, to ease data storage, GNNs

deployment and guarantee the performance. Empirical analysis

explicitly indicates the contributions of background nodes to the

target classification, i.e., enhancing target structural connectivity
and feature correlation with target nodes, which provides a valu-

able guidance for background nodes fetching. (2) We propose a

novel Graph-Skeleton for massive background nodes compression.

It properly fetches the useful background nodes from massive web

graph and performs background node condensation to eliminate

information redundancy. (3) Extensive experiments on various web

graphs demonstrate the effectiveness and efficiency of the pro-

posed method. In particular, for MAG240M dataset with 0.24 billion

nodes, our generated skeleton graph achieves highly comparable

performance while only contain 1.8% nodes of the original graph.

2 EMPIRICAL ANALYSIS
In this section, we conduct empirical analyses to explore the target-

background problem, for answering two key questions we raise

above: Are the background nodes necessary for target nodes predic-
tion? What roles do they play in the target classification task? We

first analyze the overall contribution of background nodes in target

classification, and then we explore what kind of background nodes

are essential and how they contribute to the performance.

To ensure the generality of our analysis, we employ GNNs

(GraphSAGE [14], GAT [30], GIN [33]) with three representative

aggregation mechanisms, including mean, weight-based and sum-

mation, as the backbones for target nodes classification. The task is

conducted on two datasets: (1) Financial loan network DGraph [18].

We follow the same task setting as the original dataset, i.e., fraud-

ster identification among loan users, so that the users with loan

action are regarded as target nodes (∼33%), while others are back-
ground nodes. (2) Academic citation network ogbn-arxiv [17]. We

aim to predict the subject areas of papers published since 2018.

In this case, papers published from 2018 are regarded as target

nodes (∼46%), while papers before 2018 are background nodes. The

detailed experimental settings are provided in Appendix A.1.

Are Background Nodes Necessary for Target Classification?
We first evaluate the contribution of background nodes to the over-

all performance. Specifically, we delete all the background nodes

by cutting background-to-background edges (B-B) and target-to-

background (T-B) edges. In this way, the information propagation of

each background node will be cut-off. As comparison, the random

edge cut (cut ratio spans from 0 to 1) is implemented. As results

depicted in Figure 1 (a), when cutting B-B ( ), the performances

of all GNNs show no significant decline and even presents slight

improvement (DGraph) compared to the original graph ( ), indi-

cating the background nodes are indeed highly redundant and even

contain noise. However, when cutting T-B ( ), the performance

presents a significant decline compared to the random edge cut ( ).

It reveals that the background nodes contain abundant information,

which is essential to target node prediction.

Background Nodes Contribute to Structural Connectivity Be-
tween Target Nodes. For a comprehensive analysis, we addition-

ally cut the target-to-target edges (T-T) to explore the dependency

between the target nodes. One key observation is that the structural
connectivity between target nodes plays an essential role in predic-

tion. As shown in Figure 1 (a), the performance of cutting T-T ( )

presents a significant decline compared to the original graph and

random edge cut ( ). Then, what role of the background nodes

play in the target node classification? Inspired by the above obser-

vations, we cut the T-B edges where background nodes act as the

1-hop bridging nodes between two target nodes (i.e., T−�A−−B−�A−−T,
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Figure 1: (a) Explorations of background nodes influences. Upper: results on DGraph [18]. Lower: results on ogbn-arxiv [17].
(****𝑝 < 1e-4, **𝑝 < 1e-2, paired t-tests; errorbars represent the standard deviation). (b) Feature correlation between target nodes
and their neighboring background nodes. (c) Illustration of target nodes and the corresponding essential background nodes.

BridB) to weaken the connectivity between targets. Consistent with

T-T edge cutting, the performance of BridB cutting ( ) also de-

clines significantly (Figure 1 (a)), indicating that enhancing target

connectivity via bridging background nodes contributes to task.

Background Nodes Has Higher Feature Correlation with
Neighboring Target Nodes. From the experimental results in

Figure 1 (a), we can still observe a performance gap between BridB

cutting ( ) and T-B edges cutting ( ), i.e., the performance of

BridB cutting outperforms that of cutting all background nodes.

This indicates that apart from the background node bridging mul-

tiple targets, the background node neighboring to a single target

node also contributes to the task.

From previous studies, numerous representative GNNs [12, 14,

23, 30] employ a repeated propagation process to integrate the

feature information from neighboring nodes [36, 37]. This process

promotes the similarity of features among neighboring nodes, lead-

ing to the creation of synthetic and robust node representations.

Following this, we hypothesize that the background nodes may ex-

hibit higher feature correlation with their neighboring target nodes,

enabling them to contribute during the propagation operation. To

verify our hypothesis, we compute the Pearson correlation coeffi-

cient of features between target nodes and the background nodes

with different neighboring hops. As the results shown in Figure 1

(b), the background nodes closer to the target nodes indeed have

higher feature correlation, suggesting that the features of back-

ground nodes neighboring to a single target may correlated with

feature of target itself, and thus contribute to the performance.

Intuitions. The analysis above provides us two key insights. First,

the majority of background nodes are redundant, while the nodes

neighboring to the target nodes are important to the target classifi-

cation. Second, background nodes contribute to the target nodes

classification primarily in two ways: i) enhance the structural con-
nectivity between target nodes as bridging node; ii) neighbor to a

solo target node with feature correlation to that target node as the

affiliation node (illustrated in the Figure 1 (c)).

3 METHODOLOGY
Problem Definition. Given a large-scale graph G = (V, E) and
a specific node classification task, we can thus get a corresponding

node set T = {𝑇1,𝑇2, ...,𝑇𝑛}, containing the nodes that are required

to be classified, where |T | ≪ |V| in most of real-world scenarios.

In this paper, we refer T as target nodes, and other nodes in G as

background nodes B := V \T = {𝐵1, 𝐵2, ..., 𝐵 |V |−𝑛}. The graph
is also associated with node features 𝑋 ∈ R |V |×𝑑 and target node

labels 𝑌 ∈ {0, ...,𝐶 − 1}𝑛 . Given that the majority of nodes are

background nodes, our objective is to generate a synthetic graph

G′ that is highly informative while significantly reducing back-

ground nodes to alleviate the computational and storage burdens.

This synthetic graph G′ can be used to train graph models and

classify the target nodes directly with comparable performance to

the original graph G. In this paper, we focus on the target nodes

analysis in the real-world applications. Therefore we only compress

the background nodes while preserving the whole original target

nodes T in the generated synthetic graph G′ . This ensures that
none of the target nodes are lost, which is crucial as it allows us

to trace and retain the specific information associated with each

individual target node in the compressed synthetic graph G′ .
Framework Overview. To tackle the problem, we propose a novel

Graph-Skeleton framework to generate a synthetic skeleton sub-

graph from massive web graph with much smaller size but rich

information for target classification. The framework is illustrated

in Figure 2. It first fetches all target nodes and a subset of back-

ground nodes to construct a vanilla subgraph (Figure 2, left). For

proper background nodes fetching, we formulate a fetching princi-

ple following the inspirations of structural connectivity and feature
correlation in Section 2. Then Graph-Skeleton condenses the graph

information of the vanilla subgraph (Figure 2, middle) to reduce

redundancy. Specifically, we design three graph condensation strate-

gies (i.e., 𝛼, 𝛽,𝛾 ) with condensation level ranging from low to high

degree. The condensed graph (refer as skeleton graph) is highly
informative and enjoys the benefits of small-scale for storage and

graph model deployment (Figure 2, right).

