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Abstract
In recent years, graph anomaly detection has gained considerable
attention and has found extensive applications in various domains
such as social, financial, and communication networks. However,
anomalies in graph-structured data present unique challenges, in-
cluding label scarcity, ill-defined anomalies, and varying anomaly
types, making supervised or semi-supervised methods unreliable.
Researchers often adopt unsupervised approaches to address these
challenges, assuming that anomalies deviate significantly from the
normal data distribution. Yet, when the available data is insufficient,
capturing the normal distribution accurately and comprehensively
becomes difficult. To overcome this limitation, we propose to utilize
external graph data (i.e., graph data in the wild ) to help anomaly
detection tasks. This naturally raises the question: How can we use
external data to help graph anomaly detection task? Central to our
framework is a unified database, UniWildGraph, which comprises
a large and diverse collection of graph data with broad domain cov-
erage, ample data volume, and a unified feature space. We further
develop selection criteria based on representativity and diversity to
identify the most suitable external data for each anomaly detection
task. Extensive experiments on six real-world test datasets demon-
strate the effectiveness of Wild-GAD. Compared to the baseline
methods, our framework has an average 18% AUCROC and 32%
AUCPR improvement over the best-competing methods.
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1 INTRODUCTION
Graphs are ubiquitous in the real world and commonly utilized
to represent the complex inter relationships among objects across
a wide range of domains, such as social networks [11], financial
networks [6, 25], biological networks [56], and traffic networks [55].
Graph Anomaly Detection (GAD) focuses on identifying abnormal
instances or outliers that deviate from the prevailing patterns of
normal nodes within a graph. This task holds significant practi-
cal value in numerous applications, including detecting malicious
activities in social media, identifying fraudulent transactions in
financial systems, and uncovering fraudsters in telecommunica-
tions networks. The growing adoption of Graph Neural Networks
(GNNs) has spurred substantial progress in GAD. Supervised and
semi-supervised GAD methods [7, 19, 22, 42, 48, 58] leverage la-
beled anomaly data as supervision, enabling the learning of both
normal and abnormal distributions to distinguish anomalous nodes
from normal ones effectively.

However, anomalies in graph-structured data exhibit several
unique characteristics that pose significant challenges: (1) label
scarcity [32, 33]: The number of labeled anomalies is typically
limited, as real-world scenarios often make it costly and time-
consuming to perform double-checking and cross-validation during
themanual labeling process by experts. (2) ill-defined anomalies [16]:
Anomalies in graphs often lack explicit and accurate definitions. For
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instance, a credit company may label users with more than ten late
payments as anomalous. However, users with late payments close to
this threshold (e.g., eight or nine instances) may still exhibit anoma-
lous behavior, illustrating the ambiguity in defining anomalies. (3)
varying types [45]: The behaviors of anomalies can evolve over
time, introducing new, unseen abnormal patterns. This dynamic
nature makes it challenging to accurately learn and generalize the
abnormal distributions. As a result, supervised and semi-supervised
methods that rely on limited, ill-defined, and dynamically chang-
ing abnormal labels often fail to capture the full range of anomaly
patterns, limiting their reliability and effectiveness.

To overcome these limitations, many works have proposed em-
ploying unsupervised strategies [2, 8, 12, 13, 26, 31, 47, 53], focusing
on learning a comprehensive and robust distribution of normal pat-
terns rather than abnormal patterns. Based on well-learned normal
patterns, anomalies that significantly deviate from these patterns
can be naturally distinguished. However, these methods heavily
depend on the presence of sufficient and representative normal pat-
terns in the target data, which may not always be available. When
normal data is insufficient, the resulting normal distribution can
be inaccurate, thereby undermining the performance of anomaly
detection. For example, in financial networks, most users engage
in high-frequency transactions, causing models to predominantly
learn these frequent behaviors while overlooking low-frequency
ones. This bias can lead to the misclassification of legitimate low-
frequency traders as anomalies. However, true anomalies in this
context are not simply defined by low frequency but by distinct
irregularities, such as irregular intervals or interactions with un-
common counterparties.

