
Towards More Efficient Property Inference Attacks on
Graph Neural Networks

Hanyang Yuan1,2,4†‡, Jiarong Xu2∗, Renhong Huang1
Mingli Song1,4‡, Chunping Wang3, Yang Yang1

1Zhejiang University, 2Fudan University, 3Finvolution Group
4Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security

{yuanhanyang, renh2, brooksong, yangya}@zju.edu.cn
jiarongxu@fudan.edu.cn, wangchunping02@xinye.com

Abstract

Graph neural networks (GNNs) have attracted considerable attention due to their
diverse applications. However, the scarcity and quality limitations of graph data
present challenges to their training process in practical settings. To facilitate the
development of effective GNNs, companies and researchers often seek external
collaboration. Yet, directly sharing data raises privacy concerns, motivating data
owners to train GNNs on their private graphs and share the trained models. Un-
fortunately, these models may still inadvertently disclose sensitive properties of
their training graphs (e.g., average default rate in a transaction network), leading
to severe consequences for data owners. In this work, we study graph property
inference attack to identify the risk of sensitive property information leakage from
shared models. Existing approaches typically train numerous shadow models for
developing such attack, which is computationally intensive and impractical. To
address this issue, we propose an efficient graph property inference attack by lever-
aging model approximation techniques. Our method only requires training a small
set of models on graphs, while generating a sufficient number of approximated
models for attacks. To reduce errors while enhancing the diversity of approxi-
mated models, we adopt a data-centric perspective to theoretically analyze the
error bounds of model approximation and introduce edit distance as a measure of
diversity. The joint optimization of errors and diversity is subsequently formulated
as an efficiently solvable programming problem. Extensive experiments across
six real-world scenarios demonstrate our method’s substantial improvement, with
average increases of 2.7% in attack accuracy and 5.6% in ROC-AUC, while being
6.5× faster compared to the best baseline.

1 Introduction

Graph data, encapsulating relationships between entities across various domains such as social
networks, molecular networks, and transaction networks, holds immense value [1–3]. Graph neural
networks (GNNs) have proven effective in modeling graph data [4–6], yielding promising results
across diverse applications, including recommender systems [7], molecular prediction [8, 9], and
anomaly detection [10]. While training high-quality GNN models may necessitate a substantial
amount of data, graphs may be scarce or of low quality in practice [11, 12], prompting companies
and researchers to seek additional data from external sources [13].
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However, directly obtaining data from other sources is often difficult due to privacy concerns [14,
15]. As an alternative, sharing models rather than raw data has become increasingly common [13].
Typically, data owners train a model on their own data and subsequently release it to the community
or collaborators [16–20]. For instance, a larger bank may train a fraud detection model on its extensive
transaction network and share it with partners, allowing them to use their own customer data to
identify risks.

Despite the benefits, this model-sharing strategy sometimes remains vulnerable to data leakage risks.
Given access to the released model, one may infer sensitive properties of the data owner’s graph,
which are not intended to be shared. In the context of releasing a fraud detection model, if an
adversarial bank can determine the average default rate of all customers in the transaction network,
the data owner bank’s financial status can potentially be revealed. Another example is releasing
a recommendation model trained on a company’s product network [21]. If a competitor can infer
the distribution of co-purchase links between different products, he may determine which items are
frequently promoted together and deduce the company’s marketing tactics. Such attacks are possible
because released models may inadvertently retain and expose sensitive information from the training
data [22, 23]. In this work, we refer to such sensitive information related to the global distribution
in a graph as graph sensitive properties, and we aim to investigate the problem of graph property
inference attack.

Previous property inference attacks [22–25] primarily focus on text or image data, assuming models
trained on different properties exhibit differences in parameters or outputs. For GNNs modeling
graph data, the inherent relationships and message-passing mechanisms can magnify distribution bias
[26], making them more vulnerable to attacks. Although a few studies extend property inference
to graphs and GNNs [20, 21, 27], they typically involve creating shadow models that replicate the
released model’s architecture and are trained on shadow graphs with varying sensitive properties.
The parameters or outputs of shadow models are used to train an attack model to classify the property
of the data owner’s graph. A major limitation of these attacks is the need to train a large number of
shadow models (e.g., 4,096 models [22], 1,600 models [27]), resulting in significant computational
costs and low efficiency.

In this paper, we aim to explore whether it is feasible to avoid training a large number of shadow
models and design an efficient yet effective graph property inference attack. Our key insight is to
utilize model approximation as a replacement for training numerous shadow models. For a given
dataset and a model trained on it, when the training data changes (e.g., removing a sample), model
approximation allows the efficient estimation of new model parameters for the updated dataset without
retraining. This technique, often called unlearning [28–31], enables us to train fewer models and
thereby reduce the total attack cost. Specifically, after training models on a small set of graphs, we
perturb each graph to alter sensitive properties (e.g., changing the number of nodes corresponding
to high default rate users). We then utilize model approximation to generate a sufficient number
of corresponding approximated models, which are further used to train the attack model. Figure 1
illustrates our approach compared to the traditional attack.

While the intuition is straightforward, achieving this goal is non-trivial. Firstly, if the errors in
model approximation are too large, the approximated shadow models may not effectively reflect
the differences in graph properties, thus worsening attack performance. To mitigate this issue, we
theoretically discover that different perturbations to graphs can result in varying approximation
errors. This inspired us to design a mechanism for selecting approximated shadow models with lower
errors. Secondly, it is also important to ensure the diversity of approximated models, which implies a
broader range of training samples for the attack model, thus enhancing the attack’s generalization
capability. To achieve this, we designed an efficient diversity enhancement mechanism comprising
structure-aware sampling and edit-distance-based perturbations. We combine the optimization of
diversity and approximation errors into an integer programming problem, which is efficiently solvable.
The contributions of this paper are summarized as follows:

• We propose an efficient and effective graph property inference attack via model approximation.

• We theoretically derive an error bound for GNN approximation, which aids in selecting approxi-
mated shadow models with lower errors.

• We design an efficient diversity enhancement mechanism, incorporating edit distance to measure
diversity. The combined optimization of diversity and approximation errors is formulated and
solved as a quadratic integer programming problem.
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• Experiments on six real-world scenarios demonstrate the efficiency and effectiveness of our
proposed attack method. On average, existing attacks require training 700 shadow models to
achieve 66.7% accuracy and 62.9% ROC-AUC, whereas our method trains only 66.7 models and
obtains others by approximation, achieving 69.0% attack accuracy and 66.4% ROC-AUC.