3.1 Node Fetching
The observations in Section 2 reveal that the background nodes

can be massive and highly redundant. To tackle this limitation, one

natural idea is to reduce the graph size by fetching the essential

background nodes and removing those that make little contribution

to target classification. Inspired by the key observations of structural
connectivity and feature correlation, we design a fetching principle
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Figure 2: Graph-Skeleton framework: it generates a synthetic skeleton subgraph from original graph with rich information for
target prediction while enjoying the benefits of small scale. It first fetches the essential background nodes under the guidance
of structural connectivity and feature correlation (Left), then condenses the information of background nodes (Middle). The
generated skeleton graph is highly informative and friendly for storage and graph model deployment (Right).

to properly fetch the bridging and affiliation background nodes

from massive original data as the first phase. Utilizing these nodes,

we can construct a vanilla subgraph containing all target nodes and

a small subset of background nodes. To alleviate the over-expansion

issue, we customize the fetching depth and width with𝑑1, 𝑑2, 𝐾 ∈ N.
The fetching principle is formulated as follows:

Principle of What Background Node Will be Fetched:
1. Structural connectivity: Bridges two or more target nodes within
𝑑1-hop as bridging node.
2. Feature correlation: K highest correlation background nodes
neighboring to solo target node within 𝑑2-hop as affiliation nodes.

Bridging Background Node Fetching. Following principle.1, to

fetch the bridging background nodes, our first step is to identify

all accessible background nodes for each target node. Note that the

accessible nodes for a node𝐴 refers to the nodes that can be reached

from 𝐴 along a path only composed of background nodes. We will

use this notion in the following paper. To this end, we utilize the

breadth first search (BFS) [7] to find the shortest paths from each

target node to its all accessible background nodes. By traversing all

target nodes, the shortest paths set for each background node to its

accessible target nodes can also be obtained. Let 𝐵 𝑗 be one back-

ground node and is accessible to target nodes 𝑇𝑘1 ,𝑇𝑘2 , ...,𝑇𝑘𝑖 , with

the corresponding shortest path set 𝑃𝐵 𝑗 = {𝑝𝑘1, 𝑗 , 𝑝𝑘2, 𝑗 , ..., 𝑝𝑘𝑖 , 𝑗 }. To
verify whether 𝐵 𝑗 aligns with Principle.1, we calculate the length

of each path 𝑑 (𝑃𝐵 𝑗 ) = {𝑑 (𝑝𝑘1, 𝑗 ), ..., 𝑑 (𝑝𝑘𝑖 , 𝑗 )} (𝑑 (·) is the distance
function), and sum up the minimum and second-minimum distance

values of these paths as 𝑠𝑑 𝑗 = min[𝑑 (𝑃𝐵 𝑗 )] + min
2𝑛𝑑 [𝑑 (𝑃𝐵 𝑗 )]. If

𝑠𝑑 𝑗 ≤ 𝑑1, it indicates that the background nodes 𝐵 𝑗 bridges at least

two target nodes within 𝑑1-hop and will be regarded as the bridg-

ing node. By traversing all background nodes, a node subset BR
containing all bridging background nodes can be obtained.

Affiliation Background Node Fetching. By conducting BFS

for each target node 𝑇𝑖 , we can obtain the shortest path set of 𝑇𝑖
containing paths to its all accessible background nodes. Let 𝐽 :=

{ 𝑗1, 𝑗2, ..., 𝑗𝑘 } be the indices of accessible background nodes to 𝑇𝑖 ,

the corresponding shortest path set is 𝑃𝑇𝑖 := {𝑝𝑖, 𝑗 }, 𝑗 ∈ 𝐽 , where 𝑝𝑖, 𝑗
refers to the shortest path from𝑇𝑖 to an accessible background node

𝐵 𝑗 . Following principle.2, we first pick the accessible background

nodes with the shortest path distance within 𝑑2, i.e., {𝐵𝑚,𝑚 ∈

𝐽 , 𝑠 .𝑡 ., 𝑑 (𝑝𝑖,𝑚) ≤ 𝑑2}. To fetch the most essential 𝐾 background

nodes, we compute the feature Pearson correlation coefficient (𝑃𝐶𝐶)

for each picked 𝐵𝑚 with 𝑇𝑖 , 𝑃𝐶𝐶𝑖𝑚 =
𝑐𝑜𝑣 (𝑋 [𝑖 ]𝑋 [𝑚] )
𝜎𝑋 [𝑖 ]𝜎𝑋 [𝑚]

, where 𝑋 is

the node feature matrix, 𝑐𝑜𝑣 (·) refers to the covariance and 𝜎 refers

to standard deviation. Then background nodes in {𝐵𝑚} with 𝐾
largest 𝑃𝐶𝐶 will be fetched as affiliation nodes of 𝑇𝑖 . By traversing

all target nodes, an affiliation background nodes subsetAF can be

obtained. Then we can construct a vanilla subgraph G′ = (V ′ , E ′ )
by preserving the target nodes T and the fetched background nodes

B′ = {BR,AF } within the original graph G (Figure 2 left, where

𝑑1, 𝑑2 and 𝐾 are set to 3, 1 and 2 respectively).

3.2 Graph Condensation
To reduce information redundancy, we develop a condensation

process for the constructed vanilla subgraph G′ , which effectively

condenses both structural and semantic information. Specifically,

we propose three graph condensation strategies, denoted as 𝛼, 𝛽 ,

and 𝛾 , which provide varying degrees of condensation, ranging

from low to high.

Strategy-𝛼 . Following previous studies [4, 35], the number of equiv-

alence classes can be utilized to measure the richness of information.

Under this inspiration, we leverage the equivalence relationship

of node pairs as a hint of information redundancy, enabling us to

condense the semantic and structural information in the vanilla

subgraph G′ . To do so, we first introduce the notion of node pair

equivalence relation [4] on a graph G = (V, E), with 𝑋 the node

feature matrix.

Definition 3.1 (Node Pair Equivalence Class). Given a function

family F on G, define equivalence relation ≃F among all graph

node pairs such that ∀𝑢, 𝑣 ∈ V , 𝑢 ≃F 𝑣 iff ∀𝑓 ∈ F , 𝑓 (G, 𝑋 ) =
𝑓 (G, 𝑋̃ ), where 𝑋̃ = 𝑋 except 𝑋̃ [𝑢] = 𝑋 [𝑣], 𝑋̃ [𝑣] = 𝑋 [𝑢].

Considering the equivalent node pairs share an identical struc-

ture within the graph, we argue that there is a large space for graph

condensation. To this end, we propose a condensation strategy-𝛼 ,

which leverages multiple structure-set (𝑀𝑆𝑆) to captures the local

structural information of each fetched background node in vanilla

subgraph G′ . It allows us to identify background nodes with similar

structural information and condense them into a synthetic node

(shown in Figure 3). Specifically, for one background node 𝐵 𝑗 ∈ B
′
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into one synthetic node.

in G′ , we formulate the multiple structure-set𝑀𝑆𝑆 𝑗 via its accessi-

ble target nodes and the corresponding shortest path distances:

𝑀𝑆𝑆 𝑗 = {
〈
𝑇𝑖 , 𝑑𝑖, 𝑗

〉
, ...,

〈
𝑇𝑘 , 𝑑𝑘,𝑗 )

〉
}, (1)

where 𝑇𝑖 , ...,𝑇𝑘 are the accessible target nodes of 𝐵 𝑗 , 𝑑𝑖, 𝑗 represents

the shortest path distance between 𝐵 𝑗 and 𝑇𝑖 (For simplicity, we

use this notation in the following paper). For the background nodes

with the same𝑀𝑆𝑆 , we claim that these background nodes belong

to the same linear message path passing (LMPP) equivalence class.

The detailed definition is given below.

Definition 3.2 (Linear message passing operation). Given two

connected nodes 𝑢, 𝑣 , define the linear message passing operation

𝑓𝑙𝑚𝑝 (𝑢, 𝑣) from 𝑢 to 𝑣 as:

𝑋
′
[𝑣] ← 𝑓𝑙𝑚𝑝 (𝑋 [𝑣], 𝑋 [𝑢]) = AGGREGATE({𝑋 [𝑣], 𝑋 [𝑢]})𝑊,

(2)

where𝑊 is a transformation matrix, AGGREGATE can be formu-

lated as element-wise mean or summation pooling.

