
Can GNN be Good Adapter for LLMs?
Xuanwen Huang
xwhuang@zju.edu.cn
Zhejiang University
Hangzhou, China

Kaiqiao Han
kaiqiaohan@zju.edu.cn
Zhejiang University
Hangzhou, China

Yang Yang†
yangya@zju.edu.cn
Zhejiang University
Hangzhou, China

Dezheng Bao
baodezheng@zju.edu.cn
Zhejiang University
Hangzhou, China

Quanjin Tao
taoquanjin@zju.edu.cn
Zhejiang University
Hangzhou, China

Ziwei Chai
zwchai@zju.edu.cn
Zhejiang University
Hangzhou, China

Qi Zhu∗
qzhuamazon@amazon.com

Amazon Web Services
Santa Clara, USA

ABSTRACT
Recently, large language models (LLMs) have demonstrated supe-
rior capabilities in understanding and zero-shot learning on textual
data, promising significant advances for many text-related domains.
In the graph domain, various real-world scenarios also involve
textual data, where tasks and node features can be described by
text. These text-attributed graphs (TAGs) have broad applications
in social media, recommendation systems, etc. Thus, this paper
explores how to utilize LLMs to model TAGs. Previous methods
for TAG modeling are based on million-scale LMs. When scaled
up to billion-scale LLMs, they face huge challenges in computa-
tional costs. Additionally, they also ignore the zero-shot inference
capabilities of LLMs. Therefore, we propose GraphAdapter , which
uses a graph neural network (GNN) as an efficient adapter in col-
laboration with LLMs to tackle TAGs. In terms of efficiency, the
GNN adapter introduces only a few trainable parameters and can
be trained with low computation costs. The entire framework is
trained using auto-regression on node text (next token prediction).
Once trained, GraphAdapter can be seamlessly fine-tuned with task-
specific prompts for various downstream tasks. Through extensive
experiments across multiple real-world TAGs, GraphAdapter based
on Llama 2 gains an average improvement of approximately 5% in
terms of node classification. Furthermore, GraphAdapter can also
adapt to other language models, including RoBERTa, GPT-2. The
promising results demonstrate that GNNs can serve as effective
adapters for LLMs in TAG modeling.

†Yang Yang is the corresponding author.
∗This work was done before the author joined Amazon.
The code is available at: https://github.com/zjunet/GraphAdapter

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0171-9/24/05. . . $15.00
https://doi.org/10.1145/3589334.3645627

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; • Infor-
mation systems→ Data mining.

KEYWORDS
Graph Neural Networks, Large Language Model, Text-Attributed
Graph

ACM Reference Format:
Xuanwen Huang, Kaiqiao Han, Yang Yang, Dezheng Bao, Quanjin Tao,
Ziwei Chai, and Qi Zhu. 2024. Can GNN be Good Adapter for LLMs? . In
Proceedings of the ACM Web Conference 2024 (WWW ’24), May 13–17, 2024,
Singapore, Singapore. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3589334.3645627

1 INTRODUCTION
Graphs are ubiquitous in the real world [1]. In the past, graph struc-
tures have been extensively explored and utilized in many machine
learning applications [27, 39]. In many practical cases, the nodes in
graphs have textual features, known as Textual-Attributed Graphs
(TAGs) [37]. For example, in social media [18], nodes represent
users and node features are user profiles. Nodes in TAGs have both
textual and structural data, which both reflect their intrinsic prop-
erties. Combining textual and structural data to modeling TAGs is
an exciting new exploration for both graph machine learning and
language modeling, which can benefit the application of graphs.

In TAGs, a complex correlation exists between the structural and
textual data of nodes. Understanding this correlation can benefit the
modeling of TAGs [5]. In Figure 1, user “Bob” frequently browses
daily news on social media, as evidenced by the descriptions in
his user profile. Users similar to Bob, who have many followers
and often browse news nodes, are also likely interested in news.
In other words, a graph can supplement textual attributes on a
node through structural proximity. Graph Neural Networks (GNNs)
are the de facto machine learning models for leveraging textual
information alongside graph structures in TAGs. However, there’s
a lack of a unified GNN architecture compatible with different
language models, especially the powerful foundation models.

https://orcid.org/0000-0002-4668-4570
https://github.com/zjunet/GraphAdapter
https://doi.org/10.1145/3589334.3645627
https://doi.org/10.1145/3589334.3645627
https://doi.org/10.1145/3589334.3645627

WWW ’24, May 13–17, 2024, Singapore, Singapore Xuanwen Huang, et al.

Account: Bob
Profile:
I am a student who loves rugby
and reading news…
I am very popular on social
media.

Textual data Structural data

Textual semantic:
1. He like to read news.
2. He is popular.

Structural semantic:
1. Edge means two node
may share same interests.
2. High in-degree means a
node may be popular

Figure 1: An example of the correlation existing in the struc-
tural and textual data of nodes in social networks.

Recently, there has been a surge in studies investigating effective
ways to model both textual and structural data in TAGs. Some of
these studies emphasize optimizing a cascading architecture that
combines GNNs and LMs (cascading GNN-LMs) [37, 42]. One
major challenge with these models is the extreme amount of addi-
tional computational cost brought by the message-passing mech-
anism. To this end, several studies have successfully reduced the
memory and computational overheads of such cascaded models by
freezing partial or full parameters of the backbone language models
[20, 25]. Large language models exhibit superior multi-task and few-
shot learning capabilities across various real-world applications [2].
However, when considering cascading GNN-LMs, existing tech-
niques cannot be scaled up to billion-scale models like Llama 2 [33].
Another pioneering research has ventured to fine-tune language
models using unsupervised graph information (self-supervised
GNN-LMs) [4, 26]. For instance, GIANT [4] fine-tunes language
models through a neighbor prediction task, subsequently using
the refined language model to extract node representations for
downstream tasks. In these methods, PLMs can indirectly incor-
porate graph information during the tuning process thereby en-
hancing their capability to process TAGs. However, they separate
the training of GNNs and LMs, potentially leading to sub-optimal
graph-aware tuning results.

Instead of using graph information as supervision, we believe
graph structure can enrich textual features through language mod-
eling. In our previous example, structural proximity can be used
to infer the user’s preference even if he or she does not mention
it in the profile. So, unlike self-supervised methods, we consider
pre-training a framework that can combine graph-aware structure
and LLMs by leveraging rich textual features. However, traditional
frameworks like cascading GNNs and LLMs face efficiency issues in
pre-training scenarios. Therefore, inspired by works on parameter-
efficient tuning of LLMs [14, 22, 23], we propose the use of GNNs as
efficient adapters for LLMs (i.e., GraphAdapter). In GraphAdapter ,
the LM is frozen and the final output of the LM is altered by the
trainable adapter GNNs. GraphAdapter offers several advantages:

• Lightweight: A GNN adapter introduces a few trainable
parameters and low computational costs.

• Language-aware graph pre-training: Using language to
supervise the modeling of graph structure, which can help
LLMs comprehend both textual and structural information.

• Convenient tuning: Once a graph-specific adapter is pre-
trained, it can be fine-tuned for multiple downstream tasks.

Now we present the details of GraphAdapter with respect to pre-
training and fine-tuning of the adapter GNNs. To capture the data
distribution of the graph, we employ parameter-efficient tuning
of LLMs on node texts. This approach is similar to the continual
training of language models [31] except GNN is the tuning param-
eter, which helps reduce the distribution discrepancy between the
pre-training corpus and target data. To further enhance efficiency,
we utilize the GNN adapter exclusively at the transformer’s final
layer. It ensures that all transformer computational processes are
executed just once and then can be cached for adapter training.
Besides, we perform mean-pooling on the predicted logits from
a GNN adapter and LLMs then optimize their final results of the
next-word prediction, which can help adapters focus more on the
graph-related tokens. Once the adapter is trained, one can use
GraphAdapter together with the backbone LLMs on various down-
stream tasks. For instance, we use a classification head atop the
embeddings of the last token to fine-tune for node classification.

To verify the effectiveness of GraphAdapter , we conduct exten-
sive experiments on multiple real-world TAGs including social and
citation networks. GraphAdapter achieves an improvement of 4.7%
over state-of-the-art cascaded GNN-LM methods and 5.4% over
self-supervised GNN-LMs on average, with 30X fewer training pa-
rameters and storage. Moreover, once GraphAdapter is pre-trained,
it can be conveniently fine-tuned for various tasks. Our ablation
analysis shows that the pre-training step consistently improves
the model performance across different graphs. We summarize our
contributions as follows,
• GraphAdapter is a novel approach that harnesses the large lan-
guage models on graph structure data with parameter-efficient
tuning.

• We propose a residual learning procedure to pre-train the GNN
adapter with the LLMs. The pre-training step significantly im-
proves the fine-tuning performance of GraphAdapter .