Therefore, it is crucial to provide a broader view of normal behav-
iors to help the model better capture normal distributions. In this
work, we propose borrowing knowledge from external data (i.e.,
graph data in the wild) to address the issue of insufficient normal
patterns in unsupervised graph anomaly detection models. This
leads to a natural question: How can we use external data to help
graph anomaly detection tasks?

To address this question, the first challenge is the availability and
applicability of external graph data in the wild. Currently, no exist-
ing library or database can be directly applied to this task. The ideal
database must meet three key requirements: (1) various domain
coverage: It should cover a wide range of domains, ensuring that
target networks from any domain can benefit from it. (2) sufficient
amount and applicability: It must contain a large amount of exter-
nal data, ensuring the model has enough samples to learn normal
patterns effectively. (3) unified feature space: External graph data
often originates from various sources, and the features can differ
significantly in terms of both dimensions and semantic meanings.
A unified feature space is essential to process and integrate diverse
feature types. To tackle this challenge, we propose a database called
UniWildGraph. It includes twelve external graph datasets from four
distinct domains as raw data to ensure domain diversity. To enhance
the dataset and better adapt it for downstream tasks, we apply four
types of graph augmentations with varying augmentation ratios.
Finally, a preprocessing step standardizes all features into a con-
sistent textual format, leveraging language models to align them
within a unified semantic space.

With the constructed database UniWildGraph containing a vast
amount of external graph data, not all of them necessarily have a
positive impact on improving the anomaly detection task on the
target graph. External graphs may not share relevant character-
istics with the target data, and including irrelevant or redundant
graphs could introduce noise. Therefore, it is essential to design a
selection strategy that identifies the most useful external graphs
while operating within the constraints of a limited resource budget.
To tackle this challenge, we propose a selection strategy based on
two key criteria: representativity and diversity. The representativity
criterion ensures that the selected data is sufficiently relevant to the
target data. On the other hand, the diversity criterion ensures that
the selected external graphs offer a broad and comprehensive cov-
erage of normal patterns, enabling the unsupervised model to learn
more generalizable and robust representations of normal behavior.

Given the selected external data, we take the model first trained
on the target data as the initialization, and then train the model on
the selected data. This training process enables the model to incor-
porate the diverse and comprehensive normal patterns provided
by the external data while retaining the knowledge learned from
the target data. Consequently, the model develops a more accurate
and generalized understanding of the normal distribution, thereby
improving its ability to effectively distinguish abnormal patterns.

Our key contributions are as follows:

• To the best of our knowledge, we are the first to identify
the necessity and leverage the knowledge of external graph
data to help graph anomaly detection task. We propose a
framework called Wild-GAD that allows users to select and
adapt the most suited external graph data for their target
data to build a better graph anomaly detection model.

• We construct a database UniWildGraph comprising a mas-
sive amount of graph data with the advantages of various
domain coverage, sufficient amount and flexible to various
detection tasks and unified feature space. Users with target
graph from any domain can leverage data from UniWild-
Graph to help anomaly detection task.

• We introduce a data selection strategy based on representa-
tivity and diversity criteria to automatically choose the most
effective auxiliary graph data for the anomaly detection task
on the target graph.

• To evaluate the effectiveness ofWild-GAD, we tested it on six
real-world datasets. Wild-GAD outperformed baseline meth-
ods, achieving an average improvement of 18% in AUC-ROC
and 32% in AUC-PR over the best competing methods. Com-
pared to semi-supervised methods, Wild-GAD can surpass
competitors at label ratios of up to 70%.

2 RELATEDWORK

Graph Anomaly Detection With the development of GNNs,
many GAD studies focus on designing GNN algorithms [7, 13, 19,
22, 26, 42, 48, 58]. Due to the high cost and unavailability of manu-
ally labeling the ground truth anomalies, existing efforts are mostly
unsupervised [12, 13, 31, 47, 53]. DOMINANT [12] uses a GCN-
based autoencoder framework to compress and reconstruct the
initial graph. The reconstruction error for each node can be used