Definition 3.3 (Linear message path passing). Given a path 𝑝 =

⟨𝑢0, 𝑢1, ..., 𝑢ℓ ⟩ ,∀𝑢𝑖 ∈ V , define the linear path passing functions

𝑓𝑠𝑝𝑝 (𝑋, 𝑝) aggregating node feature from 𝑢0 to 𝑢ℓ over 𝑝 as:

𝑋
′
[𝑢𝑖 ] ← 𝑓 𝑖

𝑙𝑚𝑝
(𝑋
′
[𝑢𝑖−1], 𝑋 [𝑢𝑖 ])𝑊 𝑖 , 𝑖 ∈ 1, .., ℓ . (3)

Definition 3.4 (LMPP equivalence class). Given a family of linear

message path passing functions LMPP, two nodes 𝑢, 𝑣 ∈ V
and one common accessible node 𝐾 ∈ V , with the corresponding

paths 𝑝𝑢,𝐾 := ⟨𝑢, ..., 𝐾⟩ and 𝑝𝑣,𝐾 := ⟨𝑣, ..., 𝐾⟩, let 𝑃 := 𝑝𝑢,𝐾 , 𝑝𝑣,𝐾 ,

define LMPP equivalence relation 𝑢 ≃LMPP,𝐾 𝑣 iff ∀𝑓𝑙𝑚𝑝𝑝 ∈
LMPP, 𝑓𝑙𝑚𝑝𝑝 (𝑋, 𝑃) = 𝑓𝑙𝑚𝑝𝑝 (𝑋̃ , 𝑃) where 𝑋̃ = 𝑋 except 𝑋̃ [𝑢] =
𝑋 [𝑣], 𝑋̃ [𝑣] = 𝑋 [𝑢].
Here we relax the function family F in Definition 3.1 to linear

message path passing functions LMPP over the paths for aggre-

gation rather than the whole graph. Now we give a proposition to

characterize the LMPP equivalence relation of background nodes.

Proposition 3.5. With 𝑇 ∈ T denoting a target node in 𝐺 , B
denotes the set of background nodes, ∀𝑢, 𝑣 ∈ B, if𝑀𝑆𝑆𝑢 = 𝑀𝑆𝑆𝑣 ≠ ∅,
then 𝑢 ≃LMPP,𝑇 𝑣 .

We provide the proof of Proposition 3.5 in Appendix B. Propo-

sition 3.5 and the proof suggests that for background nodes with

same𝑀𝑆𝑆 , sharing one same path for linear message passing oper-

ation delivers the same aggregated features at target node as using

their own original paths. In this case the original multiple paths for

linear message passing are actually redundant.

T1 T2

T1

T2

{<T1>,
{<T2> }

{<T1>}

{<T2>}

T1

T2

β
weighted

D(T1)

D(T2)

Bridging 
Background Node

Affiliation 
Background Node

Target Node

Vanilla Graph Skeleton Graph Sβ

Figure 4: Illustration of Strategy-𝛽. The background nodes
sharing the same structural multiple-set𝑀𝑆𝑆 ′ {⟨𝑇 ⟩} (within
the same shadow envelope) will be condensed into one node.
To maintain the relative distance information between dif-
ferent nodes, we encode the distance information of target
nodes by weighting the edges of skeleton graph.

Following this, we argue that the background nodes with the

same 𝑀𝑆𝑆 may also leverage quite similar structure for informa-

tion aggregation over the graph, and condensing this structural and

feature information may also deliver similar aggregation results

via nonlinear message passing operation. To this end, we condense

the background nodes with the same𝑀𝑆𝑆 into one synthetic node

for reducing information redundancy. As an example shown in

Figure 3, both 𝐵1, 𝐵2 have the identical multiple structure-set con-

tents, i.e.,𝑀𝑆𝑆1 = 𝑀𝑆𝑆2 = {⟨𝑇1, 1⟩ , ⟨𝑇2, 2⟩}, and will be condensed

into one synthetic node 𝐵
′
. To preserve the semantic information

of condensed background nodes, we generate the synthetic node

feature via aggregating the original features of the corresponding

condensed background nodes. Let B′𝑘 = {𝐵𝑖 , ..., 𝐵 𝑗 } be the set of
background nodes with same𝑀𝑆𝑆 to be condensed into a synthetic

node 𝐵
′

𝑘
, the feature of 𝑥

𝐵
′
𝑘

is

𝑥
𝐵
′
𝑘

← AGGREGATE({𝑥𝑣,∀𝑣 ∈ B
′
𝑘 }), (4)

where AGGREGATE(·) can be element-wise mean or summation

pooling. By condensing all sets of B′ , the condensed skeleton graph

S𝛼 can be obtained for storage and graph model deployment.

Strategy-𝛽. While the strategy-𝛼 effectively reduces the graph

redundancy, its compression effect is limited as only a portion of

background nodes strictly share the same𝑀𝑆𝑆 {⟨𝑇,𝑑⟩}. To this end,
we propose the second condensation strategy-𝛽 with stronger con-

densation capacity over vanilla subgraph G′ . As a compromise, for

each background node, we only involve its accessible target nodes

while omitting the corresponding distance information in𝑀𝑆𝑆 , i.e.,

𝑀𝑆𝑆
′
= {⟨𝑇𝑖 ⟩ , ...,

〈
𝑇𝑗
〉
}. Similarly, for the background nodes with

the same 𝑀𝑆𝑆
′
, they will be condensed into a synthetic node. As

shown in Figure 4, the background nodes 𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵5, 𝐵6 all

have the same𝑀𝑆𝑆
′
= {⟨𝑇1⟩ , ⟨𝑇2⟩}, which will be condensed into

a synthetic node 𝐵
′
. The features generations of new condensed

synthetic nodes follow the Eq 7.

However, it should be noted that in this strategy, the condensed

graph would lose the relative distance information between nodes.

For instance, the target nodes get closer when bridging background

nodes are condensed together. Some target nodes that were orig-

inally several hops apart may be connected by a 1-hop bridging

background node in the condensed graph.

To address this issue, we propose to encode the relative distance

information between targets and backgrounds onto the edges in

condensed graph. Let B′𝑘 = {𝐵𝑖 , ..., 𝐵 𝑗 } be the set of background
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Figure 5: Illustration of Strategy-𝛾 . Based on condensation-𝛽 ,
we further condense the affiliation nodes to the correspond-
ing target node.

nodes in vanilla subgraph G′ with the same𝑀𝑆𝑆
′

𝑘
= {⟨T𝑘 ⟩}, which

will be condensed into a synthetic node 𝐵
′

𝑘
. Given one accessible

target node 𝑇𝑚 ∈ T𝑘 connected with 𝐵
′

𝑘
via edge 𝑒

′

𝑚,𝑘
, and the

shortest distance set of B′𝑘 to 𝑇𝑚 is 𝐷𝑚 := {𝑑𝑚,𝑖 , ..., 𝑑𝑚,𝑗 }. Then
the weight of edge 𝑒

′

𝑚,𝑘
is formulated as: 𝑤

′

𝑚,𝑘
=

∑
1

𝑑
,∀𝑑 ∈ 𝐷𝑘 ,

which can be utilized to weight the features during aggregation

in downstream graph models. To guarantee the scale consistency,

normalization based on rows and columns is also required for the

edge weights. After condensation for all sets of B′ , we can obtain

the condensed skeleton graph S𝛽 .
Strategy-𝛾 . Although the condensation-𝛽 strategy effectively re-

duces the size of bridging background nodes, there is still room for

further condensation of affiliation background nodes. Numerous

representative GNNs employ the propagation process to merge the

information from neighbors [14, 23]. Intuitively, aggregating the

features of affiliation nodes onto the neighboring target node di-

rectly would deliver a similar result with the recursive aggregation.