• We conduct extensive experiments on large-scale TAGs using
state-of-the-art open-sourced large language models (GPT-2 1.5B
[28] and Llama 2 13B [33]). The results demonstrate that Graph-
Adapter can also reap the benefits of a larger model.

2 RELATEDWORK
Modeling text-attributed graphs has attracted much attention in
academia, which requires modeling both textual and structural data.

Modeling semantics and graph structure. Understanding
the semantics is a key part of modeling TAG. With the advent of
Transformers [34], pre-trained language models have made break-
through progress in modeling semantics [6, 43]. These methods
leverage massive unlabeled text through unsupervised methods
like auto-regressive [19] and auto-encoding pre-training [12, 24]
to pre-train Transformers and then fine-tune to downstream tasks.
Since language models have a large number of parameters, fine-
tuning efficiency is low and requires numerous training samples.
Therefore, some work proposed using adapter modules to reduce
the number of fine-tuning parameters. For example, LoRA [14]
trains a sparse matrix appended to the original parameters while
keeping the language model frozen. Some work proposed using

Can GNN be Good Adapter for LLMs? WWW ’24, May 13–17, 2024, Singapore, Singapore

prompts to directly adapt language models to downstream tasks
without fine-tuning. Furthermore, some work proposed prompt
tuning [16, 23], which adds a trainable prompt and only trains
the added prompt during training, greatly reducing the number
of parameters. Another aspect of modeling TAG is modeling the
structural information. With the proposal of GNNs [11], modeling
graph structure achieved remarkable success. Many works [21, 36]
have explored GNN architectures extensively, and these methods
have achieved breakthrough progress in graph structure modeling.

Modeling TAGs. However, despite the success of language mod-
els and GNNs in their respective areas, how to utilize them to model
text-attributed graphs still has many challenges. (1) Cascading
GNN-LM: Directly cascading these two models is straightforward
but has limitations, mainly high computational overhead. Since
GNNs are mostly based on message-passing, they need to compute
representations for many nodes simultaneously. Using language
models to model so many text features requires huge memory
and time costs. To address this, some work [25] proposed freezing
the language model to reduce the computation needed for cas-
cading. Some work [17, 20] proposed neighbor sampling but that
reduces the graph information captured. Therefore, recently some
work tried joint training of LMs and GNNs through knowledge
distillation [26] or Expectation Maximization algorithms [42]. (2)
Self-supervised GNN-LMs: some methods [4, 26] directly super-
vise language model fine-tuning through graph-related tasks, to
help language models better understand the textual information in
text-attributed graphs. The language model is then combined with
GNNs by freezing the language model. This approach demonstrates
the inherent connections between graph structure and text in TAGs.
However, current research in this direction has limitations in that
the LM and graph are separate, and the language model cannot
directly perceive graph information. It also does not utilize the
inherent connections between language and graphs to help GNNs
better learn structural features. (3) LLMs for Graph: With the
breakthrough progress made by LLMs on textual tasks [33, 41], re-
cently many works have emerged exploring how to directly utilize
LLMs to understand text-attributed graphs [3]. For example, by
converting the graph to text [10, 40], or by converting it to a graph
representation as part of a prompt [32]. Some works also explored
using large models to enhance the textual features of text-attributed
graphs [7, 13]. However, this paper is more focused on how to lever-
age the semantic information in text-attributed graphs to help us
model text-attributed graphs. Therefore, this type of method not
be further elaborated.

3 BACKGROUND
Before introducing the proposed method, it’s important to under-
stand some basic concepts and the background of pre-trained lan-
guage models, graph neural networks, and text-attributed graphs.

3.1 Pretrained Language Model
Textual data. Textual data can be formulated as D = {𝑑1, 𝑑2 ...𝑑𝐾 }.
It can be tokenized into a sequence of tokens S = {𝑠1, 𝑠2, ..., 𝑠𝐿},
where 𝑠𝑖 represents a specific token-id. In most cases, the first
token in the sentence (i.e., 𝑠0) is [CLS], indicating the beginning of
this sentence.

Framework of PLMs. A PLM consists of a multi-layer transformer
encoder that takes a sentence S as input and outputs the hidden
states of each token:

Transformer({𝑠0, ..., 𝑠𝐿}) = {ℎ0, ..., ℎ𝐿}, (1)

where ℎ𝑘 is the dense hidden state of 𝑠𝑘 .
Pre-training of PLMs. This paper uses the auto-regression task
as an instance of pre-training, which is commonly applied to auto-
regressive PLMs [29]. Given a sequence S = {𝑠0, ..., 𝑠𝐿}, the goal is
to model the joint probability of the sequence 𝑃 (S).

𝑃 (S) =
𝐿∏
𝑘=1

𝑝 (𝑠𝑖 |𝑠0, ...𝑠𝑘−1) (2)

The transformer block is used to model these conditional proba-
bilities. More specifically, at step 𝑘 (0 < 𝑘 ≤ 𝐿), the transformer
receives {𝑠0 ...𝑠𝑘−1} and outputs their hidden states {ℎ0, ..., ℎ𝑘 }. The
ℎ𝑘 are used to predict the probability distribution of the next token.

𝑝 (𝑠𝑖 |𝑠0, ...𝑠𝑘−1) = 𝑠𝑘 = 𝜎 (Head(ℎ𝑘)) (3)

The model parameters are trained to maximize the likelihood of
𝑝 (S), which is equivalent to minimizing the negative log-likelihood.
Therefore, the loss function is:

L𝐿𝑀 =

𝐿∑︁
𝑘=1

CrossEntropy(𝑠𝑘 , 𝑠𝑘) (4)

Sentence representation. Given a sentence S with length 𝐿, its
sentence representation𝑊 can be obtained by three methods [8, 30]:
(1) first token representation, which uses the hidden state of the
[CLS] token (ℎ𝑖,0) as sentence representation. (2) mean-pooling
representation, which is obtained by mean-pooling of all hidden
states (i.e., Pool({ℎ0 ...ℎ𝐿})). (3) last token representation, which
uses the hidden state of the last token.
PLMs with prompts. Due to the gap between pretraining tasks
and downstream tasks, sentence representation may be hard to
contain all the sentence information, thereby requiring fine-tuning
for specific tasks. To address this issue, some studies utilize prompts
to extract task-specific sentence features [16]. For example, suppose
a S𝑖 is a paper titled “Llama 2: Open Foundation and Fine-Tuned
Chat Models”, and the task is to classify the subject of it belongs.
We can add some prompts to the sentence:

{[𝑇𝑖𝑡𝑙𝑒], 𝑡ℎ𝑖𝑠, 𝑝𝑎𝑝𝑒𝑟, 𝑏𝑒𝑙𝑜𝑛𝑔, 𝑡𝑜,𝑤ℎ𝑖𝑐ℎ, 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡?} (5)

We denote this new sentence with the prompt inserted as S𝑖 |P,
where P represents the newly inserted tokens. We use the hidden
state of the last token as the sentence representation, denoted as
𝑊𝑖 |P. Since the last token is used to predict the next token dis-
tribution in the pre-training stage, it can naturally combine the
inserted prompt information into the original sentence and extract
the prompt-related semantics. Extensive studies [19, 23] show that
using prompts can reduce the gap between PLMs and downstream
tasks and maximize the utilization of knowledge learned by PLMs
during pre-training.

3.2 Graph Neural Network
Graph Neural Networks (GNNs) have achieved remarkable success
in modeling graphs [9, 35]. The message-passing framework is a
commonly used architecture of GNN.

WWW ’24, May 13–17, 2024, Singapore, Singapore Xuanwen Huang, et al.

Graph. Let 𝐺 = {𝑉 ,𝐴} denote a graph, where 𝑉 is the node set
and 𝐴 is the adjacency matrix, with 𝐴𝑖 𝑗 = 1 meaning there is an
edge between node 𝑖 and node 𝑗 . Usually, each node 𝑖 is associated
with a node feature 𝑥0

𝑖
.

Framework of GNN. The message-passing framework takes a set
of node features X = {𝑥0

𝑖
|𝑖 ∈ 𝑉 }, and an adjacency matrix 𝐴 as

input and iteratively captures neighbors’ information via pooling.
More specifically, for a given node 𝑖 ∈ 𝑉 in the 𝑙-th layer of message-
passing, it can be formulated as:

𝑥𝑙𝑖 = 𝑓2 (Pool{𝑓1 (𝑥𝑙−1𝑗 |𝜃𝑙1) | 𝑗 ∈ N𝑖 }, 𝑥𝑖 |𝜃𝑙2) (6)

where Pool{·} is an aggregation function that combines the features
of neighboring nodes, such as mean-pooling. And N𝑖 denotes the
set of neighbors of node 𝑖 . Besides, 𝑓1 (·|𝜃𝑙1) and 𝑓2 (·|𝜃𝑙2) denote two
trainable transformations with parameters 𝜃𝑙1 and 𝜃

𝑙
2 respectively.