2 Problem Definition

The scenario of a graph property inference attack first involves a data owner who trains a GNN model
using his graph data, referred to as the target model and target graph in the following text. Once
trained, the target model’s parameters or output posterior probabilities can be released in communities
[16, 18]. For example, the data owner can upload the pre-trained parameters to GitHub [17, 19] to
facilitate downstream tasks. Or he may upload the posterior probabilities from a recommender system
to a third-party online optimization solver [21], such as Gurobi *. Collaborative machine learning is
another potential attack scenario [20]. For instance, consider two banks aiming to collaboratively
train a fraud detection model. While sharing raw transaction networks poses risks to privacy and
commercial confidentiality, they can employ model-sharing strategies [13].

With access to the target model, curious users may launch inference attacks to obtain some sensitive
properties of the target graph, which can reveal secrets not intended to be shared. For example,
the ratio of co-purchase links between particular products in a product network may relate to the
promoting tactics of a sales company, or the average default rate in a transaction network may reveal
the financial status of a bank. Such confidential information may further impact business competition.

In the rest of this section, we first define the privacy, i.e., the sensitive properties referred to in this
work. Then, we introduce the knowledge of the attack. Finally, we formulate the problem of property
inference attacks.

Graph sensitive property. In this paper, we consider an attributed target graph where nodes are
associated with multiple attributes. The sensitive property is defined based on one specific type of
attribute, called the property attribute. Specifically, the sensitive property is defined as a certain
statistical value of the property attribute’s distribution. We consider two types of properties that the
attacker may infer: (1) node properties, specified by the ratio of nodes with a particular property
attribute value, and (2) link properties, specified by the ratio of links where the end nodes have
particular property attribute values.

Note that the property attribute can be either discrete or continuous. For instance, a node property
defined on the discrete category attribute in a product network can be the ratio of co-purchase
links between luxury items. An edge property defined on the continuous default rate attribute in a
transaction network can be the average default rate of all customers. The inferred sensitive properties
may reveal data owner’s secrets such as commercial strategies; see [23, 32] for further discussion.

Attacker’s knowledge. We assume the attacker’s background knowledge as follows:

• Auxiliary graph: We assume the attacker has an auxiliary graph from the same domain as the target
graph but does not necessarily intersect with the latter. In practice, the auxiliary graph can be
sourced from publicly available data or derived directly from the adversary’s own knowledge.

• Target model: We consider two types of knowledge on the target model: the white-box setting,
where the adversary knows the architecture and parameters of the target GNN, and the black-box
setting, where the adversary only knows the target GNN’s output posterior probabilities.

Property inference attack. Formally, let Gtar denote the target graph. And let P(Gtar) denote the
property value of Gtar. Note that P can represent either node properties or link properties. Given that
the attacker has an auxiliary graph Gaux from the same domain as Gtar, we define graph property
inference attack as follows:

Problem 1 (Graph property inference attack) Given the auxiliary graph Gaux, and assume the
attacker has either the white-box knowledge of the target GNN parameters or the black-box knowledge
of target GNN’s output posterior probabilities, the objective of the graph property inference attack is
to infer the property P(Gtar) without access to it.

*https://www.gurobi.com
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Figure 1: Illustrations of (a) conventional graph property inference attacks and (b) the proposed
attack, with yellow shading indicating model training, the main source of computational cost.

3 Methodology

This section provides a detailed description of the proposed graph property inference attack. We start
with an overview of our method and then delve into the technical aspects of model approximation.
Finally, we describe the proposed diversity enhancement mechanism. The overall algorithm and
complexity analysis are summarized in Appendix A.3.

3.1 Overview

As shown in Figure 1(a), given the auxiliary graph, the conventional approach is to first sample
numerous shadow graphs, ensuring that graphs with different properties are adequately represented.
Each is then used to train a shadow model with the same structure as the target model. Once trained,
parameters (white box) or output posterior probabilities (black box) of shadow models are collected,
along with the corresponding properties of shadow graphs. Finally, an attack model (e.g. linear
classifier) is trained to classify properties based on parameters or posteriors. Since the number of
shadow models is usually hundreds or thousands, their training can be computationally expensive.

To mitigate this issue, our proposed attack method utilizes model approximation techniques as a
substitute. We provide a illustration of our method in Figure 1(b):

(1) Instead of numerous shadow graphs, we first sample only a few reference graphs.

(2) On each reference graph, we train a reference model with the same architecture as the target
model, and generate multiple augmented graphs by removing different nodes and edges.

(3) By efficient model approximation, we obtain approximated models w.r.t to the augmented graphs.

(4) We collect parameters or posteriors of all approximated models and train the attack model in a
similar manner as previous attacks.

Here, we mainly face two challenges: ensuring that the approximate error associated with augmen-
tations is relatively small, and ensuring that the approximated models are sufficiently diverse. To
address them, we theoretically analyze the approximation errors given different augmented graphs
(see§ 3.2) and propose a diversity enhancement mechanism in § 3.3.

3.2 Model approximation and error analysis

We proceed by introducing the techniques of the proposed model approximation, which include
generating augmented graphs, obtaining approximated models, and conducting error analysis.

Generating augmented graphs and identifying influenced nodes. First, we aim to ensure that
multiple perturbations produce distinctive augmented graphs. This is essential because highly similar
augmentations reduce the distinction in the corresponding graph properties and model features,
providing minimal benefit to the overall attack. For this purpose, we propose removing both nodes
and edges from the reference graph. Formally, Let the reference graph be denoted by Gref = (V,E)
sampled from Gaux, where V is the node set, E ⊆ V × V is the edge set. For one perturbation, we
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remove V R ⊂ V and ER ⊂ E to obtain the augmented graph Gaug. In GNNs, the neighborhood
aggregation makes the removal inevitably influence the state of other remaining nodes. Given a
l-layer GNN, the influenced nodes of removing a single node v ∈ V R is the l-hop neighborhood of v,
denote as Nl(v). And the influenced nodes of removing a single edge e ∈ ER, connecting nodes v
and u, is denoted as Nl(e) = Nl−1(v) ∪Nl−1(u) ∪ {v, u}. With these in mind, we next define the
total influenced nodes for removing V R and ER.