Under this inspiration, we propose the third strategy-𝛾 for con-

densation. Given the vanilla subgraph G′ , we first perform strategy-

𝛽 to condense the bridging background nodes, then we condense

the affiliation nodes in the generated skeleton graphS𝛽 . Specifically,
given one target node 𝑇𝑘 in S𝛽 , with its corresponding affiliation

background node set AF 𝑘 , we update the feature of target 𝑇𝑘
by incorporate its feature with the features of AF 𝑘 , and then re-

move AF 𝑘 in G′ (shown in Figure 5), to eliminate the massive

affiliation nodes while maintaining most of the original correlation

information from affiliation nodes. The condensed feature of𝑇𝑘 via

aggregating the original features with AF 𝑘 is formulated below:

𝑥𝑇𝑘 ← AGGREGATE({𝑥𝑇𝑘 ∪ {𝑥𝑢 ,∀𝑢 ∈ AF 𝑘 }}), (5)

AGGREGATE(·) can be element-wise mean or summation pooling.

Finlay, we can obtain the condensed skeleton graph S𝛾 , which is

highly informative and friendly to storage and model deployment.

We provide the time complexity analysis in Appendix D.

4 EXPERIMENTS
Experimental protocol. To comprehensively evaluate the perfor-

mance of the proposed Graph-Skeleton, we conduct the target nodes
classification task on six web datasets: DGraph [18], ogbn-mag [17],

ogbn-arxiv [17], MAG240M [16], DBLP [10] and IMDb [10], span-

ning across multiple domains. Based on the downstream task, we

can obtain the corresponding target nodes (required to be classi-

fied) and background nodes. The basic information of datasets and

how we select the target nodes are listed in Table 1. Note that in

our study, we only compress the background nodes, and all target

Table 1: Statistics of datasets.
Dataset Nodes Edges Target Definition Targets

DGraph 3,700,550 4,300,999 Loan Users 1,225,601

ogbn-arxiv 169,343 1,166,243 Papers (since 2018) 78,402

IMDB 11,616 17,106 Movies 4,278

DBLP 26,108 119,783 Authors 4,057

ogbn-mag 1,939,743 21,111,007 Papers 736,389

MAG240M 244,160,499 1,728,364,232 arxiv papers 1,398,159

nodes are preserved in the generated skeleton subgraph. In this

case, the generated skeleton and original graph contain the same

target nodes for classification.

Experimental Setup. We compare the downstream target node

classification performance with original graph and other graph

compression baselines including coreset methods (Random, Cen-

trality Ranking [11] with PageRank centrality (Central-P) and de-

gree centrality (Central-D)), graph coarsening methods (variation

neighborhoods coarsening (GC-VN ) [19], Algebraic JC coarsening

(GC-AJC) [19], spectral coarsening with Schur complement (Schur-
C) [41]), graph condensation methods (GCond [21], DosCond [20])

and graph active learning method (GPA [15]). Note that our goal

is to compress the background node compression while maintain

all target nodes. The compression rate is indicated by background
node compression rate (𝐵𝐶𝑅) (ratio of synthetic background nodes

to original background nodes). For a fair comparison, we keep the

𝐵𝐶𝑅 same across all methods.

After obtaining the compressed graphs by above methods, we

adopt the GNNs to evaluate their target classification performance.

Considering different datasets would be applicable to different

GNNs, for DGraph, ogbn-axiv, ogbn-mag and MAG240M, we select

the base GNNs on their respective official leaderboards for evalua-

tion. For IMDB and DBLP, we adopt the most representative GNNs

(GCN [23], GraphSAGE [14], GAT [30]) for evaluation. The target

classification performance of DGraph is evaluated by AUC (%), and

other datasets are evaluated by ACC (%). The code implementation

is available at https://github.com/zjunet/GraphSkeleton.

4.1 Graph Compression Comparison
We first report target node classification results of compressed

graphs under fixed compression rate (𝐵𝐶𝑅) on six datasets in Ta-

ble 2, where we compare the performance of Graph-Skeleton using

condensation strategy-𝛾 (Skeleton-𝛾 in short, which has highest

compression rate) to other baselines. As we can see, Skeleton-𝛾

presents strong ability of scaling up GNNs to all datasets, includ-

ing large-scale graph MAG240M with ∼0.24 billion nodes. It also

achieves superior target classification performance compared to

other compression baselines under similar 𝐵𝐶𝑅. Besides, compared

to other graph coarsening and compression methods being signifi-

cantly hindered by heavy memory and computational loads, our

method is more friendly for deployment on large-scale web graphs.

Moreover, compared to the original graph, Skeleton-𝛾 also presents

highly comparable or even better target classification performance

with a notably smaller number of background nodes.

Additionally, we report the target classification results of com-

pressed graph with varied 𝐵𝐶𝑅s in Figure 6. By selecting different

condensation strategies of Graph-Skeleton with different fetch-

ing depths (𝑑1, 𝑑2), we can flexibly achieve different compression

rates (details in Appendix A.2.4). It can be easily observed that our
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Table 2: Target node classification comparisons on the original and the compressed graphs with fixed 𝐵𝐶𝑅s. “OOM”: out of
memory. DGraph uses AUC (%) for evaluation, other datasets use ACC (%).

Datasets GNN Original Skeleton-𝛾 Random Cent-P Cent-D Schur-C GC-VN GC-AJC GCond DosCond GPA

DGraph

BCR=15%

SAGE [14] 78.7±0.1 78.2±0.1 74.2±0.1 74.6±0.1 74.5 ±0.1 75.4±0.1 OOM OOM OOM OOM OOM

GCN [23] 73.4±0.2 74.4±0.1 72.1±0.1 72.6±0.1 72.5±0.1 72.8±0.2 OOM OOM OOM OOM OOM

GAT [30] 75.9±0.4 76.6±0.6 73.3±0.3 73.9±0.4 73.8±0.4 74.2±0.5 OOM OOM OOM OOM OOM

NAGphormer [2] 76.5±0.1 77.2±0.1 73.7±0.1 74.49±0.1 74.21±0.1 75.1±0.2 OOM OOM OOM OOM OOM

ogbn_arxiv

BCR=7%

SAGE [14] 71.0±0.5 68.8±0.4 66.7±0.2 68.0±0.3 67.9±0.3 68.9±0.4 67.5±0.5 68.3±0.4 64.2±0.3 61.2±0.3 OOM

GCN [23] 71.3±0.2 69.2±0.3 67.8±0.3 68.1±0.2 69.0±0.3 68.0±0.3 68.1±0.2 68.0±0.2 64.3±0.4 61.5±0.5 OOM

GAT [30] 72.1±0.1 70.9±0.1 70.1±0.1 70.3±0.2 70.2±0.1 70.5±0.2 70.1±0.2 70.3±0.2 62.4±0.5 59.3±0.4 OOM

SIGN [9] 71.8±0.1 69.3±0.2 68.8±0.2 69.0±0.1 69.2±0.2 69.1±0.2 69.1±0.1 69.2±0.2 63.6±0.3 60.4±0.3 OOM

DBLP

BCR=12%

SAGE [14] 84.1±0.4 82.0±0.3 79.3±0.2 80.0±0.4 79.8±0.5 78.3±0.4 77.9±0.8 79.8 ± 0.5 78.3±0.7 76.1±0.5 80.2±0.4

GCN [23] 81.7±0.3 82.1±0.3 79.5±0.3 80.1±0.2 80.0±0.3 67.1±0.8 81.2±0.7 81.4±0.5 79.5±0.9 76.5±0.6 79.7±0.3

GAT [30] 79.5±0.3 79.3±0.3 79.0±0.5 78.9±0.4 79.1±0.4 57.1±1.6 71.2±0.6 67.9±1.2 74.5±1.0 74.2±0.8 78.5±0.5

IMDB

BCR=36%

SAGE [14] 55.2±0.6 55.6±1.2 48.8±0.8 51.1±0.8 51.3±0.8 53.1±0.7 55.4±0.5 56.6±0.3 49.1±0.8 53.2±1.0 51.9±0.9

GCN [23] 56.9±0.7 56.9±1.2 49.8±0.8 51.6±0.7 51.8±0.7 53.4±0.8 55.5±0.5 56.4±0.5 50.6±0.6 53.5±0.8 52.5±0.7

GAT [30] 57.2±0.6 54.5±1.0 48.2±0.7 50.7±0.8 51.1±0.7 51.6±1.8 52.3±0.6 52.8±0.6 48.9±0.7 50.2±0.6 49.4±0.8

ogbn_mag

BCR=40%

R-GCN [29] 46.0±0.7 46.2±0.4 22.4±0.9 24.8±0.8 25.1±0.7 39.5±0.4 OOM OOM OOM OOM OOM

GraphSaint [34] 43.2±0.5 43.9±0.3 9.1±1.1 13.6±1.5 11.2±1.2 36.7±0.5 OOM OOM OOM OOM OOM

Cluster-GCN [6] 38.5±0.2 39.5±0.2 35.2±0.3 36.0±0.2 35.9±0.2 33.5±0.3 OOM OOM OOM OOM OOM

MAG240M

BCR=1%

R-GAT [29] 70.0 68.5 59.0 59.8 60.1 OOM OOM OOM OOM OOM OOM

R-SAGE [29] 69.4 68.2 59.4 59.6 60.4 OOM OOM OOM OOM OOM OOM
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Figure 6: Comparisons of graph compression methods with varied 𝐵𝐶𝑅s for GNNs inference.