Further, we denote an 𝑙𝑚𝑎𝑥 layer message-passing framework as
GNN, formally:

𝑧𝑖 = GNN(𝑥0𝑖 ,X
0, 𝐴|Θ𝑔) (7)

where 𝑧𝑖 = 𝑥
𝑙𝑚𝑎𝑥

𝑖
, and Θ𝑔 represents all the trainable parameters in

the GNN. We use 𝑧𝑖 as the structural representation for node 𝑖 .

3.3 Text-Attributed Graph
Let G = {V,A} denote a text-attributed graph, where V is the
node set and A is the adjacency matrix. Each node 𝑖 ∈ V is
associated with a tokenized textual data, represented by S𝑖 =

{𝑠𝑖,0, ..., 𝑠𝑖,𝐿𝑖 }, which represents the textual data of the node.
Problem Definition: Given a text-attributed graph G and cor-
responding node labels Y = 𝑦𝑖 |𝑖 ∈ N , this paper addresses the
problem of efficiently modeling both the textual data S𝑖 |𝑖 ∈ V and
the structural data in G to predict the node labels Y.

4 METHOD
This section introduces the proposed framework, referred to as
GraphAdapter , which uses GNNs as adapters for LLMs to better
model TAGs.

4.1 Overview
Motivation: In the textual data of TAGs, many structure-related
semantics are hard to infer from context alone. As illustrated in
the example in Figure 1, we can easily infer that this user is “popu-
lar” based on his degree in the social network, but it is difficult to
infer from their description of habits alone. Combining structural
information can enhance language models’ ability to model these
structure-related semantics in TAGs. Meanwhile, the process of
enhancement is learning how to model structure. Therefore, the
proposed method GraphAdapter , which first uses GNN as adapters
for frozen PLMs, to combine structural information with PLMs, and
then pre-trains them through the semantic understanding task on
TAGs.

Language-structure pre-training: In the field of natural lan-
guage processing, pre-training is a common strategy used to self-
supervised enhance language models’ ability for semantic under-
standing, with techniques such as auto-regressive pre-training

(e.g., GPT-2/3 [2, 29], Llama 2 [33], etc.) and auto-encoding pre-
training (e.g., BERT[38], RoBERTa[24], etc.). Following our mo-
tivation, GraphAdapter uses the same pre-training task as these
PLMs. To facilitate comprehension, this section only discusses
GraphAdapter based on auto-regressive pre-training, and further
details on how GraphAdapter is combined with other pre-training
tasks can be found in the appendix. Since the pre-training process
uses the context semantic to supervise structure learning, we refer
to this pre-training as language-structure pre-training.

Framework: The framework of GraphAdapter is shown in Fig-
ure 2 (a). We also show how to fine-tune GraphAdapter on the
downstream tasks in Figure 2 (b), we detail this part in Section
4.3. Given the textual data and graph structural data of a node,
during the pre-training process, Step 1. GNNmodels the node struc-
ture information; Step 2. integrates the structural information with
the corresponding context hidden-states modeled by PLM; and
Step 3. predicts the next token. During this pre-training process,
GraphAdapter can learn rich information. Align GNN with the
language model. During the learning process, the node repre-
sentation obtained by GNN is constantly combined with different
representations modeled by the language model for reasoning, and
the entire process naturally aligns these two. Enhance GNN in
modeling graph structure. During the entire pre-training stage,
the semantic information in the textual data supervises the GNN
to model the graph structural information. Better understanding
the semantics in TAG. GraphAapter can learn how to combine
LLM and GNN to model the semantic information on TAG.

4.2 Pre-training on TAGs
In the training stage, GraphAdapter uses the textual data of each
node in TAG to train GNN.

Pipeline of pre-training: Given a text-attributed graph G, node 𝑖
and its textual data S𝑖 = {𝑠𝑖,0, ..., 𝑠𝑖,𝐿𝑖 }, GraphAdapter uses all the
tokens in S𝑖 as supervision. For the 𝑘-th token, GraphAdapter first
extracts its previous tokens S𝑖,𝑘 = {𝑠𝑖,0, ..., 𝑠𝑖,𝑘−1}. Then, GNNmod-
els node 𝑖’s structure information 𝑧𝑖 . The structure information is
then combined with the previous tokens to predict the probability
distribution of the next token, where the ground truth is token 𝑠𝑖,𝑘 .

Structural representation: GraphAdapter obtains its structural
features 𝑧𝑖 through GNN. Here we use a general GNN based on
the message-passing framework, which continuously aggregates
neighbor features to obtain the new node’s structural information.
For whole process is formalized as:

𝑧𝑖 = GNN(𝑥0𝑖 ,X,A|Θ𝑔) (8)

where 𝑥0
𝑖
and A represent the initial node feature input and adja-

cency matrix in GNN, respectively. This paper used the sentence
representation of the corresponding node as 𝑥0

𝑖
. See more details

about GNN in Section 3.2.

Context hidden-states. GraphAdapter use the pre-trained trans-
former in PLM to encode S𝑖,𝑘 , it is formalized as:

ℎ𝑖,𝑘 = Transformer({𝑠𝑖,0, 𝑠𝑖,1, ..., 𝑠𝑖,𝑘−1}) (9)

Can GNN be Good Adapter for LLMs? WWW ’24, May 13–17, 2024, Singapore, Singapore

[… sports and reading�ŏ�]

GNN
Sentence

representation

Graph Struture

PLM-Transformer

Fuse PLM-
Head

[… sports and] [reading]
For k-th Auto-regression

[… sports and reading�ŏ�]

GNN
Sentence

representation

Graph Struture

PLM-Transformer

Fuse

[based on this profile, this user is ?]

Add prompts
[“… sports and reading�ŏ�”,

based on this profile, this user is ?]

Which account is a
student account

(a) pre-training stage

(b) fine-tuning stage

New-
Head

GNNTrainable block Fuse Frozen block PLM-Transformer/head

Super-
vise

This is a news
account

…sports and
reading…

Downstream
task

Text-attributed Graph

Task-specific prompts
Ground-truth
in this task

0.4
0.2
0.4

Structural
representation

Context
Hidden states

Node
Emedding sport�

reading�
News�

0.1
0.3
0.2

ŏ …

New-Head

same node

Structural
representation

Context
Hidden states

PLM-
Head

Node
Emedding

Residual

Super-
vise

k-th token of node u

Node u

k-th token k-1 th token

Figure 2: Framework of GraphAdapter. In the pre-training stage, Step 1. GNN models the node structure information, Step 2. integrates
the structural information with the corresponding text fragment encoded by LM, and Step 3. predicts the masked token.

Where the Transformer’s parameters are trained in frozen, and
ℎ𝑖,𝑘 is the context hidden-states S𝑖,𝑘 . Note that in the pretraining
stage of PLM, ℎ𝑖,𝑘 is directly used to predict the next token, so
ℎ𝑖,𝑘 contains both the context information and a certain of PLMs’
prediction result.

Fusion block: GraphAdapter next fuse structural representation
into context hidden-states, which is formalized as:

𝑟𝑖,𝑘 = Fusion(ℎ𝑖,𝑘 , 𝑧𝑖 |Θ𝑓 𝑢𝑠𝑒), (10)

The Fusion(∗) function is trainable with parameters Θ𝑓 𝑢𝑠𝑒 . In this
paper, MLPs are used as the structure of fusion. The process in-
volves concatenating ℎ𝑖,𝑘 and 𝑧𝑖 , and then feeding the resulting
vector into MLPs.

Residual connection: the fused 𝑟𝑖,𝑘 contains both structure in-
formation and context information. However, not every token’s
prediction requires the graph structure. For example, in the sen-
tence "This paper focuses on graphs," the word "on" is simply a
fixed collocation and easily inferred by context. Intuitively, words
related to graph structure should be difficult for the language model
to predict based on context. Therefore, the results of pre-trained
language models are reused. We separately calculated the predic-
tion probabilities of the language model alone and the probabilities
that mixed the graph structure and the previous predictions. The
two probabilities are then averaged to obtain the final prediction
result. Formally:

𝑠𝐿𝑀
𝑖,𝑘

= 𝜎 (Head(ℎ𝑖,𝑘)), 𝑠𝐺𝑁𝑁𝑖,𝑘
= 𝜎 (Head(𝑟𝑖,𝑘)) (11)

𝑠𝐴𝐿𝐿
𝑖,𝑘

= (𝑠𝐿𝑀
𝑖,𝑘

+ 𝑠𝐺𝑁𝑁
𝑖,𝑘

)/2 (12)
Where 𝜎 denotes the softmax function. Naturally, if a token 𝑠𝑖,𝑘 can
be accurately predicted by the language model and the correspond-
ing score 𝑠𝐺𝑁𝑁

𝑖,𝑘
is evenly distributed, the overall result remains

correct. Conversely, if the token cannot be predicted by the lan-
guage model, the GraphAdapter needs to predict the correct token
precisely to ensure the final result is correct. This difference leads

the model to naturally focus on tokens originally predicted poorly
by the language model during optimization. It then attempts to
use additional structural data to enhance the overall framework’s
predictive performance.