Definition 1 (Influenced nodes ) Given the removed nodes V R, removed edges ER and a l-layer
GNN, the total influenced nodes V I is defined as

V I =
⋃

e∈ER

Nl(e)
⋃

v∈V R

Nl(v). (1)

Generating Approximated Models. Subsequently, we generate the approximated model based
on the perturbation. While existing graph unlearning [29–31, 33] may offer potential solutions,
they are either limited to specific model architectures or only support the removal of nodes or
edges individually, making them unsuitable for direct application. To address this, we extend their
mechanisms to suit our scenario. Let the reference model be parameterized by θref ∈ Rm. In this
paper, we consider cross-entropy loss as the loss function, and θref is obtained as follows:

θref = argmin
θ

∑
v∈V

ℓ(θ; v,E) (2)

After removing V R and ER, if we directly retrain a model on Gaug, we would obtain a new model
parameter θaug:

θaug = argmin
θ

∑
v∈V/V R

ℓ(θ; v,E/ER) (3)

To avoid training from scratch, we derive the approximation of θaug by the following theorem.

Theorem 3.1 (GNN model approximation) Given the GNN parameter θref on Gref , the removed
nodes V R, removed edges ER and influenced nodes V I. Assume ℓ is twice-differentiable everywhere
and convex, we have:

θaug ≈ θref + (∇2L(θref ;Gaug))−1∇(
∑

v∈V I∪V R

ℓ(θref ; v,E)−
∑
v∈V I

ℓ(θref ; v,E/ER)), (4)

where ∇ denote gradient, and ∇2 denote Hessian. L(θref ;Gaug) =
∑

v∈V/V R ℓ(θref ; v,E/ER).
The detailed derivation can be found in Appendix A.2.

In practice, the Hessian may be non-invertible due to the non-convexity of GNNs. We address this by
adding a damping term to the Hessian [34].To reduce computation, we also follow [29] to convert the
inverse Hessian calculation into quadratic minimization. See Appendix A.3 for complexity analysis.

Analyzing the approximation error. Eventually, we aim to quantitatively assess the error in the
approximated model, as this directly determines whether graph properties can be effectively reflected,
thereby influencing the attack. To achieve this, we investigate how specific removal choices of V R

and ER affect the approximation error in Eq. (4). Note that ∇
∑

v∈V/V R ℓ(θ; v,E/ER) = 0 only
when θaug is the exact minimizer, thus the gradient norm ∥∇

∑
v∈V/V R ℓ(θ; v,E/ER)∥2 can reflect

the approximation error. The following theorem provides an upper bound on this gradient norm.

Theorem 3.2 (Approximation error bound) Assume ℓ is twice-differentiable everywhere and con-
vex, ∥∇ℓ∥2 ≤ c1, ∇2

∑
v∈V/V R ℓ(θ; v,E/ER) is γ1-Lipschitz, the approximation error bound is

given by:
∥∇

∑
v∈V/V R

ℓ(θ; v,E/ER)∥2 ≤ C(|V R|+ 2|V I|) = C · δ(V R, ER) (5)

where | · | denotes the cardinality of a set, and δ(·, ·) denotes the number of nodes removed and
influenced, given V R and ER. C denotes a constant depending on the GNN model, see Appendix A.2
for detail proof.

Theorem 3.2 indicates that the error bound for the approximation is proportional to both the number of
removed nodes and influenced nodes. Next, we demonstrate how this can serve as an error indicator
to select augmented graphs that result in minimal approximation errors.
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3.3 Diversity enhancement

Following the above, we detail the proposed diversity enhancement mechanism. To develop a well-
generalized attack model capable of distinguishing different sensitive properties, we introduce a
diversity enhancement mechanism designed to generate sufficiently diverse approximated models.
We first sample structurally diverse reference graphs from the auxiliary graph. Then, we ensure the
multiple perturbations on reference graphs can further enhance diversity, giving consideration to
reducing the approximation error.

Sampling diverse reference graphs. Inspired by community detection, where diverse communities
are identified on a graph, we design a structure-aware random walk for sampling reference graphs.
Specifically, we incorporate Louvain community detection [35] to partition the auxiliary graph into
several similarly sized communities. During random walks, the starting nodes are chosen from
different communities. And we assign different weights to neighboring nodes: w for those within
the same community and 1− w for those from different communities, where w ∈ [0, 1] is a hyper-
parameter. The transition probabilities are then obtained by normalizing these weights. This strategy
encourages sampling graphs within distinct communities, thus boosting their diversity.

Ensuring diverse augmented graphs. To ensure perturbations on reference graphs can enhance
the diversity, we further design a perturbation selector. Based on § 3.2, it is easy to see that each
approximated model can be considered as a result of the specific perturbation. Thus, improving the
diversity of approximated models is essentially improving the diversity of augmented graphs.

Formally, for each reference graph we generate k augmented graphs Gaug = {Gaug
1 , Gaug

2 , . . . , Gaug
k }

by randomly removing k different sets of nodes and edges. The diversity for Gaug is defined as:

Definition 2 (Diversity for Gaug) Given a set of k graphs Gaug = {Gaug
1 , . . . , Gaug

k }, and a graph
metric d(Gaug

i , Gaug
j ) that measures the distance between Gaug

i and Gaug
j . The diversity of Gaug is

defined as the sum of all pair-wise graph distances in Gaug, that is,
∑k

i=1

∑k
j=1 d

(
Gaug

i , Gaug
j

)
.

Since stochastic augmentations may not all contribute to total diversity, our objective is to select a
diverse subset of Gaug, namely, a subset of diverse perturbations to enhance the diversity of augmented
models. However, it is important to note that solely maximizing diversity may lead to relatively large
approximation errors, which may worsen the attack performance. Fortunately, utilizing the error
indicator from Eq. (5), we can ensure that augmentations enhance diversity while minimizing total
approximation error, which can be formulated as a quadratic integer programming task.