Table 3: Memory costs for data storage.

DGraph Target Feat Background Feat Adj Matrix AUC (SAGE)

Original

166.3 MB

336.6 MB 128.8 MB 78.7±0.1

Skeleton-𝛾 (BCR: 15%) 50.1 MB 52.4 MB 78.2±0.1

ogbn-arixv Target Feat Background Feat Adj Matrix ACC (SAGE)

Original

40.1 MB

46.5 MB 37.0 MB 71.0±0.5

Skeleton-𝛾 (BCR: 7%) 3.2 MB 12.3 MB 68.6±0.4

DBLP Target Feat Background Feat Adj Matrix ACC (GCN)

Original

1.0 MB

5.6 MB 3.8 MB 81.7±0.3

Skeleton-𝛾 (BCR: 12%) 0.7 MB 0.2 MB 82.1±0.3

IMDB Target Feat Background Feat Adj Matrix ACC (GCN)

Original

52.4 MB

89.9 MB 0.6 MB 56.9±0.7

Skeleton-𝛾 (BCR: 36%) 34.4 MB 0.4 MB 56.9±1.2

ogbn-mag Target Feat Background Feat Adj Matrix ACC (GraphSaint)

Original

377.0 MB

616.1 MB 674.9 MB 43.2±0.5

Skeleton-𝛾 (BCR: 40%) 245.6 MB 505.8 MB 43.9±0.3

MAG24M Target Feat Background Feat Adj Matrix ACC (R-SAGE)

Original

2.05 GB

372.97 GB 55.95 GB MB 69.4

Skeleton-𝛾 (BCR: 1%) 4.65 GB 2.69 GB 68.2

method significantly outperforms other methods in a wider range

of compression rate.

4.2 Storage Costs
We report the memory costs for web graph storage of original graph

and Skeleton-𝛾 under the fixed 𝐵𝐶𝑅 on six datasets. To present the

results more intuitively, we decouple the storage costs of graph data

into three main aspects: costs of target nodes features, background

nodes features and graph adjacencymatrix. The results are shown in

Table 3. As we can see, Skeleton-𝛾 significantly reduces the memory

cost of background nodes features and graph adjacent matrix (green

in Table 3). Since we preserve all the target node in compressed

Skeleton-𝛾 , the storage cost of target nodes feature keeps the same

with the original graph. On the other hand, Skeleton-𝛾 also achieves

close or even better performance compared to the original data. This

highlights the effectiveness of our proposed method in preserving

the essential information for target node classification.

4.3 Studies on Three Condensation Strategies
In this section, we investigate the compression performance of

three proposed condensation strategies 𝛼, 𝛽,𝛾 of Graph-Skeleton.

Specifically, we use the same vanilla subgraph as input and use

three strategies for condensation. The results on four datasets are de-

picted in Figure 7, where the left axis (blue) presents the background

nodes compression rate (𝐵𝐶𝑅, bar) and right axis (red) presents

the target node classification performance (dashed lines). As we

can see, Skeleton-𝛼, 𝛽,𝛾 all present highly competitive target node

classification performance with the original data, indicating the ef-

fectiveness of three proposed strategies for condensation. Generally

the Skeleton-𝛼 presents the best classification performance within

three strategies due to fewer information losses. On the other hand,
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Figure 7: Compression performance of Graph-Skeleton with
three condensation strategies: 𝛼 , 𝛽, 𝛾 . The bars indicate the
background nodes compression rate (BCR), dashed lines with
points indicate target node classification performance.

Skeleton-𝛾 also well approximates the original performance un-

der all tested downstream GNNs while with a notably higher 𝐵𝐶𝑅,

showing aggregating the features of affiliation background nodes

onto the neighboring target node can well preserve the original

background node information.

4.4 What Kinds of Background Nodes Are
Essential in Real-World Cases?

Due to different properties of the web graph data, the condensed

skeleton graph structure also vary dramatically from each other.

Since none of the target nodes are lost in our compressed skeleton

graph, it allows us to trace and investigate some important infor-

mation and patterns relevant to the target classification upon the

generated skeleton graphs. In this section, we utilize the distance

information in each background node’ multiple structure-set𝑀𝑆𝑆

in skeleton graph S𝛼 to represent the target-background struc-

tural patterns and leverage the attention mechanism to explore

the importance of each structural pattern. Given background node

𝐵 with 𝑀𝑆𝑆 = {⟨𝑇𝑖 , 𝑑𝑖 ⟩ ,
〈
𝑇𝑗 , 𝑑 𝑗

〉
}, define its structural patterns as

{𝑑𝑖 , 𝑑 𝑗 }, indicating it has two accessible target nodes with shortest

distances of 𝑑𝑖 , 𝑑 𝑗 respectively. For each structural pattern class, we

compute its importance weights by averaging the attention weight

of background nodes with the corresponding pattern class in GNN.

Exploration on DGraph. We take DGraph [18] as a case study

to investigate how the fetched background nodes contribute to the

classification. Figure 8 presents the importance weights of different

structural patterns maintained by the background nodes. For the

top four structural patterns, i.e., {1,1,1}, {1,1,1,1,1}, {1,1} and {1,1,1,1},

the background nodes all act as the 2-hop bridging nodes, revealing

the importance of connectivity between target nodes. This obser-

vation is also consistent with the exploration results in Section 1.

Moreover, the attention scores of these four patterns are quite close,

suggesting that the 2-hop bridging nodes with different degrees

might play similar roles in the task. These observations can offer

a good explanation for the classification task in the financial sce-

nario where the social relations between users are crucial for fraud

detection. Concretely, for one node connected with fraud users,

the likelihood that it and its direct neighbors are fraudsters will

increase significantly. Moreover, if most neighbors of one user are

frauds, it is likely to be a fraud intermediary agency.
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Figure 8: The importance weights of top 10 structural pat-
terns of background nodes in S𝛼 of DGraph. The correspond-
ing structural patterns are visualized upper the bars.

5 RELATEDWORKS
Graph Coarsening. Graph coarsening reduces the number of

graph nodes while preserving some important properties in the

original graph. The theoretical approximation guarantees on spec-

trum or structure have been studies in some previous coarsening

studies [1, 22, 24, 41]. Specifically, Zhu et al. propose a sparsifier

which leverages schur complement construction to approximate

the shortest distances between each pair of vertices in terminal

set [41]. Nevertheless, these graph reduction methods only focus

on the approximation of structure while ignoring the node features,

which are not tailored to the node classification tasks in web mining.

Huang et al. proposes a coarsening model for semi-supervised node

classification, which merges the original nodes into super-nodes

along with averaged node features for graph reduction [19].