Optimization: Our goal is to minimize the cross-entropy loss be-
tween the predicted probability distribution and the ground-truth
distribution. Formally,

L𝑖,𝑘 = CrossEntropy(𝑠𝐴𝐿𝐿
𝑖,𝑘

, 𝑠𝑖,𝑘) (13)

min
Θ𝑔,Θ𝑓 𝑢𝑠𝑒

∑︁
𝑖∈𝑉

∑︁
𝑘∈S𝑖

L𝑖,𝑘 (14)

Note, only GNN(∗|Θ𝐺) and Fusion(∗|Θ𝑓 𝑢𝑠𝑒) of GraphAdapter are
trainable in whole pre-training.

GNN as Adapter: In the whole pre-training stage, the GNN com-
bines with the frozen LM’s hidden states outputted from the trans-
former block. The combined hidden states are then input into the
PLM’s prediction head. Thus, the GNN acts as an adapter, altering
the language model’s predictions. Since the hidden states outputted
by the transformer block can be pre-processed and stored in ad-
vance. Therefore, the entire training process only requires training
the GNN. Therefore, GraphAdpater can efficiently pre-train based
on different scales of PLMs.

4.3 Fine-tuning with Prompts
The pipeline is shown in Figure 2 (b). GraphAdapter is pre-trained
by token-level semantic understanding tasks. To better utilize the
learned knowledge of GraphAdapter and the PLMs in downstream
tasks, we further proposed prompt-aware fine-tuning. It inserts
prompts in textual data to get task-specific sentence embedding of
each node. Prompts can transform various downstream tasks on
TAGs into next token prediction. E.g., the task “Which account is a
student account” can be transformed by a next-token prediction task,
“[context], based on this profile, this user is ”. In the pre-training stage,

WWW ’24, May 13–17, 2024, Singapore, Singapore Xuanwen Huang, et al.

Table 1: The performance of different methods across three datasets. Each row corresponds to a specific method, and each column
presents the performance of the models on a particular dataset. The evaluation metric used is accuracy for the Arxiv and Reddit datasets, and
ROC-AUC for Instagram. The LM employed in each method is indicated in parentheses.

Arxiv Instagram Reddit

LM

GNN (Ogb-feature) 0.6980 (0.0013) - -
GNN (RoBERTa) 0.7129 (0.0013) 0.6123 (0.0063) 0.6191 (0.0043)

GNN (RoBERTa+Prop) 0.7067 (0.0011) 0.6138 (0.0117) 0.6198 (0.0036)

GIANT (BERT) 0.7262 (0.0011) 0.5986 (0.0022) 0.6379 (0.0045)

GIANT (BERT+Prop) 0.7252 (0.0012) 0.6029 (0.0123) 0.6348 (0.0039)

GLEM1 (DeBERTa) 0.7550 (0.0024) - -
GLEM (DeBERTa) 0.7355 (0.0034) 0.6166 (0.0056) 0.6228 (0.0060)

GLEM (DeBERTa+Prop) 0.7315 (0.0033) 0.6105 (0.0038) 0.6221 (0.0052)

LLM

MLPs (Llama 2 + Prop) 0.7541 (0.0024) 0.6248 (0.0111) 0.6123 (0.0034)

LoRA (Llama 2 + Prop) 0.7454 (0.0012) 0.5910 (0.0160) 0.5740 (0.0172)

GNN (Llama 2) 0.7305 (0.0020) 0.6221 (0.0112) 0.6320 (0.0041)

GNN (Llama 2+Prop) 0.7336 (0.0018) 0.6312 (0.0051) 0.6324 (0.0033)

Graph2Text (Llama 2 + Prop) 0.7348 (0.0026) 0.6226 (0.0045) 0.6053 (0.0033)

TAPE (GPT-3.5) 0.7672 (0.0007) - -

Ours GraphAdapter (w/o Pre) 0.7648 (0.0020) 0.6351 (0.0077) 0.6369 (0.0025)

GraphAdapter 0.7707 (0.0015) 0.6513 (0.0075) 0.6461 (0.0019)

1performance reported in [42]

GraphAdapter has learned how to utilize the structural information
captured by GNN to enhance the accuracy of next-token predic-
tion, therefore, under the transformed downstream task can better
utilize the learned knowledge from pre-training. Formally, given
textual data S𝑖 of node 𝑖 , we can combine a sequence of tokens with
task-specific prompts behind textual data, namely, S𝑖 |P = [S𝑖 , P],
then we can get its sentence hidden states ℎ𝑖 |P through the trans-
former of PLM. The resulting hidden state is then fused with the
node’s structural representation as node representation in a specific
downstream task.

𝑟𝑖 |P = Fusion(ℎ𝑖 |P, 𝑧𝑖) (15)

This node representation can be used in various tasks. For example,
in the node classification, we can append a new linear transforma-
tion to output the result, i.e., 𝑦𝑖 |P = 𝑓 (𝑟𝑖 |P |𝜃𝑛𝑒𝑤). In fine-tuning
stage, the whole parameters {Θ𝑔,Θ𝑓 𝑢𝑠𝑒 , 𝜃𝑛𝑒𝑤} in GraphAdapter
are trainable.

5 EXPERIMENT
To comprehensively validate that GraphAdapter can mine the in-
trinsic correlation between the textual and structure data in TAGs,
we conduct extensive experiments on three real-world datasets
from diverse domains.

Our experimentation centered on the following five questions:

• Q1: How well is GraphAdapter in modeling TAGs?
• Q2: Whether GraphAdapter can adapt to other PLMs?
• Q3: Are all components comprising GraphAdapter valid?
• Q4: What exactly does GraphAdapter’s pre-training learn?
• Q5: How efficient is GraphAdapter?

5.1 Experiment setup
Dataset andmetrics.We select three public and real-world datasets
used for evaluation: Ogbn-arxiv [15] (shorted as Arxiv), Instagram
[18] and Reddit2. The evaluation task involves node classification.
The metric used for Arxiv and Reddit is accuracy, while for Insta-
gram, it is ROC-AUC. See more details in Appendix A.
Baselines.We compare the proposed GraphAdapter with several
TAG modeling methods. They are LM+MLPs, LM+GNN, GIANT
[4], GLEM [42], Graph2Text [3], LoRA [14] and TAPE [13]. Since
most of these methods can combine with different GNN blocks and
PLMs, and the specific GNN framework is not the key point this
paper focuses on, this paper uses GraphSAGE [11] as an instance
of GNN. And we detail the used PLMs in Table 1. Please refer to
Appendix A.2 for more details.
Prompts. Since GraphAdapter involves prompts, to make a fair
comparison, we also enhance the baselines with prompts (denoted
as “+Prop”). For further details, please refer to the Appendix A.3.
Implementation details. In the experiment, Llama 2 defaulted
to the 13B version, while other language models defaulted to the
large version. For further details, please refer to the Appendix A.4.

5.2 Performance
Q1: How well is GraphAdapter in modeling TAGs?

A1: GraphAdapter can effectively model TAGs and surpass
current state-of-the-art baselines on node classification tasks.
We compare GraphAdapter with 6 state-of-the-art baselines on 3
different real-world datasets to evaluate its effectiveness. As Table
1 shows, the experiment results suggest:
(1) Frozen LLMs are effective on TAGs. In general, frozen LLMs
have an improved performance compared to the previous frozen LM.

2https://convokit.cornell.edu/documentation/subreddit.html

https://convokit.cornell.edu/documentation/subreddit.html

Can GNN be Good Adapter for LLMs? WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 2: The performance of the GraphAdapter based on different LM across three datasets. The evaluation metrics used for these
datasets align with those outlined in Table 1.