Given k available perturbations, we aim to select q of them, such that the diversity among these
selected is maximized while keeping the approximation error minimal. We here introduce decision
variables xi ∈ {0, 1} to represent whether the i-th augmentation is selected. Let δi represent the
approximation error in the i-th augmentation (cf. Eq. (5)). The optimization problem is as follows:

min

k∑
i=1

k∑
j=1

d
(
Gaug

i , Gaug
j

)
xixj , s.t. (1)

k∑
i=1

xi = q, (2)

k∑
i=1

δixi ≤ ϵ, (6)

where ϵ is a constant that imposes the budget on the total approximation error of the selected q
augmentations, ensuring that it does not exceed ϵ. Here, we select graph edit distance as the distance
metric, which can be efficiently calculated since all k augmented graphs Gaug are derived from one
reference Gref . We utilize Gurobi Optimizer [36], a state-of-the-art solver, to solve this quadratic
integer programming problem, which is known for its efficiency and effectiveness.

3.4 Overall algorithm

We summarize the training algorithm for our attack framework in Algorithm 1. Steps 1-2 outline
the structure-aware random walk for sampling reference graphs, steps 5-12 detail the perturbation
selector, with step 10 calculating the approximation error indicator in Eq. (5). Finally, step 16
corresponds to training the attack model.
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Table 1: Properties to be attacked, # indicates number of nodes or edges

Type Dataset Property attribute Property description

Node
Pokec Gender # male users > # female users
Facebook Gender # male users > # female users
Pubmed Keyword “IS” # publications with “IS” > # publications w/o "IS"

Link
Pokec Gender # same-gender edges > # diff-gender edges
Facebook Gender # same-gender edges > # diff-gender edges
Pubmed Keyword“IS” # edges between papers with “IS” > # other edges

4 Experiments

In this section, we evaluate the performance of the proposed attack method by addressing the
following three research questions:

• RQ1: How efficient and effective is our method on various graph datasets?

• RQ2: How do different factors influence the performance of our method?

• RQ3: How applicable is our method in different scenarios?

4.1 Experimental setup

Datasets and sensitive properties. We conduct property inferences on three real world datasets:
Facebook [37], Pubmed [38], and Pokec [39]. Appendix A.4 details the datasets and properties.

• Facebook and Pokec are social networks where nodes represent users and edges denote friendships.
Following [21], we select gender as the property attribute, set node property as whether the male
nodes are dominant, and edge property as whether the same-gender edges are dominant.

• Pubmed is a citation network where nodes are publications and edges are citations. We select the
keyword “Insulin” (IS) as the property attribute. Node property is whether publications with “IS”
are dominant. Edge property is whether citations between publications with “IS” are dominant. All
used properties are summarized in Table 1.

Training and testing data. For fairness, we evaluate our method and baselines on the same target
graphs. To ensure there is no overlap between the target graph and the auxiliary graph, for each
dataset we first use Louvain community detection to split the original graph into two similarly sized
parts. One part is used as the auxiliary graph, and the other part is used to sample multiple target
graphs. Sizes and numbers of reference graphs (our method), shadow graphs (baselines), and target
graphs are provided in Appendix A.4.

Target GNN. For target GNN, We use a widely recognized GNN model, GraphSAGE [21],
configured as per [21] with 2 layers, 64 hidden sizes, and 1,500 training epochs with an early stop
tolerance of 50. The Adam optimizer is used with a learning rate of 1e-4 and a weight decay of 5e-4.

Implementation details. For the attack model, We use a linear classifier with the deepest trick [40];
For hyperparameter settings, we perform grid searches of reference graphs’ numbers in (0, 100] (step
size 25), and augmented graphs’ numbers in (0, 10] (step size 2), across all datasets. Experiments are
repeated 5 times to report the averages with standard deviations. See appendix A.4 for more details.
Our codes are available at https://github.com/zjunet/GPIA_NIPS.

Baselines. We adopt four state-of-the-art baseline models to compare against the proposed attack
model: (1) GPIA [21]: An attack method designed for graphs and GNNs in both white and black
box settings, following the traditional attack framework. (2) PIR-S/PIR-D [22]: Two permutation
equivalence methods designed for white-box attacks, PIR-S using neuron sorting and PIR-D using
set-based representation. (3) AIA [41]: Property inference method based on attribute inference attack,
which first predicts the property attribute based on embeddings/posteriors and then predicts property,
suitable for both white/black attacks. See Appendix A.4 for details.
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Table 2: Average accuracy and runtime (seconds) comparison on different properties in white-box
setting. “Node” and “Link” denote node and link properties, respectively. The best results are in bold.

Facebook Pubmed Pokec

Node Link Node Link Node Link
Acc. Rt. Acc. Rt. Acc. Rt. Acc. Rt. Acc. Rt. Acc. Rt.

GPIA 60.7 1791 56.1 1591 82.9 3028 73.8 2901 58.6 1176 54.7 1314
PIR-D 67.8 1733 58.1 1563 83.9 3022 73.9 2895 60.5 1187 56.2 1325
PIR-S 60.2 1762 57.7 1576 80.5 3032 72.6 2912 59.6 1181 57.9 1318
AIA 64.3 1741 56.7 1553 67.3 3026 75.5 2896 58.3 1215 56.5 1353

Ours 71.4 254 61.5 222 85.2 550 75.9 432 61.4 242 58.8 159

4.2 Evaluation of efficiency and effectiveness (RQ1)

We first focus on white-box settings and evaluate the accuracy and ROC-AUC for effectiveness and
runtime for efficiency. Note that the reported runtime throughout this work encompasses the entire
attack process for both the proposed method and baselines, starting from sampling the reference
(shadow) graphs to inferring the properties of the target graphs. Table 2 presents the average
accuracy and runtime of the proposed attack method compared to other baseline methods on the
six aforementioned sensitive properties. We provide the corresponding standard deviations and
ROC-AUCs results in Appendix A.5. The results reveal several key insights: (1) Traditional attacks
incur significantly high runtime. The slight differences mainly depend on the different strategies in
their attack models. (2) PEPIA achieves better accuracy among the baselines, possibly due to their
consideration of permutation equivalence. AIA shows lower performance, which may be because of
their limited ability to conduct attribute inference, thus affecting the classification of properties. (3)
The proposed attack model outperforms all baseline methods across all datasets, achieving an average
increase of 2.7% in accuracy and being 6.5× faster compared to the best baseline, demonstrating
its remarkable efficiency and efficacy. The significant margin by which our method outperforms the
baselines is primarily due to our specific mechanisms that ensure diversity in both reference and
augmented graphs, which are essential for training a robust attack model. In contrast, conventional
attacks lack such designs for shadow graph diversity, resulting in sub-optimal performance.