GraphCondensation. Recently, graph condensation has also been
studied. Jin et al. develop a graph condensation method based on

gradient matching to imitate the GNNs training trajectory on large

graph [21], and further extend the method to one-step gradient

matching [20]. Nevertheless, these methods would inevitably lose

original target nodes during reduction. For coarsening model [19],

it is prone to merge the target nodes into one super-nodes. For the

condensation methods [20, 21], they can only compress the target

nodes since only the target nodes’ labels are effective for gradient

matching. However, in our study we aim to shrink the size of back-

ground nodes while maintaining all target nodes. Besides, these

methods require large memory cost with higher time complexity

during graph reduction, yet our method is efficient and effective,

which is much easier to implement on very large graphs.

6 CONCLUSION
In this paper,We focus on a common challenge in web graphmining

applications: compressing themassive background nodes for a small

part of target nodes classification, to tackle the storage and model

deployment difficulties on very large graphs. Empirical analysis

explicitly reveals the contributions of critical background nodes to

the target classification, i.e., enhancing target structural connectivity
and feature correlation with target nodes. With these inspirations,

we propose a novel Graph-Skeleton, which properly fetches and

condenses the informative background nodes, so that the generated

graph is small-scale but sufficient to trace, retain the information

of each target node for classification. Extensive experiments well

indicates the effectiveness of our proposed method.
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A DETAILED EXPERIMENTAL SETTINGS
A.1 Experimental Settings in Section 2
The GNNs we choose includes GraphSAGE [14], GAT [30] and

GIN [33], which utilized three representative aggregation mecha-

nisms (mean, weight-based, summation), as the backbone model,

and deploy the model on two datasets for target nodes classification:

• Financial loan network DGraph, where we follow the task

setting of the original dataset [18], i.e., fraudster identifica-

tion among loan users. In this case the users with loan action

are regarded as target nodes (∼33%), while others are viewed
as background nodes.

• Academic citation network ogbn-arxiv [17], where we aim

to predict the subject areas of papers published since 2018. In

this case, papers published from 2018 are regarded as target

nodes (∼46%), while papers before 2018 as the background
nodes.

To analyze the contributions of background nodes to target

nodes, we cut the edges between different types of nodes and de-

ploy the cutted graphs on the GraphSAGE model. Specifically, we

cut the edges within the original graph including: (1) Random Cut:

randomly drop the edges within the graph with the edge drop

rate spanning from 0 to 1. (2) B-B Cut: drop the edges between

background nodes. (3) T-B Cut: drop the edges between target and

background nodes. (4) BridB Cut: drop the edges where background

nodes act as the 1-hop bridging nodes between two target nodes.

A.2 Experimental Settings in Section 4
A.2.1 Graph-Skeleton Settings in Fixed 𝐵𝐶𝑅 Experiments. For the
evaluation of proposed Gpaph-Skeleton, we first compare the per-

formance of baselines in a fixed 𝐵𝐶𝑅 manner in Section 4.1, Table 2.

Specifically, we choose the Gpaph-Skeleton using condensation

strategy-𝛾 (Skeleton-𝛾 in short, with highest compression rate) to

compare with other baselines. During node fetching phase (Sec-

tion 3.1), we set the fetching depth andwidth as𝑑1 = 2, 𝑑2 = 1, 𝐾 = 5

to generate the vanilla subgraph G′ . For 𝛾 condensation, we choose

mean operation as aggregation function in Equation 5. For base-

lines of Random, Centrality Ranking and GPA, we control the query

budgets of background node selection to keep the 𝐵𝐶𝑅 being same

with that of skeleton graph S𝛾 . For Graph Coarsening, GCond and

DosCond, we control the compression rate to keep the synthetic

graphs having the same total size (# Total after compression) with

skeleton graph S𝛾 . These synthetic graphs are considered to have

the same 𝐵𝐶𝑅 for comparison.

A.2.2 Downstream Classification Settings in MAG240M and ogbn-
mag. For MAG240M and ogbn-mag, graphs contain various edge

types (7 types in original dataset, which will be utilized for classifica-

tion). Due to graph condensation would condense different nodes to-

gether and cause type inconsistency of generated edge, we re-define

the edge type via the target and background nodes connection in

original and compressed graphs (4 types in total: target-target,

background-background, target-background, background-target)

and implement node classification test.

A.2.3 GraphModels Settings. In our study, we evaluate target node
classification performance in downstream tasks with various GNN

models. Our experiments are implemented with PyTorch 1.10.0,

CUDA v12.1 on NVIDIA Quadro RTX 6000 GPU. Each experiment

is repeated for 10 trials on all datasets except MAG240M.

A.2.4 Varied Background Node Compression Rate Control. To ob-

tain the synthetic graphs with different compressed rates, we can

use different condensation strategies of Graph-Skeleton with varied

fetching depth (𝑑1, 𝑑2) for background nodes compression. Specif-

ically, the fetching depth (𝑑1, 𝑑2) controls the number of fetched

background nodes in the vanilla subgraph G′ . Increasing the fetch-

ing depth results in a more comprehensive collection of information,

but it also leads to a larger size of the vanilla subgraph. On the other

hand, three condensation strategies control the level of conden-

sation of redundant information in vanilla subgraph G′ , where
Strategy-𝛼 preserves the greatest amount of the original structural

and semantic information, while strategy-𝛾 delivers the lowest 𝐵𝐶𝑅.

A.2.5 Settings of Three Strategies Analyses. To investigate the con-

densation performance of three condensation strategies, we conduct

the experiments and analyze the results in Section 4.3. During com-

pression, we keep the fetching depths being same ([𝑑1, 𝑑2] = [2,1])

for vanilla subgraph generation and use three strategies for con-

densation to generate the synthetic skeleton graphs respectively.

B PROOF OF OF PROPOSITION 1
Before the proof, let’s revisit the definition of Linear message path

passing on a single path (Section 3.2, Definition 3.3), then we extend

the Linear message path passing function to multiple paths.

Definition B.1 (Linear message path passing). Given a path 𝑝 =

⟨𝑢0, 𝑢1, ..., 𝑢ℓ ⟩, we define the linear single path passing functions

𝑓𝑠𝑝𝑝 (𝑋, 𝑝) which aggregates node feature starting from 𝑢0 to 𝑢ℓ
over 𝑝 as:

𝑋
′
[𝑢𝑖 ] ← 𝑓 𝑖

𝑙𝑚𝑝
(𝑋
′
[𝑢𝑖−1], 𝑋 [𝑢𝑖 ])𝑊 𝑖 , 𝑖 ∈ 1, .., ℓ, (6)

where 𝑋 is the node feature matrix, 𝑓𝑙𝑚𝑝 (𝑢, 𝑣) denotes the linear
message passing operation (defined in equation 2) from 𝑢 to 𝑣 ,𝑊

is a transformation matrix.

Given𝑚 pathswith same end node𝐾 : P:={𝑝𝑢0
0
,𝐾 =

〈
𝑢1
0
, 𝑢1

1
, ..., 𝑢1∗, 𝐾

〉
,

𝑝𝑢1
0
,𝐾 =

〈
𝑢2
0
, 𝑢2

1
, ..., 𝑢1∗, 𝐾

〉
,...,𝑝𝑢𝑚

0
,𝐾 =

〈
𝑢𝑚
0
, 𝑢𝑚

1
, ..., 𝑢𝑚∗ , 𝐾

〉
}, define

the linear message path passing 𝑓𝑙𝑚𝑝𝑝 (𝑋, 𝑃) over𝑚 paths to end

node 𝐾 as:

𝑋
′
[𝐾] ← AGGREGATE(𝑋 [𝐾], {𝑋

′
[𝑢𝑖∗],∀𝑖 ∈ 1, ...,𝑚})𝑊𝐾

= AGGREGATE(𝑋 [𝐾], {𝑓𝑠𝑝𝑝 (𝑋, 𝑝𝑢𝑖
0
,𝑢𝑖∗
) [𝑢𝑖∗],∀𝑖 ∈ 1, ...,𝑚})𝑊𝐾

(7)