Arxiv Instagram Reddit
RoBERTa GPT2 Llama 2 RoBERTa GPT-2 Llama 2 RoBERTa GPT-2 Llama 2

GNN (PLM) 0.7129 (0.0013) 0.7174 (0.0019) 0.7305 (0.0022) 0.6123 (0.0063) 0.6019 (0.0124) 0.6221 (0.0112) 0.6191(0.0043) 0.6282 (0.0036) 0.6320 (0.0041)

GNN (PLM+Prop) 0.7067 (0.0011) 0.6915 (0.0021) 0.7336 (0.0027) 0.6138 (0.0117) 0.6128 (0.0014) 0.6312 (0.0051) 0.6198 (0.0036) 0.6206 (0.0011) 0.6324 (0.0033)

GraphAdapter (w/o Pre) 0.7069 (0.0026) 0.7146 (0.0025) 0.7648 (0.0020) 0.6165 (0.0038) 0.6162 (0.0066) 0.6351 (0.0077) 0.6210 (0.0036) 0.6284 (0.0027) 0.6369 (0.0025)

GraphAdapter 0.7273 (0.0021) 0.7325 (0.0022) 0.7707 (0.0015) 0.6292 (0.0033) 0.6276 (0.0034) 0.6508 (0.0033) 0.6379 (0.0061) 0.6441 (0.0022) 0.6461 (0.0019)

Experiment results show Llama 2 has improved performance on 3
datasets by 1.34% compared to RoBERTa-based methods. LLM can
better combine the information in prompts to extract task-relevant
sentence representations of nodes. As the results show, prompts
can bring a 0.42% improvement on average for LLM, but they could
not improve the performance of LM. Frozen LLMs with prompt can
surpass many GNN-LM methods that require tuning LM. Results
also show that LLMs with prompts can surpass GLEM and GIANT
by 0.43% and 0.79% on average, respectively.
(2) Directly fusing GNN and LLM results in unstable improvements.
Compared to ordinary GNN, GraphAdapter (w/o Pre) only adds
one fusion component to fuse the semantic representation from
the LM and structural representation from the GNN. Experiment
results show that directly fusing language model representations
only brings improvements on Arxiv, but not obviously on other
datasets. Note that the Arxiv training samples are much larger than
the other datasets. This result suggests that training samples may
have an impact on GNNs to understand and effectively incorporate
the representations inferred by LLMs with prompts.
(3) GraphAdapter can effectively combine GNN and LLM, surpass-
ing existing state-of-the-art baselines in terms of performance. The
pre-training effect of GraphAdapter is significant, bringing an aver-
age performance improvement of 1.98% and thus surpassing exist-
ing state-of-the-art baselines. Specifically, GraphAdapter achieves
an improvement of 4.72% over state-of-the-art cascaded GNN-LM
methods and 5.40% over self-supervised GNN-LMs on average. At
the same time, GraphAdapter also surpasses TAPE, another LLM-
based method on Arxiv by 0.4% accuracy improvement.

Q2: Whether GraphAdapter can adapt to other PLMs?
A2: GraphAdapter can be effectively pre-trained based on

RoB-ERTa, GPT-2, and Llama 2, resulting in performance
improvements.We runGraphAapter based on 3 different LMs. The
experiment results are shown in Table 2. GraphAdapter improved
average performance over directly combining GNNs with frozen
PLM by 1.67% on RoBERTa, 1.89% on GPT-2, and 2.77% on Llama
2. Meanwhile, GraphAdapter pre-training brings 1.67%, 1.50%, and
1.02% improvements on RoBERTa, GPT-2, and Llama 2 respectively.
This result fully demonstrates that GraphAdapter is a general
and scalable method. It is worth noting that the pre-training
method of RoBERTa is different from others. GraphAdapter uses
a pre-training task similar to RoBERTa, so there are some slight
differences from the formula in Section 4. The main differences
come from the loss function and languagemodel inputs.We describe
the details of applying GraphAdapter on Roberta in the appendix.

Table 3: The performance of different methods using the
same LMs across three datasets. The evaluation metrics em-
ployed for these datasets align with those described in Table 1.

Arxiv Instagram Reddit

GNN (BERT) 0.7039 (0.0013) 0.5973 (0.0063) 0.6061 (0.0043)

GIANT (BERT) 0.7269 (0.0021) 0.5986 (0.0022) 0.6379 (0.0045)

GraphAdapter (BERT) 0.7264 (0.0012) 0.6156 (0.0032) 0.6366 (0.0034)

GNN (RoBERTa) 0.7129 (0.0013) 0.6123 (0.0063) 0.6191 (0.0043)

GLEM (RoBERTa) 0.7308 (0.0029) 0.6114 (0.0075) 0.6228 (0.0018)

GraphAdapter (RoBERTa) 0.7273 (0.0021) 0.6276 (0.0034) 0.6379 (0.0061)

Under the same PLM, the performance of GraphAdapter
is comparable to the SOTA baselines based on fine-tuning
the PLM. We evaluate the performance between GraphAdapter
and SOTA baselines under the same LM. Since the GLEM adopted
DeBERTa, however, the pre-training code of DeBERTa is not open-
sourced at present. To keep consistent, GraphAdapter and GLEM
both adopt the same RoBERTa-base. As shown in Table 3, the ex-
periment results suggest that methods based on pre-training like
GIANT and GraphAdapter perform better on small datasets like
Instagram and Reddit. Similarly, Roberta-based GraphAdapter out-
performs GLEM by 1.57% and BERT-based GIANT outperforms
GLEM by 1.15% on small datasets. Compared to baselines based on
pre-training, although GIANT fine-tunes the LM, its performance
is 0.51% lower than GraphAdapter on average. Therefore, overall,
even without fine-tuning the LM, the performance of GraphAdapter
is comparable to current state-of-the-art baselines based on fine-
tuning the LM.

5.3 In-depth Analysis.
Q3: Are all components comprising GraphAdapter valid?

A3: As Table 4 shows, removing any component of Grap-
hAdapter results in performance drops. Removing pre-training
leads to a 0.91% drop, demonstrating that GraphAdapter’s improve-
ments indeed come from pre-training. Next, the most significant
performance drop is when we simultaneously remove pre-training
and graph structure in the fine-tuning stage (keeping only self-
loops), which causes a 1.95% drop. This shows having the graph
is crucial for GraphAdapter to work. Removing the task-related
prompt leads to a 0.98% drop, validating our design of aligning pre-
training tasks via prompts. Notably, removing the residual learning
(“w/o Res Label” that is stated in Equation 12) leads to a 1.02% drop
(more than removing pre-training), suggesting that training GNNs
directly on all text may introduce excessive noise and hurt perfor-
mance. Therefore, GraphAdapter indeed benefited from residual

WWW ’24, May 13–17, 2024, Singapore, Singapore Xuanwen Huang, et al.

UP

UP

UP

DROP DROP

(a) Arxiv (c) Reddit(b) Instagram

UP

Figure 3: The performance of GraphAdapter before and after
pre-training, using MLP and GNN as the backbone architec-
tures. The red represents performance without pre-training, while
the blue represents performance after pre-training.

learning, which utilizes language model predictions to select words
more semantically related to the graph.

Q4: What exactly does GraphAdapter’s pre-training learn?
We conduct three comparative experiments to demonstrate what
GraphAdapter pre-training is doing.

(1) GNN can obtain stronger expressive power through
pre-training.We first observe the performance change of GNNs
before and after pre-training, where we directly use the structural
representations from the pre-trained GNN to fine-tune for down-
stream tasks. As Table 5 shows, the pre-trained GNN performs
better on downstream tasks, improving by 0.78% on average. This
demonstrates that GNNs are training their ability to model the
graph structure during pre-training.

(2) Fusion block is learning how to fuse the knowledge
from the language model and GNN during pre-training.We
further explore whether the fusion layer learned useful knowledge
during training. We randomly initialize the parameters in a specific
GraphAdapter’s blocks after pre-trained. As Table 6 shows, initial-
izing the parameters of the fusion layer leads to significant perfor-
mance drops, decreasing by 1.03% on average across 3 datasets. This
result shows that the enhanced knowledge from GNN may need to
be outputted through the matching fusion layer. To further verify
this conjecture, we further reinitialized the parameters of GNN,
and some performance decline can also be observed, decreasing
by 0.82% on average. This is similar to the impact of reinitializing
the fusion layer. The fusion layer alone does not contain much
knowledge. Therefore, these results demonstrate that the fusion
layer can learn how to fuse the knowledge from GNN and language
models.

(3) Graph structure is the basis of pre-training.We further
observe the changes in different base models before and after pre-
training. In this comparative experiment, we keep all the structures
of GraphAdapter , only replacing the GNN block with MLPs of equal
parameter size. As Figure 3 shows, the MLP-based GraphAdapter
shows no significant change before and after pre-training (aver-
age improvement of 0.19%), and even decreases in performance
on Instagram and Reddit (drops of 0.05% and 0.62% respectively).
While the GNN improves notably before and after pre-training
(average improvement of 0.91%). This result suggests that GNN is a
prerequisite for effective pre-training.

These three results demonstrate that GraphAdapter is indeed
learning graph structures via pre-training. This validates that the

Table 4: The performance of GraphAdapter when various
components are removed. The evaluation metrics used for these
tests align with those described above. The term ’w/o’ indicates re-
moving a specific component from the GraphAdapter.

Arxiv Instagram Reddit

w/o Pretraining 0.7648 (0.0020) 0.6392 (0.0086) 0.6369 (0.0025)

w/o Graph structure 0.7604 (0.0024) 0.6346 (0.0074) 0.6147 (0.0012)

w/o Res label 0.7605 (0.0013) 0.6408 (0.0130) 0.6363 (0.0036)

w/o task-specific prompt 0.7594 (0.0030) 0.6364 (0.0073) 0.6430 (0.0021)

GraphAdapter 0.7707 (0.0015) 0.6513 (0.0075) 0.6461 (0.0019)

Table 5: The performance changes of the GNN block in
GraphAdapter before and after pre-training. Here, “w/o Pre-
training” signifies no pre-training, while “w Pretraining” indicates
the opposite.