4.3 Evaluation of influencing factors (RQ2)

Ablation study. To ensure efficiency, our method includes two main mechanism: sampling diverse
reference graphs and selecting diverse augmented graphs. Here, we conduct ablation studies to
demonstrate their necessity, including four variants: (1) w/o structure: We discard structure-aware
sampling and use simple random walks to sample reference graphs. (2) w/o selector: We discard the
augmentation selector and use random removal to obtain augmented graphs. (3) w/o error: In the
augmentation selector (cf. Eq. 6), we ignore the approximation error and only select augmentations
that maximize diversity. (4) w/o diversity: We ignore diversity in the augmentation selector (cf.
Eq. 6) and only select augmentations that minimize the approximation error. Figure 2 (a) shows the
attack results on Facebook’s node property. Notably, the complete model consistently surpasses the
performance of all variants, showing the effectiveness and necessity of simultaneously sampling
diverse reference graphs and selecting diverse augmented graphs.

Hyperparameter analysis. We next evaluate the impact of two important hyperparameters on our
method: (1) the number of reference graphs and (2) the number of selected augmented graphs. Both
directly affect the diversity of approximated models. We tune the number of reference graphs among
{25, 50, 75, 100} and the number of selected augmented graphs among {2, 4, 6, 8, 10}. The results in
Figure 2 (b) and 2 (c) show that as both hyperparameters increase, the attack performance initially
improves and then stabilizes. This indicates that a relatively small number of reference graphs and
augmented graphs are sufficient to ensure diversity, thereby maintaining good attack performance.

4.4 Evaluation in different scenarios (RQ3)
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(a) Ablation study (b) Impact of # aug. graphs (c) Impact of # ref. graphs (d) Black-box attack

Acc.Acc.

w/o structurew/o selectorw/o errorw/o diversityours

Acc. Rt. Acc.

Figure 2: (a): Evaluation of the necessity of considering diversity while minimizing the approximation
error. (b) and (c): Impact of the number of augmented graphs (per reference graph) and reference
graphs on attack accuracy, respectively. (d) Accuracy and runtime comparison in black box setting.

To test the applicability of our method, we evaluate its performance under various conditions,
including scenarios with black-box adversary knowledge, on different types of GNN models, on
large-scale graph datasets, and when the target and auxiliary graphs are distinct.

Performance on black-box knowledge. In the black-box setting, we use model outputs, specifically
posterior probabilities, to train attack models for our method and baselines. Since PIR-D and PIR-S
only support white-box settings, we included another state-of-the-art black-box attack, PIA-MP [20],
as detailed in Appendix A.4. The results on Facebook’s node property in Figure 2 (d) show that our
method improves accuracy by 11.5% compared to the best baselines while being 7.1× faster.

Table 3: Attack comparison using distinct graphs
for the target and auxiliary graphs. The arrows
indicate the auxiliary graph on the left and the target
graph on the right. The best results are bolded.

Facebook ⇒ Pokec Pokec ⇒ Facebook

Node Link Node Link
Acc. Rt. Acc. Rt. Acc. Rt. Acc. Rt.

GPIA 56.7 1732 54.6 1569 60.2 1244 57.5 1296
PIR-D 54.5 1794 56.8 1648 62.4 1297 55.9 1385
PIR-S 57.6 1777 52.1 1609 60.3 1262 56.1 1342
AIA 53.4 1729 53.0 1535 64.6 1237 55.6 1321

Ours 58.3 267 57.3 236 65.7 233 59.3 177

Performance on other GNNs. We conduct
property inference attacks on other three fun-
damental GNNs: GCN [42], GAT [43], and
SGC [44]. For GCN and GAT, hyperparame-
ters are configured according to [21], while for
SGC, we set the number of hops to 2. We report
the attack accuracy and runtime of our method
alongside other baselines on Facebook’s node
property, as illustrated in Figure 3 (a)-(c). It
is observed that the overall attack accuracy for
SGC is comparatively lower, potentially due to
the SGC model’s inherent limitations in captur-
ing property information effectively. Moreover,
our method consistently achieves the highest
accuracy, also demonstrating a runtime that is
4.4× faster on GCN, 4.0× faster on GAT, and 4.3× faster on SGC compared to the best baseline.

Performance on scalability. We further conducted property inference attacks on a large-scale
graph dataset, Pokec-100M, which contains 1,027,956 nodes and 27,718,416 edges. This graph is
sampled from the original dataset [39] by retaining nodes with relatively complete features. We
targeted the same node property as in the Pokec dataset, with the number of nodes in the reference
graphs, shadow graphs, and target graphs set to 52,600, 50,000, and 50,000, respectively. All other
settings remain consistent with previous experiments. We compare the attack accuracy and runtime of
our method against other baselines. As shown in Figure 3 (d), conventional attacks incur significant
computational costs on this dataset, whereas our method is 10.2× faster. Additionally, our attack
accuracy is significantly higher than those of the baselines.

Performance with distinct target and auxiliary graphs. In the above experiments, the target
and auxiliary graphs are splits of the same original graph. However, in real-world scenarios, this
assumption may not hold. Therefore, we evaluate the performance of our attack under a more practical
condition, where distinct graphs (from the same domain) are used as the target and auxiliary graphs.
Specifically, we select Facebook and Pokec, as they are both social networks, and consider two cases:
using Facebook as the target and Pokec as the auxiliary graph, and vice versa. Since the feature
dimensions of these two datasets differ, the parameters of the approximated model and the target
model are not directly compatible, so we apply PCA dimension reduction to align the parameters.
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(a) GAT (b) GCN (c) SGC (d) Pokec-100M

Rt.Acc. Acc. Rt. Acc. Rt. Acc.Rt.

Figure 3: Comparison of average attack accuracy and runtime (seconds) on (a)-(c): other GNNs,
including GAT, GCN, and SGC; (d): a large-scale dataset, Pokec-100M.

Table 3 reports the attack accuracy and runtime. We observe that (1) the overall attack performance
decreases, potentially due to the loss of property information embedded in model parameters during
parameter alignment, and (2) our model consistently achieves the best performance with significant
speed-ups, demonstrating its effectiveness in a more practical scenario.