Proof. Let 𝑋 denotes node feature matrix, 𝑓𝑠𝑝𝑝 = 𝑓𝑚
𝑙𝑚𝑝
◦ ... ◦

𝑓 2
𝑙𝑚𝑝
◦ 𝑓 1
𝑙𝑚𝑝

denotes a single path passing function, where 𝑓𝑙𝑚𝑝 is

the linear message passing operation. Given 𝑢, 𝑣 ∈ B, s.t.,𝑀𝑆𝑆𝑢 =

𝑀𝑆𝑆𝑣 = {⟨T ,D⟩}. Pick one target 𝑇 ∈ T ′ with the corresponding

distance𝑑 , and two shortest paths 𝑝𝑢,𝑇 = ⟨𝑢,𝑢1, ..., 𝑢∗,𝑇 ⟩ and 𝑝𝑣,𝑇 =

⟨𝑣, 𝑣1, ..., 𝑣∗,𝑇 ⟩ from 𝑢,𝑣 to𝑇 respectively, where |𝑝𝑢,𝑇 | = |𝑝𝑣,𝑇 | = 𝑑 .
Assuming {𝑝𝑢,𝑢∗ } ∩ {𝑝𝑣,𝑣∗ } = ∅, let 𝑃 := {𝑝𝑢,𝑇 , 𝑝𝑣,𝑇 }, the linear

message path passing over paths to 𝑇 is formulated as:
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𝑋
′
[𝑇 ] = 𝑓𝑙𝑚𝑝𝑝 (𝑋, 𝑃) [𝑇 ]

= AGGREGATE(𝑋 [𝑇 ], {𝑋
′
[𝑢∗], 𝑋

′
[𝑣∗]})𝑊𝑇

(8)

𝑋
′
[𝑢∗] = 𝑓𝑠𝑝𝑝 (𝑋, 𝑝𝑢,𝑢∗ ) [𝑢∗]

= 𝑓 𝑑−2
𝑙𝑚𝑝
(...𝑓 1

𝑙𝑚𝑝
(𝑋 [𝑢], 𝑋 [𝑢1])𝑊 1 ..., 𝑋 [𝑢∗])𝑊 𝑑−2 (9)

𝑋
′
[𝑣∗] = 𝑓𝑠𝑝𝑝 (𝑋, 𝑝𝑣,𝑣∗ ) [𝑣∗]

= 𝑓 𝑑−2
𝑙𝑚𝑝
(...𝑓 1

𝑙𝑚𝑝
(𝑋 [𝑣], 𝑋 [𝑣1])𝑊 1 ..., 𝑋 [𝑣∗])𝑊 𝑑−2 (10)

Since 𝑓𝑙𝑚𝑝 is linear, the aggregated feature 𝑋
′ [𝑢∗] and 𝑋

′ [𝑣∗]
can be decoupled as:

𝑋
′
[𝑢∗] =

𝑋 [𝑢] ·𝑊 1 · ... ·𝑊 𝑑−2

𝑐𝑑−2
+ 𝑋 [𝑢1] ·𝑊

1 · ... ·𝑊 𝑑−2

𝑐𝑑−2

+ 𝑋 [𝑢2] ·𝑊
2 · ... ·𝑊 𝑑−2

𝑐𝑑−3
+ ... + 𝑋 [𝑢∗] ·𝑊

𝑑−2

𝑐

(11)

𝑋
′
[𝑣∗] =

𝑋 [𝑣] ·𝑊 1 · ... ·𝑊 𝑑−2

𝑐𝑑−2
+ 𝑋 [𝑣1] ·𝑊

1 · ... ·𝑊 𝑑−2

𝑐𝑑−2

+ 𝑋 [𝑣2] ·𝑊
2 · ... ·𝑊 𝑑−2

𝑐𝑑−3
+ ... + 𝑋 [𝑣∗] ·𝑊

𝑑−2

𝑐

(12)

where 𝑐 is the division index, 𝑐 = 2 for mean pooling aggregation in

Eq.(2), for summation pooling aggregation 𝑐 = 1. Combining Eq.(8)

and Eq.(11),(12) we have

𝑋
′
[𝑇 ] = AGGREGATE(𝑋 [𝑇 ], 𝑋

′
[𝑢∗], 𝑋

′
[𝑣∗])𝑊𝑇

=
(𝑋 [𝑢] + 𝑋 [𝑣]) ·𝑊 1 · ... ·𝑊 𝑑−2 ·𝑊𝑇

𝑐𝑑−2𝑐†

+ (𝑋 [𝑢1] + 𝑋 [𝑣1]) ·𝑊
1 · ... ·𝑊 𝑑−2 ·𝑊𝑇

𝑐𝑑−2𝑐†

+ (𝑋 [𝑢2] + 𝑋 [𝑣2]) ·𝑊
2 · ... ·𝑊 𝑑−2 ·𝑊𝑇

𝑐𝑑−3𝑐†
+ ...

+ (𝑋 [𝑢∗] + 𝑋 [𝑣∗]) ·𝑊
𝑑−2 ·𝑊𝑇

𝑐𝑐†

+ (𝑋 [𝑇 ]) ·𝑊
𝑇

𝑐†

(13)

where 𝑐† = 3 for mean pooling aggregation in Eq.(8), 𝑐† = 1 for

summation pooling aggregation. Similarly, for 𝑋̃ where 𝑋̃ = 𝑋

except 𝑋̃ [𝑢] = 𝑋 [𝑣], 𝑋̃ [𝑣] = 𝑋 [𝑢], we have

𝑋
′
[𝑇 ] = 𝑋̃

′
[𝑇 ] ⇔ 𝑢 ≃LMPP,𝑇 𝑣 (14)

□

This indicates that the aggregated information via linear message

path passing is only related to the path length, but not the other

nodes on the path. The proposition also holds when {𝑝𝑢,𝑢∗ } ∩
{𝑝𝑣,𝑣∗ } ≠ ∅ and each 𝑓𝑚𝑙𝑚𝑝 in 𝑓𝑠𝑝𝑝 = 𝑓𝑚

𝑙𝑚𝑝
◦ ... ◦ 𝑓 2

𝑙𝑚𝑝
◦ 𝑓 1
𝑙𝑚𝑝

employs

different aggregation, we omit the proof since it is similar.

Algorithm 1: Bridging Background Node Fetching

Input: Graph G = (V, E), target nodes T = (𝑇1,𝑇2, ...,𝑇𝑛),
𝑑1

Output: The bridging node set 𝐵𝑟𝑖𝑑
1 Initialize a queue 𝑄 with all target nodes T ;
2 𝐵𝑟𝑖𝑑 ← ∅;
3 while 𝑄 is not empty do
4 𝑢 ← 𝑄.dequeue();

5 foreach 𝑣 is a neighbor of 𝑢 do
6 if edge (𝑢, 𝑣) has been accessed less than twice then
7 Accesse edge (𝑢, 𝑣);

// Note that the shortest and
2nd-shortest path are maintained in
the update process so that they
start from different target nodes.

8 Update the shortest and 2nd-shortest path of 𝑣

by 𝑢;

9 𝑄 .enqueue(𝑣);

10 foreach 𝑢 ∈ V/T do
11 if 𝑢’s length of shortest path + 2nd-shortest path ≤ 𝑑1

then
12 𝐵𝑟𝑖𝑑 ← 𝐵𝑟𝑖𝑑 ∪ 𝑢

13 return 𝐵𝑟𝑖𝑑

C ALGORITHMS IMPLEMENTATION DETAILS
C.1 Background Node Fetching
Bridging Background Node. We show the detailed process of

bridging background node fetching in Algorithms 1. It searches

for all accessible nodes starting from the target nodes and update

their corresponding shortest and 2nd-shortest paths to target nodes

(Line 3-9). Thenwe select the background nodes under our proposed

fetching principle 1 of distance 𝑑1 in Section 3.1 as the bridging

background nodes 𝐵𝑟𝑖𝑑 (Line 10-12).

Affiliation Background Node. Affiliation background node fetch-

ing process is shown in Algorithms 2. It aims to identify the bridging

background nodes within the input graph G given the correspond-

ing target node set T , and fetching depth 𝑑2 and width 𝐾 .