Arxiv Instagram Reddit

GNN w/o Pretraining 0.7305 (0.0020) 0.6181 (0.0112) 0.6320 (0.0041)

GNN w Pretraining 0.7335 (0.0024) 0.6294 (0.0038) 0.6410 (0.0027)

Table 6: The performance of GraphAdapter after ran-
domly initializing some blocks. Here, ”Re-init” represents re-
initialization.

Arxiv Instagram Reddit

Re-init All 0.7648 (0.0020) 0.6392 (0.0086) 0.6369 (0.0025)

Re-init GNN 0.7680 (0.0022) 0.6390 (0.0050) 0.6364 (0.0026)

Re-init Fusion 0.7562 (0.0011) 0.6431 (0.0024) 0.6378 (0.0022)

GraphAdapter 0.7707 (0.0015) 0.6513 (0.0075) 0.6461 (0.0019)

pre-training of GraphAdapter is reasonable and effective, and fur-
ther supports the motivation of this paper.

Furthermore, we investigate the performance ofGraphAdapter with
different GNN blocks (see Appendix A.3) and conduct more detailed
ablation studies (see Appendix B.1). Additionally, we analyze and
report the efficiency of GraphAdapter (see Appendix B.3) to answer
the Q5. Moreover, we conduct a case study on Arxiv to further
demonstrate the advantages of the proposed method (see Appendix
B.4).

6 CONCLUSION
This paper proposes GraphAdapter to harness LLMs for TAGs with-
out fine-tuning. A GNN adapter is trained to reduce LLM next-word
errors on node texts. This adapts LLMs for graphs efficiently. Across
node classification tasks, GraphAdapter improves accuracy by 5%
over baselines. We validate with RoBERTa, GPT-2, and Llama 2,
efficiently leveraging LLMs for interconnected text-graph data.

ACKNOWLEDGMENTS
This work is supported by Natural Science Foundation of China
(No.62322606).

Can GNN be Good Adapter for LLMs? WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES
[1] Claude Berge. 2001. The theory of graphs. In Courier Corporation.
[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. In NeurIPS’20, Vol. 33.
1877–1901.

[3] Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei,
Shuaiqiang Wang, Dawei Yin, Wenqi Fan, Hui Liu, et al. 2023. Exploring the
potential of large language models (llms) in learning on graphs. In arXiv preprint
arXiv:2307.03393.

[4] Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang,
Olgica Milenkovic, and Inderjit S Dhillon. 2021. Node feature extraction
by self-supervised multi-scale neighborhood prediction. In arXiv preprint
arXiv:2111.00064.

[5] Courtney D Corley, Diane J Cook, Armin R Mikler, and Karan P Singh. 2010. Text
and structural data mining of influenza mentions in web and social media. In
International journal of environmental research and public health, Vol. 7. 596–615.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
pre-training of deep bidirectional transformers for language understanding. In
arXiv preprint arXiv:1810.04805.

[7] Keyu Duan, Qian Liu, Tat-Seng Chua, Shuicheng Yan, Wei Tsang Ooi, Qizhe Xie,
and Junxian He. 2023. Simteg: A frustratingly simple approach improves textual
graph learning. In arXiv preprint arXiv:2308.02565.

[8] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. Simcse: simple contrastive
learning of sentence embeddings. In arXiv preprint arXiv:2104.08821.

[9] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. 2018.
Predict then propagate: Graph neural networks meet personalized pagerank. In
arXiv preprint arXiv:1810.05997.

[10] Jiayan Guo, Lun Du, and Hengyu Liu. 2023. GPT4Graph: can large language
models understand graph structured Data? An Empirical Evaluation and Bench-
marking. In arXiv preprint arXiv:2305.15066.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS’17, Vol. 30.

[12] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2020. De-
berta: decoding-enhanced bert with disentangled attention. In arXiv preprint
arXiv:2006.03654.

[13] Xiaoxin He, Xavier Bresson, Thomas Laurent, and BryanHooi. 2023. Explanations
as Features: LLM-Based Features for text-attributed graphs. In arXiv preprint
arXiv:2305.19523.

[14] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. In arXiv preprint arXiv:2106.09685.

[15] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: datasets
for machine learning on graphs. In NeurIPS’20, Vol. 33. 22118–22133.

[16] Ting Jiang, Jian Jiao, Shaohan Huang, Zihan Zhang, Deqing Wang, Fuzhen
Zhuang, Furu Wei, Haizhen Huang, Denvy Deng, and Qi Zhang. 2022. Prompt-
bert: improving bert sentence embeddings with prompts. In arXiv preprint
arXiv:2201.04337.

[17] Bowen Jin, Wentao Zhang, Yu Zhang, Yu Meng, Xinyang Zhang, Qi Zhu, and
Jiawei Han. 2023. Patton: language model pretraining on text-Rich networks. In
arXiv preprint arXiv:2305.12268.

[18] Seungbae Kim, Jyun-Yu Jiang, Masaki Nakada, Jinyoung Han, and Wei Wang.
2020. Multimodal post attentive profiling for influencer marketing. In WWW’20.
2878–2884.

[19] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for
parameter-efficient prompt tuning. In arXiv preprint arXiv:2104.08691.

[20] Chaozhuo Li, Bochen Pang, Yuming Liu, Hao Sun, Zheng Liu, Xing Xie, Tianqi
Yang, Yanling Cui, Liangjie Zhang, and Qi Zhang. 2021. Adsgnn: behavior-graph
augmented relevance modeling in sponsored search. In SIGIR’21. 223–232.

[21] Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. 2021. Training
graph neural networks with 1000 layers. In ICML’21. 6437–6449.

[22] Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: optimizing continuous
prompts for generation. In arXiv preprint arXiv:2101.00190.

[23] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang,
and Jie Tang. 2021. P-tuning v2: prompt tuning can be comparable to fine-tuning
universally across scales and tasks. In arXiv preprint arXiv:2110.07602.

[24] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. In arXiv preprint arXiv:1907.11692.

[25] Zhenghao Liu, Chenyan Xiong, Maosong Sun, and Zhiyuan Liu. 2019. Fine-
grained fact verification with kernel graph attention network. In arXiv preprint
arXiv:1910.09796.

[26] Costas Mavromatis, Vassilis N Ioannidis, Shen Wang, Da Zheng, Soji Adeshina,
Jun Ma, Han Zhao, Christos Faloutsos, and George Karypis. 2023. Train your
own GNN teacher: graph-aware distillation on textual graphs. In arXiv preprint
arXiv:2304.10668.

[27] Mark EJ Newman, Duncan J Watts, and Steven H Strogatz. 2002. Random graph
models of social networks. In Proceedings of the national academy of Sciences,
Vol. 99. 2566–2572.

[28] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. In OpenAI.

[29] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. In OpenAI.

[30] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: sentence embeddings
using siamese bert-networks. In arXiv preprint arXiv:1908.10084.

[31] Yu Sun, ShuohuanWang, Yukun Li, Shikun Feng, Hao Tian, HuaWu, and Haifeng
Wang. 2020. Ernie 2.0: a continual pre-training framework for language under-
standing. In AAAI’20, Vol. 34. 8968–8975.

[32] Yijun Tian, Huan Song, Zichen Wang, Haozhu Wang, Ziqing Hu, Fang Wang,
Nitesh V Chawla, and Panpan Xu. 2023. Graph neural prompting with large
language models. In arXiv preprint arXiv:2309.15427.

[33] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. In arXiv
preprint arXiv:2307.09288.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS’17, Vol. 30.

[35] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. In arXiv preprint
arXiv:1710.10903.

[36] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks?. In arXiv preprint arXiv:1810.00826.

[37] Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal,
Amit Singh, Guangzhong Sun, and Xing Xie. 2021. GraphFormers: GNN-nested
transformers for representation learning on textual graph. In NeurIPS’21, Vol. 34.
28798–28810.

[38] Yiping Yang and Xiaohui Cui. 2021. Bert-enhanced text graph neural network
for classification. In Entropy, Vol. 23. 1–1.

[39] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In KDD’18. 974–983.

[40] Shuzhou Yuan and Michael Färber. 2023. Evaluating generative models for
graph-to-text generation. In arXiv preprint arXiv:2307.14712.

[41] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding,
Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b: an open
bilingual pre-trained model. In arXiv preprint arXiv:2210.02414.

[42] Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and
Jian Tang. 2022. Learning on Large-scale text-attributed graphs via variational
inference. In arXiv preprint arXiv:2210.14709.

[43] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and
Antonio Torralba. 2019. Semantic understanding of scenes through the ade20k
dataset. In IJCV’19, Vol. 127. 302–321.