5 Literature Review

Property inference attack. The concept of property inference attack is first introduced by [23],
demonstrating the leakage of sensitive properties from hidden Markov models and support vector
machines in systems like speech-to-text. Building on this, attacks on various machine learning models
are studied, including feed-forward neural networks, convolutional neural networks, and generative
adversarial networks [20, 22, 25, 32, 45]. Some works also consider multi-party collaborative learning
scenarios [20, 24] or incorporate data poisoning [32, 46]. Specifically, [46] proposes an efficient
attack based on distinguishing tests, achieving faster performance than traditional shadow training.
Their setting differs from ours by the additional adversarial capability of data poisoning. Recently,
with the increasing use of graphs and GNNs, security and privacy concerns are emerging [47–50].
While efforts have been made to investigate property inference attacks on GNNs [20, 21, 27], they
follow the shadow training framework, which requires training a relatively large number of shadow
GNN models, leading to high computational costs and reduced feasibility [46]. [51] assumes access
to the embedding of whole graphs and targets at graph-level properties, which is beyond our scope.

GNN model approximation. GNN model approximations are primarily based on the influence
function [29, 31, 52, 53] or Newton update [30, 33]. Except for [53], these methods are utilized
in the context of graph unlearning. Studies [30, 33, 53] explore model approximation for edge or
node removal and analyze the corresponding approximation error bounds, yet they are limited to
specific model architectures (e.g., simple graph convolution, graph scattering transform). Further
efforts [29, 31] extend model approximation to generic GNNs. [29] introduces a framework for edge
unlearning, while [31] proposes a general unlearning framework for removing either nodes, edges,
or features individually. Our model approximation differs from them by enabling the simultaneous
removal of nodes and edges across generic GNN architecture. A concurrent work [52] addresses a
similar model approximation as our attack; however, the additional theoretical assumptions could fail
when removing a combination of nodes and edges, and their corresponding solution may significantly
compromise the efficiency. Other studies [54, 55] also employ the graph shard approach. However,
they may have poor efficiency in batch removal, which involves multiple retraining of sub-models.

6 Conclusion

In this paper, we focus on the problem of graph property inference attacks. We utilize model
approximation techniques to efficiently generate approximated models with respect to the augmented
graph, which replaces the costly shadow training in traditional attacks. To overcome the challenge
of ensuring the diversity of approximated models while reducing the approximation error, we first
theoretically analyze the impact of different augmentations on the error, then propose a diversity
enhancement mechanism for the generation of approximated models, taking the approximation
error into account. The approximated models are finally used to train an attack model. Extensive
experiments across six real-world scenarios demonstrate our proposed attack’s outstanding efficiency
and effectiveness.
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A Appendix

A.1 Notations

The main notations can be found in the following table.

Table 4: Description of major notations, ordered by appearance.

Notation Description

Gtar, Gaux,P(Gtar) target graph, auxiliary graph, property of Gtar

Gtar, V , E reference graph, its node set and edge set
V R, ER, Gaug removed nodes and edges in Gtar, augmented graph
v, u, e two nodes, an edge connects v, u
Nl(vi),Nl(eij) the influence nodes of removing vi or eij
V I the total influence nodes of removing V R and ER

θref , θaug, ℓ parameters of reference model/approximated model, cross-entropy loss
Gaug set of augmented graphs

A.2 Proof of theorems

A.2.1 Proof of Theorem 3.1

Given the GNN parameter θref on Gref , the removed nodes V R, removed edges ER and influenced
nodes V I. Assume ℓ is twice-differentiable everywhere and convex, we have:

θaug ≈ θref +(∇2
∑

v∈V/V R

ℓ(θref ; v,E/ER))−1∇(
∑

v∈V I∪V R

ℓ(θref ; v,E)−
∑
v∈V I

ℓ(θref ; v,E/ER)),

(7)
where ∇(·) denote the gradient, and ∇2 denote the Hessian.

Proof. Let L(θ;Gaug) =
∑

v∈V/V R ℓ(θ; v,E/ER) denote the loss function of Gaug at θ, by one
step newton update of L, the approximation of θaug is:

θaug = θref −
(
∇2L(θref ;Gaug)

)−1 ∇L(θref ;Gaug) (8)

Let V UI denote the uninfluenced node set, i.e., V I ∪ V UI = V/V R, V I ∩ V UI = ∅, we have:

L(θref ;Gaug) =
∑

v∈V UI

ℓ(θref ; v,E/ER) +
∑
v∈V I

ℓ(θref ; v,E/ER)

=
∑

v∈V UI

ℓ(θref ; v,E) +
∑
v∈V R

ℓ(θref ; v,E) +
∑
v∈V I

ℓ(θref ; v,E)

+
∑
v∈V I

ℓ(θref ; v,E/ER)−
∑
v∈V R

ℓ(θref ; v,E)−
∑
v∈V I

ℓ(θref ; v,E)

=
∑
v∈V

ℓ(θref ; v,E) +
∑
v∈V I

ℓ(θref ; v,E/ER)−
∑
v∈V R

ℓ(θref ; v,E)−
∑
v∈V I

ℓ(θref ; v,E)

(9)

Given ∇
∑

v∈V ℓ(θref ; v,E) = 0, we have

∇L(θref ;Gaug) = ∇

(∑
v∈V I

ℓ(θref ; v,E/ER)−
∑

v∈V I∪V R

ℓ(θref ; v,E)

)
(10)

And

θaug = θref +
(
∇2L(θref ;Gaug)

)−1 ∇

( ∑
v∈V I∪V R

ℓ(θref ; v,E)−
∑
v∈V I

ℓ(θref ; v,E/ER)

)
(11)

which completes the proof. □
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A.2.2 Proof of Theorem 3.1

Assume ℓ is twice-differentiable everywhere and convex, ∥∇ℓ∥2 ≤ c1, ∇2
∑

v∈V/V R ℓ(θ; v,E/ER)

is γ1-Lipschitz, the error bound for the approximation error is given by:

∥∇
∑

v∈V/V R

ℓ(θ; v,E/ER)∥2 ≤ C(|V R|+ 2|V I|) = C · δ(V R, ER) (12)

where | · | denotes the cardinality of a set, and δ(·, ·) denotes the number of nodes removed and
influenced, given V R and ER. C is a constant depending on the GNN model.