C.2 Graph Condensation
We show the detailed algorithm of graph condensation. The con-

densation strategy-𝛼 and strategy-𝛽 are shown in Algorithms 3 and

4. For condensation strategy-𝛾 , we omit the detailed pseudocode

since it is similar to strategy-𝛽 but with the last step of merging the

affiliation background nodes to their corresponding target nodes

using Equation 5.

D TIME COMPLEXITY ANALYSIS
Our method is divided into two parts, node fetching and graph

condensation. For the first part, we drop the node where the length

of the shortest path is greater than 𝑑2 or the length of the shortest

path + the second short path is greater than𝑑1. This can be achieved
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Algorithm 2: Affiliation Background Node Fetching

Input: Graph G = (V, E), feature matrix 𝑋 , target nodes

T = (𝑇1,𝑇2, ...,𝑇𝑛), 𝑑2, 𝐾
Output: The affiliation node set 𝐴𝑓 𝑓 𝑖𝑙

1 Initialize an queue 𝑄 with all target nodes T ;
2 Initialize the an array 𝑑𝑖𝑠 with∞ for background nodes and

0 for target nodes;

3 𝐴𝑓 𝑓 𝑖𝑙 ← ∅;
4 𝐴𝑓 𝑓 𝑖𝑙

′ ← ∅;
5 while 𝑄 is not empty do
6 𝑢 ← 𝑄.dequeue();

7 foreach 𝑣 is a neighbor of 𝑢 do
8 if 𝑑𝑖𝑠 [𝑣] is∞ then
9 𝑑𝑖𝑠 [𝑣] ← 𝑑𝑖𝑠 [𝑢] + 1;

10 𝑄 .enqueue(𝑣);

11 foreach 𝑢 ∈ V/T do
12 if 𝑑𝑖𝑠 [𝑢] ≤ 𝑑2 then
13 𝐴𝑓 𝑓 𝑖𝑙

′ ← 𝐴𝑓 𝑓 𝑖𝑙
′ ∪ 𝑢

14 foreach 𝑢 ∈ T do
15 𝑝𝑐𝑐 ← ∅;
16 𝑎𝑓 𝑓 𝑖𝑙 ← ∅;
17 foreach 𝑣 is a neighbor of 𝑢 do
18 if 𝑣 ∈ 𝐴𝑓 𝑓 𝑖𝑙 ′ then
19 𝑎𝑓 𝑓 𝑖𝑙 ← 𝑎𝑓 𝑓 𝑖𝑙 ∪ 𝑣 ;
20 𝑝𝑐𝑐 ← 𝑝𝑐𝑐 ∪ 𝑐𝑜𝑜𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑋𝑢 , 𝑋𝑣);
21 sort 𝑎𝑓 𝑓 𝑖𝑙 according to 𝑝𝑐𝑐;

22 𝐴𝑓 𝑓 𝑖𝑙 ← 𝐴𝑓 𝑓 𝑖𝑙 ∪ 𝑎𝑓 𝑓 𝑖𝑙 [1 : 𝐾];

23 return 𝐴𝑓 𝑓 𝑖𝑙

Algorithm 3: Condensation-𝛼
Input: Graph G = (V, E), target nodes T = (𝑇1,𝑇2, ...,𝑇𝑛),

Affiliation and Bridging node set 𝐴𝑓 𝑓 𝑖𝑙, 𝐵𝑟𝑖𝑑 ,

ego-network’s hop 𝑘

Output: Condensed skeleton graph S𝛼
1 Set𝑚𝑎𝑠𝑘 [𝑢] to 0 for every node 𝑢;

2 foreach target node 𝑢 ∈ T do
3 for 𝑑 ← 1 to 𝑘 do
4 𝑘𝑒𝑦 [𝑢,𝑑] ← an unique random 256-bit integer;

5 foreach node 𝑣 in 𝑢’s 𝑘-hop ego-network and
𝑣 ∈ 𝐴𝑓 𝑓 𝑙𝑖 ∪ 𝐵𝑟𝑖𝑑 do

6 Let 𝑑 be the distance between 𝑢 and 𝑣 ;

// ⊙ denote Binary Exclusive Or(xor).

7 𝑚𝑎𝑠𝑘 [𝑣] ←𝑚𝑎𝑠𝑘 [𝑣] ⊙ 𝑘𝑒𝑦 [𝑢,𝑑];

8 Sort the node by node’s𝑚𝑎𝑠𝑘 with Radix Sort;

9 Merge nodes with the same mask into one node and get S𝛼 ;
10 return S𝛼

Algorithm 4: Condensation-𝛽
Input: Graph G = (V, E), target nodes T = (𝑇1,𝑇2, ...,𝑇𝑛),

Affiliation and Bridging node set 𝐴𝑓 𝑓 𝑖𝑙, 𝐵𝑟𝑖𝑑 ,

ego-network’s hop 𝑘

Output: Condensed skeleton graph S𝛽
1 Assign each target node 𝑢 with an unique random 256-bit

integer 𝑘𝑒𝑦 [𝑢];
2 Set𝑚𝑎𝑠𝑘 [𝑢] to 0 for every node 𝑢;

3 foreach target node 𝑢 ∈ T do
4 foreach node 𝑣 in 𝑢’s 𝑘-hop ego-network with

𝑣 ∈ 𝐴𝑓 𝑓 𝑙𝑖 ∪ 𝐵𝑟𝑖𝑑 do
// ⊙ denote Binary Exclusive Or(xor).

5 𝑚𝑎𝑠𝑘 [𝑣] ←𝑚𝑎𝑠𝑘 [𝑣] ⊙ 𝑘𝑒𝑦 [𝑢];

6 Sort the node by node’s𝑚𝑎𝑠𝑘 with Radix Sort;

7 Merge nodes with the same mask into one node;

8 Update edge weights by original distance information of

merged nodes and get S𝛽 ;
9 return S𝛽

through a multi-source shortest path problem (all target nodes as

the source). In this algorithm, each node will be accessed at most

twice, each node will be enqueued at most twice, and their adjacent

edges will be enumerated twice. And the time complexity of this

step is 𝑂 ( |𝐸 |). Specifically, to find shortest paths in an unweighted

graphs via BFS, the complexity is 𝑂 ( |𝐸 | + |𝑉 |) = 𝑂 ( |𝐸 | (assuming

no isolated nodes, |𝐸 | > |𝑉 |) [7]. For weighted graphs, we use the

same algorithm. Please note that we aim to find the minimum hop

paths while not the minimum weight paths in weighted graphs,

so the complexity is also 𝑂 ( |𝐸 |). After that, the nodes in the k-

order neighborhood of each target node are accessed to calculate

𝑃𝐶𝐶 . Let the average number of edges in each background node’s

𝑘-hop ego-network be 𝑒 (𝑘), then the time complexity of the above

steps is 𝑂 (𝑒 (𝑘) |𝑉 |). The total time complexity of the first part is

𝑂 ( |𝐸 | + 𝑒 (𝑘) |𝑉 |).
For the second part, we propose three graph condensation meth-

ods (−𝛼 , −𝛽 and −𝛾 respectively). All these methods need to cal-

culate the distance between each background node and the target

nodes in its 𝑘-hop ego-network. We use the hash method to merge

similar nodes, so the subsequent merging steps can be completed

with 𝑂 (1) for each node. This makes the time complexity of the

whole process determined by the complexity of previous distance

calculating, that is, 𝑂 (𝑒 (𝑘) |𝑉 |)
The first two methods (𝛼 , 𝛽) end after merging nodes with the

same hash value, while the last method(𝛾 ) requires an additional

step. For Graph Condensation-𝛾 , merging of affiliation nodes for

each target node only requires traversing the neighbors of these

target nodes, which means that the time complexity of this addi-

tional step is 𝑂 ( |𝐸 |). Therefore, the time complexity of these three

graph condensation methods for the second part is𝑂 ( |𝐸 | +𝑒 (𝑘) |𝑉 |).
To sum up, the total time complexity is 𝑂 ( |𝐸 | + 𝑒 (𝑘) |𝑉 |).
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