A EXPERIMENT SETTING

Table 7: Statistics of experiment datasets.

Dataset # Nodes # Edges # Tokens Split ratio (%) #Class Metric
Arxiv 169,343 1,166,243 35,920,710 54/18/28 40 Accuracy

Instagram 11,339 144,010 579,263 10/10/80 2 ROC-AUC
Reddit 33,434 198,448 6,748,436 10/10/80 2 Accuracy

A.1 Dataset Details
We select three public and real-world datasets used for evaluation.
Table 7 shows detailed statistics of these datasets. Below are the
details of these datasets:
Arxiv. Ogbn-Arxiv (shorted as Arxiv), is a citation network where
edges represent citation relationships, nodes represent papers and
the text attribute is the abstracts of papers. The task on this graph
is to predict paper subjects. This paper uses the public partition,
ground truth, and text information provided by OGB[15].
Instagram. Instagram is a social network where edges represent
following relationships, nodes represent users, and the prediction
task is to classify commercial and normal users in this network.

WWW ’24, May 13–17, 2024, Singapore, Singapore Xuanwen Huang, et al.

The original dataset for Instagram is provided by [18]. Since the
original dataset did not contain graph information, we obtained
users’ follow lists, personal introductions, and tags for commercial
users through Instagram’s public API 3.
Reddit. Reddit is also a social network where each node denotes a
user, the node features are the content of users’ historically pub-
lished subreddits, and edges denote whether two users have replied
to each other. The prediction task is to classify whether a user
is in the top 50% popular (average score of all subreddits). It is
constructed on a public dataset 4 that collected replies and scores
from Reddit users. The node text feature of this graph is the user’s
historical post content (limited to the last three posts per user). We
divided users into popular and normal categories based on their
average score of history posts, with users whose average score is
higher than the median considered popular and others considered
normal.

A.2 Baselines
We compare the proposed GraphAdapter with several state-of-the-
art TAG modeling methods.
• GNN-based methods: This method directly combines different
frozen PLM with GNNs to model TAGs. Since the specific GNN
framework is not the key point this paper focuses on, this paper
uses GraphSAGE [11] as an instance of GNN.

• LM-based methods: we select GIANT [4], and GLEM [42] as
baseline. GIANT uses self-supervised tasks to finetune PLM. Then
incorporates the fine-tuned PLM and GNN to model TAG. GLEM
jointly trains PLM and GNN. Note that GIANT is based on BERT,
and GLEM uses DeBERTa. Considering PLMs have a high influ-
ence on performance, we also compare GraphAdapter with them
under the same PLM.

• LLM-based methods: There are a few LLM-based methods that
are suitable in our setting. Therefore, we select TAPE [13] as
the LLM-based baseline. This method, due to its need to obtain
the interpretation of the text graph through GPT-3.5 and only
the interpretation data on Arxiv is published. Therefore, we only
report the results of this method on Arxiv. Besides, we also extend
MLPs, Graph2Text [3], and LoRA [14] to our experiment setting.
Graph2Text directly incorporates the textual data of the 1-hop
neighbors of a node to model the graph structure. For example, “It
is a paper node, its abstract is represented as XXX, and the abstracts
of its cited papers are represented as follows: 1. YYY, 2. ZZZ.”

Since many baseline methods involve GNN components, which
are mostly optional, and considering that different GNNs have
different performances. To make a fair comparison and without loss
of generality, all GNNs used in all baselines are fixed to GraphSAGE,
which is a classic and general GNN model.

A.3 Prompts
According to the downstream task and graph information, this
article has designed simple prompts for each dataset. As shown
in Table 8. It should be noted that because PLMs are sensitive to
prompts, different prompts may result in significant performance
3https://developers.facebook.com/docs/graph-api
4https://convokit.cornell.edu/documentation/subreddit.html
differences. However, how to find suitable prompts is not the focus
of this paper, so no search for prompts is conducted.

Most baselines rely on the sentence representations obtained
from the LM. For instance, GNN+LM uses the sentence represen-
tation as a node feature. In baselines utilizing BERT or RoBERTa,
we append the same prompts used in the original text to obtain
prompt-aware sentence representations. When employing Llama 2,
we use the same prompt and utilize the last token as the sentence
representation.

Table 8: Detailed prompts on three datasets.

Dataset Node feature prompts

Arxiv {ABSTRACT}

This is a paper’s abstract:
{ABSTRACT}.
Question: Based on the abstract above, this paper is published on
___ subject on Arxiv. Answer:

Instagram {PROFILE}

This is a user’s profile is:
{PROFILE}
Question: Based on the profile provided, this account is a
___ (answer in one word) account on Instagram. Answer:

Reddit {LAST 3 POSTS }

This is a user on Reddit, his last 3 posts are:
{LAST 3 POSTS}.
Question: Based on the given posts, the style of this user is
___ (answer in one word). Answer:

A.4 Implementation Details
We independently pre-trained GraphAdapter on three datasets. The
GNN used in the pre-training process was a 2-layer GraphSAGE,
and the fusion layer used a 2-layer MLP. The pre-training was
conducted for 50 rounds, and we used language model techniques
such as silt activation function, layer-norm, and warm-up. The
hidden side of GNN in GraphAdapter is set to 128, 64, and 128 on
Arxiv, Instagram, and Reddit specifically.

When using BERT or RoBERTa with GraphAdapter, there are
some modifications to the GraphAdapter pipeline. Since these lan-
guage models (LMs) utilize a mask-prediction task, we modify the
input of S𝑖,𝑘−1 = {𝑠𝑖, 0...𝑠𝑖,𝑘−1, [𝑚𝑎𝑠𝑘], 𝑠𝑖,𝑘+1 ...} in Equation 9. Ad-
ditionally, unlike based auto-regressivemodels, which use all tokens
in pretraining, GraphAdapter based on BERT and RoBERTa only
mask 20% of tokens and pre-trained by their corresponding labels.

B EXPERIMENT RESULT
B.1 Ablation Studies
We also conduct experiments that isolate and specifically compare
the contributions of the base model and the fusion of the graph-
language model, aiming to enhance the robustness ofGraphAdapter .
As shown in Table 10, the ranking of contributions from GNNs and
LLMs varies across datasets. However, fusing GNNs and LLMs
can achieve better performance in most cases. GraphAdapter not
only efficiently combines GNNs and LLMs but also enhances their
performance through next-token prediction pre-training.

Additionally, we investigate the effect of different GNNs with
the same LM. In this experiment, we fix the LM as Llama 2 13B and
compare the performance of GraphAdapter with different GNN
blocks, both in pre-training and fine-tuning. We discovered that
the original attention mechanism in Graph Attention Networks
(GAT) is not effective for the pre-training of GraphAdapter. How-
ever, we found that a dot-product-based mechanism [3] yielded
positive results. Consequently, we utilized a modified version of

https://developers.facebook.com/docs/graph-api
https://convokit.cornell.edu/documentation/subreddit.html

Can GNN be Good Adapter for LLMs? WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 9: Performance of GraphAdapter with various GNN blocks. Here we fix LM as Llama 2 13B.

Arxiv Instagram Reddit
GNN Block GAT* SAGE GAT* SAGE GAT* SAGE

Only GNN 0.7534 (0.0016) 0.7305 (0.0020) 0.6292 (0.0055) 0.6221 (0.0112) 0.6495 (0.0031) 0.6320 (0.0041)

GraphAdapter(w/o pre) 0.7621 (0.0012) 0.7648 (0.0020) 0.6490 (0.0045) 0.6351 (0.0077) 0.6505 (0.0070) 0.6369 (0.0025)

GraphAdapter 0.7663 (0.0016) 0.7707 (0.0015) 0.6545 (0.0034) 0.6513 (0.0075) 0.6694 (0.0041) 0.6461 (0.0019)

Table 10: Results of additional ablation studies on
GraphAdapter. “r Fusion” indicates replacing the Fu-
sion component with sum-pooling, while “o” means using
only a specific component.

Arxiv Instagram Reddit

r Fusion 0.7698 (0.0024) 0.6450 (0.0080) 0.6361 (0.0028)

o GNN 0.7335 (0.0024) 0.6294 (0.0038) 0.6410 (0.0027)

o LLM+Prompt 0.7618 (0.0019) 0.6346 (0.0044) 0.6092 (0.0026)

GraphAdapter 0.7707 (0.0015) 0.6513 (0.0075) 0.6461 (0.0019)

Table 11: Running time of different methods on Arxiv using
one Nvidia A800 80GB. Since different methods use different PLM,
we also report the number of parameters for the PLM (decoded as “#
para”) and the number of trainable parameters (“# trainable”).

GIANT GLEM GraphAdapter

PLM BERT DeBERTa-Large Llama 2-13B
para of PLM 110M 139M 13B

trainable in Pre 110M - 3M
trainable in Fine 0.7M 139M 2M

Pre-process - - 192 min
Pre-training 341 min - 312 min
Fine-tuning 1 min 612 min 1 min

Total time costs 342 min 612 min 505 min

GAT, denoted as GAT*, and proposed this result to inspire future
works. As Table 9 shows, the pre-training of GraphAdapter is also
suitable for attention-based GNN.