Proof. Firstly, we consider an empirical loss for the reference model, which consists of a cross-
entropy and a L2-regularization:

ℓ(θ; v,E) = CE(θ; v,E) +
λ

2
∥θ∥22, (13)

where CE(·, ·) represents the cross-entropy, and we omit the ground truth for simplicity. λ > 0
denotes the L2-regularization.

Let G(θ) = ∇
∑

v∈V/V R ℓ(θ; v,E/ER), H0 denote the Hessian of
∑

v∈V/V R ℓ(θ; v,E/ER), and
let

∆ = ∇

( ∑
v∈V I∪V R

ℓ(θref ; v,E)−
∑
v∈V I

ℓ(θref ; v,E/ER)

)
. (14)

By Taylor’s Theorem, We have

G(θaug) =G(θref +H−1
0 ∆)

=G(θref) +∇G(θref + ηH−1
0 ∆)H−1

0 ∆

=G(θref) +HηH
−1
0 ∆

(15)

where Hη denotes the hessian at θη = θref + ηH−1
0 ∆, η ∈ [0, 1].

Let G(θaug) = G(θref) + ∆ +HηH
−1
0 ∆−∆, we have

G(θref) + ∆ = ∇
∑

v∈V/V R

ℓ(θref ; v,E/ER) + ∆

= ∇
∑

v∈V UI

ℓ(θref ; v,E/ER) +∇
∑
v∈V I

ℓ(θref ; v,E/ER) + ∆

= ∇
∑
v∈V

ℓ(θref ; v,E)

= 0 (16)

Since G(θaug) = HηH
−1
0 ∆−∆ = (Hη −H0)H

−1
0 ∆, we have

∥G(θaug)∥2 = ∥(Hη −H0)H
−1
0 ∆∥2 ≤ ∥Hη −H0∥2∥H−1

0 ∆∥2 (17)

Assume the Hessian of
∑

v∈V/V R ℓ(θ; v,E/ER) is γ1-Lipschitz, we have

∥Hη −H0∥2 = ∥∇2
∑

v∈V/V R

ℓ(θη; v,E/ER)−∇2
∑

v∈V/V R

ℓ(θref ; v,E/ER)∥2

≤ γ1∥θη − θref∥2
= γ1∥ηH−1

0 ∆∥2
≤ γ1∥H−1

0 ∆∥2 since η ∈ [0, 1] (18)
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Then we have ∥G(θaug)∥2 ≤ γ1∥H−1
0 ∆∥22. Since

∥∆∥2 = ∥∇
∑

v∈V I∪V R

ℓ(θref ; v,E)−∇
∑
v∈V I

ℓ(θref ; v,E/ER)∥2

≤ ∥∇
∑

v∈V I∪V R

ℓ(θref ; v,E)∥2 + ∥∇
∑
v∈V I

ℓ(θref ; v,E/ER)∥2

≤
∑

v∈V I∪V R

∥∇ℓ(θref ; v,E)∥2 +
∑
v∈V I

∥∇ℓ(θref ; v,E/ER)∥2

≤ (|V R|+ 2|V I|)c1 assume ∥∇ℓ∥2 ≤ c1 (19)

Since
∑

v∈V/V R ℓ(θ; v,E/ER) is λ(|V | − |V R|)-strongly convex, we have ∥H−1
0 ∥2 ≤ 1

λ(|V |−|V R|) .
In practice, we keep |V R| as a fixed value, thus ∥H−1

0 ∥2 ≤ 1
c2λ

, where c2 = |V | − |V R|. Finally,

∥G(θaug)∥2 ≤ γ1∥H−1
0 ∆∥22

≤ γ1∥H−1
0 ∥22∥∆∥22

≤ γ1c1
c22λ

2
(|V R|+ 2|V I|)

= C(|V R|+ 2|V I|), where C =
γ1c1
c22λ

2
. (20)

□

A.3 Training algorithm and complexity analysis

Complexity of generating approximated models. As the computation of gradients can be effi-
ciently handled by the PyTorch Autograd Engine, the primary operation is solving the inverse of
the Hessian (cf. Eq. (4)). To mitigate the high computational cost, we follow [29] in converting the
inverse computation into finding the minimizer of a quadratic function, resulting in an approximated
solution. By leveraging efficient Hessian-vector products and the conjugate gradient method, this
can be solved with time complexity of O(t|θ|), where |θ| denotes the number of parameters, and t
represents the number of iterations in conjugate gradient method.

Training algorithm. The training algorithm for our attack is summarized in Algorithm 1.

A.4 More experiment settings

Details of datasets. The statistics of the datasets used in this work are summarized in Table 5.

Table 5: Dataset statistics

Dataset # nodes # edges # features # classes
Pokec 40,478 531,736 197 2
Facebook 4,309 176,468 1,282 2
Pubmed 19,717 88,648 500 3

• Facebook [37]: This dataset consists of 4,039 nodes and 176,468 edges. Nodes have features like
birthday, education, work, name, location, gender, hometown, and language, all anonymized for
privacy. The target GNN’s task is to classify users’ education types.

• PubMed [38]: This dataset includes 19,717 scientific publications related to diabetes, with a
citation network of 88,648 links. Each publication is described by a TF/IDF weighted word vector
from a dictionary of 500 unique words, such as male, female, children, cholesterol, and insulin.
The target GNN’s task is to classify the topic categories of the publications.
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Algorithm 1 Initialization of the generated graph

Input: Auxilary graph Gaug, target model’s parameters or posterior probabilities. Number of
reference graphs r, number of perturbations k, number of selected augmented graphs q, weight
w for sampling reference graphs.

Output: The inferred sensitive property P(Gtar) of the target graph Gtar.
1: Partition Gaug into multiple communities using Louvain community detection.
2: Sample r reference graphs using the proposed structure-aware random walk, with weight w.
3: for each each reference graph Gref do
4: Train reference model θref .
5: ∅ → Gaug, ∅ → Errors, ∅ → Perturbs.
6: for i in 1, . . . , k do
7: Randomly select a set of nodes V R and a set of edges ER from Gref .
8: Add Gaug

i into Gaug.
9: Add (V R, ER) into Perturbs.

10: Compute the approximation error indicator in Eq. (5), and add it into Errors.
11: end for
12: Solve the optimization problem in Eq. (6), select q perturbations.
13: Calculate the q approximated models by Eq. (4).
14: Save the q parameters (or posterior) and the q properties of the selected augmented graphs.
15: end for
16: Train an attack model based on the r · q parameters (or posterior) and properties, classify P(Gtar)

of the target graph Gtar.

• Pokec [39]: This online social network dataset is from Slovakia. Each node has anonymized
features such as gender, age, and hobbies. We follow [21] to sample nodes with relatively complete
features, resulting in a graph with 40,478 nodes and 531,736 edges, using gender, age, height,
weight, and region as node features. The target GNN’s task is to classify whether a user’s all
friendships are public.

Details of sensitive properties. For each dataset, we design one node property and one link property
to be targeted in our attacks. For Facebook and Pokec we select gender as the property attribute. For
PubMed, we follow [21] to select the keywords “Insuli” as the property feature, as it has the highest
TF-IDF weight. These properties are summarized in Table 1.

Statistics of reference graphs, shadow graphs, and target graphs. The sizes and numbers of
reference graphs we used are summarized in Table 6.

Table 6: Numbers and sizes of reference graphs.

Dataset Ref. graph number Ref. graph size
Pokec 50 525
Facebook 50 3200
Pubmed 100 4250

For all baselines, we follow the settings specified in [21] to sample shadow graphs: the size of each
shadow graph is 20%, 25%, and 30% of Pokec, Facebook, and Pubmed, respectively, and the number
of shadow graphs is 700 for all datasets.

For target graphs, we sample 300 shadow graphs for each dataset; the size of each shadow graph is
20%, 25%, and 30% of Pokec, Facebook, and Pubmed datasets, respectively. To ensure fairness, we
evaluate our method and baselines on the same target graphs.

More implementation details. All experiments are conducted on a machine of Ubuntu 20.04
system with AMD EPYC 7763 (756GB memory) and NVIDIA RTX3090 GPU (24GB memory). All
models are implemented in PyTorch version 2.0.1 with CUDA version 11.8 and Python 3.8.0.
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The attack model is trained for 100 epochs with a learning rate of 1e-3 and a weight decay of 5e-4.
We use cross-entropy loss as the loss function and Adam optimizer.

White-box baselines.

• PIR-S [22]: A property inference attack considering permutation equivalence in feed-forward
neural networks, using node permutations on the hidden layers of a fully connected neural network.

• PIR-D [22]: Similar to PIR-S, permutation equivalence is achieved by ensuring all permutations of
any layer have the same set-based representation.

Black-box baselines.

• PIA-MP [20]: An attack method designed for multi-party machine learning. The primary difference
between PIA-MP and GPIA is that in the former, all shadow models (as well as the target model)
are queried on a fixed dataset to obtain output posterior probabilities.

Baselines for both white/black box.

• GPIA [21]: A method designed for graphs and GNNs in both white and black box settings,
following the traditional attack framework. The inferred properties include node properties and
link properties.

• AIA [41]: We follow [21] and conduct an attribute inference attack [41] that predicts the property
attributes by accessing the parameters or posteriors. We then evaluate the property inference
performance based on the predicted values of the property attributes.

A.5 More experiment results

Table 7: Standard deviation.

Standard deviation Facebook Pubmed Pokec

Node Link Node Link Node Link

GPIA 0.9 2.1 0.7 0.5 0.5 0.3
PIR-D 2.9 1.5 3.2 1.7 1.4 2.3
PIR-S 1.6 2.7 1.7 1.7 0.9 2.1
AIA 2.3 2.6 5.3 0.2 0.5 1.2

Ours 0.5 0.2 2.0 0.4 0.7 1.0

Standard deviations for Table 2. Table 7 reports the standard deviations corresponding to the
average accuracies in Table 2.

ROC-AUC results. We also report the ROC-AUCs of the proposed attack method compared to other
baseline methods on the six sensitive properties, as shown in Table 8. The results demonstrate that
our model can consistently achieve the best ROC-AUC result, confirming its notable effectiveness.

Table 8: ROC-AUC comparison of our method and baselines. “Node” and “Link” denote node and
link properties respectively. The best results are highlighted in bold.

ROC-AUC Facebook Pubmed Pokec

Node Link Node Link Node Link

GPIA 50.4±0.7 46.4±1.4 69.8±5.5 57.4±0.7 56.8±0.4 54.1±0.4
PIR-D 62.8±1.3 48.6±0.9 83.0±2.5 62.0±5.1 60.5±1.8 60.9±1.4
PIR-S 35.9±3.6 49.4±1.4 73.7±0.6 61.9±2.3 60.7±1.2 59.9±1.6
AIA 48.5±2.3 52.8±1.1 61.4±4.0 48.2±3.7 53.0±3.4 51.3±1.8

Ours 64.0±0.3 53.4±0.4 87.1±2.7 69.3±8.7 63.0±1.1 61.6±0.5
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A.6 Limitation and future work

In this work, we consider two settings: white box and black box, which encompass many real-world
scenarios. However, stricter cases exist where the attacker can make only a limited number of queries
or access only model predictions (i.e., classification results). We acknowledge that our method
does not yet address these cases. Additionally, some studies explore scenarios where attackers have
enhanced capabilities, such as data poisoning. We leave the investigation of efficient attacks under
these conditions for future work.

A.7 Potential impacts

While the proposed method is designed to infer properties of specific graph data, our primary objective
is to raise awareness of the privacy and security concerns associated with GNNs and to encourage the
implementation of protective measures in model design. Traditional property inference methods are
often inefficient, and despite efforts to illuminate potential threats, less practical attack scenarios may
not receive adequate attention. Nonetheless, the privacy risks persist. We seek to bring this threat to
the forefront and advocate for the adoption of more robust protective measures.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See abstract and § 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix A.6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Theorem 3.1, Theorem 3.2, and Appendix A.2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See § 4.1 and Appendix A.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See the code link in abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See § 4.1 and Appendix A.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See the standard deviation in Table 7
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix A.4 more implementation details

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix A.7

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not involve such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See the code link in abstract and citations.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: See the code link provided in abstract.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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