B.2 Analysis of Prompt
We further investigated GraphAdapter’s stability with regard to
prompts. We observed the performance of GraphAdapter based
on different prompts. As shown in Tables 12, 13, and 14, task-
related prompts significantly enhance the capability of large lan-
guage models (LLMs) to handle text-as-graphs (TAGs). Comparing
GraphAdapter (w/o pre) with LLMs+MLPs, it is evident that graph
information is beneficial for prompts in most cases. Simultaneously,
GraphAdapter achieves additional improvements on top of prompts,
demonstrating that the pretraining of GraphAdapter indeed facili-
tates the integration of graph information and prompts. Therefore,
GraphAdapter stands out as a stable method suitable for different
prompts

B.3 Efficient
Comparing time complexities of different methods is challenging
due to varying compatible base language models. Therefore, we
estimate time complexities as follows: Inference time/space com-
plexity for a single node for the language model is 𝑇𝑖𝑛𝑓 𝑒𝑟 and
𝐽𝑖𝑛𝑓 𝑒𝑟 , and training time/space complexity is𝑇𝑡𝑟𝑎𝑖𝑛 and 𝐽𝑡𝑟𝑎𝑖𝑛 . Com-
plexity for non-linear transformations of PLM representations is
𝑇𝑀𝐿𝑃 and 𝐽𝑀𝐿𝑃 . GIANT’s complexity is equivalent to the time re-
quired for fine-tuning the PLM, i.e., 𝑂 (𝑁 ×𝑇𝑡𝑟𝑎𝑖𝑛) for training and
𝑂 (𝑁 × 𝑇𝑖𝑛𝑓 𝑒𝑟) for inference. GLEM has a similar complexity to
GIANT. Our approach involves a single inference pass of PLMs,
after which all operations are independent of PLMs. GraphAdapter
only uses the processed representation to train GNN, resulting in
𝑂 (|𝑆𝑎𝑙𝑙 | ∗ 𝑇𝐺𝑁𝑁) complexity. |𝑆𝑎𝑙𝑙 | is the total number of train-
ing tokens in the TAGs. Hence, our total complexity is 𝑂 (𝑁 ×
𝑇𝑖𝑛𝑓 𝑒𝑟 + |𝑆𝑎𝑙𝑙 | ×𝑇𝐺𝑁𝑁). Our primary advantage is independence
from 𝑇𝑡𝑟𝑎𝑖𝑛 , and 𝑇𝑖𝑛𝑓 𝑒𝑟 can be accelerated by many methods. Con-
sidering larger language models where 𝑇𝑡𝑟𝑎𝑖𝑛 » 𝑇𝐺𝑁𝑁 , our ap-
proach holds a significant advantage. In terms of space complexity,
our approach doesn’t demand loading language model parameters
during training, resulting in 𝑂 (𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 × 𝐽𝑀𝐿𝑃) for Graph com-
pared to 𝑂 (𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 × 𝐽𝐺𝑁𝑁) for methods involving fine-tuning.
Generally, 𝐽𝑃𝐿𝑀 » 𝐽𝐺𝑁𝑁 , allowing GraphAdapter to accommodate
larger batch sizes in memory-restricted GPU environments. We
also report efficiency comparisons for reproducibility purposes in
Table 11.

B.4 Case Studies
We presented three cases in Table 15, considering different scenar-
ios: 1. Node text acting as a distractor, 2. Graph features acting as
distractors, 3. Neither the graph nor the text providing a strong
signal. We denote these situations as Case A, Case B, and Case C,
respectively. As shown in the cases, GraphAdapter without pretrain-
ing is effective when the text acts as a distractor (Case A, correct),
but it struggles when the graph features are distracting (Case B,
incorrect) due to over-reliance on graph information. After pre-
training, GraphAdapter can more flexibly combine graph structural
features and text features, enabling it to make judgments based
on either graph or text information. Moreover, it can even make
correct judgments on some very rare samples where neither the
graph nor the text exhibits strong features. This indicates that pre-
trained GraphAdapter effectively utilizes the potential correlations
between these two types of information.

WWW ’24, May 13–17, 2024, Singapore, Singapore Xuanwen Huang, et al.

Table 12: Performance of different models with different prompts on Arxiv. Here the adopted LM is Llama 2-13B.

LLM+MLP GraphAdapter (w/o Pre) GraphAdapter

“Question: Based on the abstract above, this paper is published on
___ subject on Arxiv. Answer:” 0.7541 (0.0024) 0.7648 (0.0020) 0.7707 (0.0015)

“Question: Please predict the subject it belongs to based on
the abstract of this paper, please answer directly. Answer: ” 0.7522 (0.0021) 0.7657 (0.0019) 0.7719 (0.0025)

“Question: This paper is __. Answer: ” 0.7381 (0.0021) 0.7554 (0.0026) 0.7581 (0.0028)

“Question: I like __ apple. Answer: ” 0.7314 (0.0010) 0.7478 (0.0017) 0.7559 (0.0017)

None 0.7335 (0.0030) 0.7561 (0.0014) 0.7607 (0.0039)

Table 13: Performance of different models with different prompts on Instagram. Here the adopted LM is Llama 2-13B.

LLM+MLP GraphAdapter (w/o Pre) GraphAdapter

“Question: Based on the profile provided, this account is a
___ (answer in one word) account on Instagram. Answer:” 0.6248 (0.0111) 0.6351 (0.0077) 0.6513 (0.0075)

“Based on the profile provided, please answer the type of
this account(answer in one word). Answer:” 0.6325 (0.0098) 0.6427 (0.0044) 0.6562 (0.0031)

“Question: This account is a __. Answer: ” 0.6298 (0.0097) 0.6388 (0.0100) 0.6392 (0.0065)

“Question: This user likes __ apple. Answer: ” 0.6161 (0.0083) 0.6299 (0.0107) 0.6308 (0.0047)

None 0.6203 (0.0071) 0.6306 (0.0052) 0.6378 (0.0055)

Table 14: Performance of different models with different prompts on Reddit. Here the adopted LM is Llama 2-13B.

LLM+MLP GraphAdapter (w/o Pre) GraphAdapter

“Question: Based on the given posts, the style of this user is
___ (answer in one word). Answer:” 0.6123 (0.0034) 0.6369 (0.0025) 0.6461 (0.0019)

“Based on the given posts, please answer the
popularity of this user. Answer: ” 0.6019 (0.0021) 0.6324 (0.0033) 0.6380 (0.0031)

“Question: This user is __. Answer: ” 0.6117 (0.0032) 0.6377 (0.0022) 0.6446 (0.0021)

“Question: This user likes __ apple. Answer: ” 0.6103 (0.0055) 0.6359 (0.0044) 0.6413 (0.0021)

None 0.6201 (0.0020) 0.6354 (0.0014) 0.6420 (0.0024)

Table 15: Three cases from the Ogbn-Arxiv dataset. LLM + MLP only utilizes abstract to predict paper’s subjection, and make a
wrong prediction on Case A and Case B. GraphAdapter (w/o Pre) can utilize both graph information and textual data, but also
make a wrong prediction on Case B and Case C. After pretraining, GraphAdapter can make an accurate prediction on all cases.

Case A Case B Case C

Feature
Title Text classification with

pixel embedding

Informative Image Captioning
with External Sources of
Information

A Re-evaluation of Knowledge
Graph Completion Methods

Abstract

Mentioned
3x"convolutional",
5x"kernel" 5X”3D”,
but only
2x"Text classification".

Focus on “image caption” Focus on “Knowledge
Graph Completion”

Citation cited many
NLP papers.

cited 5+ papers
from AAAI, and 5 papers
about “Language”

cited many “Machine Learning”
and “Computation and
Language” papers.

Predict
LLM+MLP Computer Vision Computation and Language Information Retrieval

GraphAdapter (w/o Pre) Computation and Language Computer Vision Machine Learning
GraphAdapter Computation and Language Computation and Language Computation and Language
Ground truth Computation and Language Computation and Language Computation and Language

	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Pretrained Language Model
	3.2 Graph Neural Network
	3.3 Text-Attributed Graph

	4 method
	4.1 Overview
	4.2 Pre-training on TAGs
	4.3 Fine-tuning with Prompts

	5 Experiment
	5.1 Experiment setup
	5.2 Performance
	5.3 In-depth Analysis.

	6 CONCLUSION
	References
	A Experiment setting
	A.1 Dataset Details
	A.2 Baselines
	A.3 Prompts
	A.4 Implementation Details

	B Experiment Result
	B.1 Ablation Studies
	B.2 Analysis of Prompt
	B.3 Efficient
	B.4 Case Studies