How to Use Graph Data in the Wild to Help
Graph Anomaly Detection? KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

to identify anomalies. OCGNN [47] combines the powerful repre-
sentation ability of GNNs with the classical hypersphere learning
objective to detect anomalies. Another line aims to capture the nor-
mal patterns in the graph through a self-supervised learning task.
CoLA [31] conducts contrastive instance pair sampling between
each node and its neighboring and uses an anomaly-related objec-
tive to train the contrastive learning model. CONAD [53] leverages
prior human knowledge of anomaly types as contrastive samples
and integrates them into the detection model through a contrastive
loss. Apart from basic paradigms, TAM [36] identifies the one-class
homophily in GAD datasets with both injected and real anomalies,
and leverages this property to propose the local node affinity as
novel unsupervised GAD measure. RAND [3] uses reinforcement
learning to expand and select candidate neighborhoods, while en-
hancing anomaly detection with a consistent message aggregator.
However, these approaches merely focus on their own network,
which may lack robustness and generalizability.

A somewhat related line of research is cross-domain graph anom-
aly detection, which uses cross-domain data to improve perfor-
mance within a specific domain [46, 52]. MetaGAD [52] designs
a meta-learning method to transfer the knowledge between unla-
beled and labeled nodes for GAD. It leverages synthetic anomalies
to improve model performance on target GAD. ACT [46] aligns the
representations of the target graph with those of labeled normal
nodes in the source graph. It also ensures that the representations of
normal nodes in the source graph deviate significantly from those
of anomalous nodes. However, these methods require a large num-
ber of high-quality anomaly labels and closely aligned source data
with identical labels and feature spaces, limiting their practicality
in real-world scenarios. Different from these works, our work does
not require anomaly labels and aim to leverage complementary
external knowledge of graph data in the wild to help model the
normal distribution well in an unsupervised manner.
External Knowledge Exposure for Anomaly Detection In
the field of CV and NLP, several approaches for anomaly detec-
tion have leveraged the knowledge from pre-trained models to
discern normal data patterns. Among these methods are DN2 [4],
PANDA [37], and MSAD [38]. They initially harness pre-trained
models to extract features characterizing standard data instances.
Subsequently, they apply techniques such as k-nearest neighbors
(KNN) and Gaussian mixture models (GMM) to measure the devia-
tion of new data points from the identified normal feature set, using
this distance to compute an anomaly score. However, in the field of
graph anomaly detection, there is still no works focus on leveraging
external knowledge to help promote the model. Moreover, outlier
exposure (OE) [23], is also an innovative technique for anomaly
detection that employs an auxiliary dataset of outliers. However,
OE faces a significant challenge: it necessitates a large and var-
ied set of outlier data for training, which is often unavailable in
real-world applications. Furthermore, the learned representations
may not effectively generalize to previously unseen outlier distribu-
tions, and the presence of irrelevant outliers can negatively impact
performance.

3 BASIC ONE-CLASS GRAPH ANOMALY
DETECTION MODEL

This section reviews the one-class assumption-based graph anom-
aly detection model commonly used in related literature. Our work
follows Deep One-Class SVDD [39] paradigm as the backbone
model. One-Class SVDD model focuses on describing the behavior
of dominated normal data by finding a hypersphere with a minimal
radius in the embedding space. The basic assumption is that most
normal data share similar behavior patterns and can be located
within a hypersphere in the embedding space. While those anoma-
lous do not conform to the expected normal behavior and their
positions deviate far from the center of the hypersphere. So that
the optimal hypersphere can serve as the distinguishing rule for
detecting anomalies. Specifically in the field of graph learning, we
denote an attributed graph G = (V, 𝐴, 𝑋 ), where V is the node
set, 𝑁 = |V| is the number of nodes, 𝐴 ∈ {0, 1}𝑁×𝑁 is the adja-
cency matrix. 𝑋 ∈ R𝑁×𝑑𝑖𝑛 is the input node feature matrix and 𝑑𝑖𝑛
indicates the dimension of input features. An attributed graph is
first fed into a graph neural network 𝜙W : R𝑑𝑖𝑛 → S𝑑 , and get
corresponding embeddings 𝑍 , where W =

{
𝑾1, . . . ,𝑾𝐿

}
denotes

the weights of the graph neural network 𝜙 and 𝑑 is the embedding
dimension. The model aims to construct a hypersphere in the em-
bedding space to gather the most normal nodes around the center c
of the hypersphere. This can be done by minimizing the following
loss:

L =
1
𝛽𝑁

𝑁∑︁
𝑖=1

[
∥𝜙 (𝑿 ,𝑨;W)𝑖 − 𝒄 ∥2 − 𝑟2

]
+ 𝑟2 + 𝜆

2

𝐿∑︁
𝑙=1

∥W𝑙 ∥2 , (1)

where 𝑟 is the radius of the hypersphere, 𝛽 ∈ [0, 1) is an upper
bound on the fraction of training errors and a lower bound of the
fraction of support vectors, 𝒄 is the center of the hypersphere de-
fined as the average of the embeddings of the nodes. The third term
indicates the weight decay regularization with hyper-parameter 𝜆.

Accordingly, each node the anomaly score is measured by the
distance between the center and the embedding 𝑧𝑖 of each node 𝑣𝑖 .

𝑠𝑖 = ∥𝑧𝑖 − 𝒄 ∥2 . (2)

It should be emphasized that, unlike previous research on One-
Class Graph Neural Networks (OCGNN) [47], which solely focuses
on normal data during the training process and can be regarded as
a semi-supervised learning approach, our method operates in an
unsupervised manner.

4 METHODOLOGY
In this section, we first introduce the proposed Wild-GAD frame-
work, which aims to wisely leverage unlabeled wild data to help
promote graph anomaly detection. The overall pipeline is illus-
trated in Figure 1. The Wild-GAD framework consists of three
major components, the constructed candidate datasets, selection
criteria, and training strategy. The rest of this section is organized
as follows. We further describe our collection and preparation of
raw wild graph data in Section 4.1. Then in Section 4.2, we present
the selection criteria of wild data. Finally, we propose the overall
training strategy in Section 4.3.
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Figure 1: Overview of the proposed Wild-GAD framework.

4.1 Candidate Dataset Construction
To build a well-prepared candidate wild database, we focus on pro-
viding a broad and diverse range of external data, which is crucial
for accurately and comprehensively modeling normal behavior. As
illustrated in Figure 1(a), the dataset is designed to meet three key
characteristics outlined in the introduction: varied domain cover-
age, sufficient quantity and relevance, and a unified feature space.
The following elaborates on each characteristic and describes our
approach to incorporating them into the dataset construction.
Rough data in the wild for graph anomaly detection We
consider the diversity of raw data from two perspectives: different
domains and varying scales. To ensure a comprehensive represen-
tation of normal patterns across domains, we have gathered raw
graph data from the wild within four distinct domains: E-Commerce,
Social Network, Citation, and Hyper-Link, as shown in the left part
of Figure 1 (a). Across these domains, we have assembled twelve
datasets, including P-Learning, P-Electronic, P-Entertainment, P-
Household, P-Fashion, YelpRes, YelpNYC, Instagram, Reddit, Cora,
PubMed, arXiv, and WikiCS. When target data is available, it can
be included to provide a more accurate and realistic reference. Ad-
ditionally, our datasets span a wide range of graph sizes to capture
diverse graph structures. For example, the smallest graph, Cora,
contains 2,708 nodes and 10,858 edges, while the largest, P-Learning,
has 651,762 nodes and 24,599,888 edges. This variety in scale im-
proves the framework’s capacity to identify and characterize normal
behaviors across different graph sizes, enhancing its ability to cap-
ture normal patterns effectively. More detailed descriptions of the
characteristics of raw datasets can be found in Appendix A.
Augmentations can serve as good candidates. In addition to
the original graphs collected in Section 4.1, we incorporate graph
data augmentations to diversify our candidate datasets, thereby
achieving broader coverage of normal patterns. Previous stud-
ies have highlighted that certain augmentations (e.g., subgraph
extraction [54, 57, 59], node dropping [54, 57]) can reduce redun-
dancy in the original data, making them more suitable for down-
stream tasks [57] (e.g., community detection, anomaly detection).
For instance, in email communication networks, frequent corre-
spondences between managers and secretaries are considered nor-
mal patterns, characterized by high connectivity typical of hub
structures. To capture such task-relevant information, we can em-
ploy subgraph sampling augmentation, which focuses on high-
connectivity substructures while reducing the need to analyze the

entire graph. Furthermore, augmentations have been shown to en-
hance the generalizability and robustness of models [21], providing
particular advantages in cross-dataset scenarios by enabling bet-
ter adaptability to diverse data distributions. Following common
practices in graph augmentation, as illustrated in the middle part of
Figure 1(a), we adopt four augmentation operations, denoted as A:

• Feature masking sets certain node feature values to zero
or the average of their neighbors;

• Node dropping removes a certain portion of nodes from
the original graph;

• Edge perturbation involves modifying the original graph’s
structure by adding or removing edges, resulting in a new
graph with altered connectivity;

• Subgraph Extraction extracts a subset of nodes along with
their edges and features to form a subgraph.

To control the degree of augmentation applied to the original graph,
we apply each type of augmentation with predefined ratios 𝜏 ∈
0.2, 0.4, 0.6, 0.8. Given an original graph𝐺 , we define the set of aug-
mented graphs as A𝐺 := {𝑎𝑟 (𝑔) | 𝑎 ∈ A ∧ 𝜏 ∈ {0.2, 0.4, 0.6, 0.8}},
where 𝑎𝜏 represents a transformation with ratio 𝜏 . As detailed in
Table 1, by integrating all original graphs with their augmented
versions, the candidate database contains a total of 221 graphs.
Feature Space Alignment. Since the collected graph data in the
wild come from diverse domains and sources, their features typi-
cally exist in different spaces and exhibit intricate characteristics.
Motivated by the success of Language Models (LMs), as shown in
the right part of Figure 1(a), we propose transforming these hetero-
geneous attributes into textual representations and leveraging LMs
to comprehend them within a unified space.

We categorize the features in graph data into two primary types:
textual features and tabular features. Textual features are inher-
ently textual in nature, such as those found in citation networks
and Wikipedia networks. These features can be directly utilized as
inputs to Language Models (LMs) without any transformation.

Tabular features are typically represented as vectors in categor-
ical or numerical formats. For instance, in social networks, node
features often correspond to user profiles (e.g., age, gender and
salary). To process these tabular features, they must first be con-
verted into meaningful textual representations. Following [41], we
design a rule-based method P for this transformation into text.
For example, consider a worker 𝑣𝑖 from the Tolokers Dataset with
tabular features approved_rate: 0.8, skipped_rate: 0.2, expired_rate:
0.2, rejected_rate: 0.1. Our method converts this data into the textual
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representation: P(𝑣𝑖 ) = "A worker whose approval rate is 0.8, skipped
rate is 0.2, expired rate is 0.2, and rejection rate is 0.1.".

After converting raw tabular features into text, we leverage the
extensive language understanding capabilities of LMs to align the
semantic spaces of heterogeneous features. To handle the multi-
lingual nature of our broad candidate datasets (e.g., English and
Chinese), we employ a multilingual pre-trained NLP model, specif-
ically mBERT [49], to ensure effective processing across diverse
languages.

4.2 Data Selection
As previously discussed in section 2, the detection results of the
one-class SVDD model depend on the expected standard hyper-
sphere assumption. However, insufficient and low-quality input
data can lead to an irregular embedding space that does not adhere
to the standard hypersphere, resulting in errors during hypersphere
evaluation. To address this issue, we propose a strategy to selec-
tively incorporate external data that can aid in model training and
help fill out the embedding space, thereby providing a more com-
prehensive representation of normal patterns. In this section, we
formally define the spherical embedding space and present the data
selection strategy for choosing appropriate external data.
Spherical Embedding Space To achieve a more comprehensive
and discriminative characterization of normal samples, we propose
to analyze the learned embeddings within the spherical space. This
spherical space is defined based on three key components:

• Spherical center: Represented as the blue star in Figure 1(b),
this center is calculated as the average embedding of all
nodes, c = 1

𝑛

∑𝑛
𝑖=1 𝒛𝑖 .

• Radial distance: The distance between each node (i.e., the
blue points in Figure 1(b)) and the spherical center, given by
𝑟𝑖 = | |𝒛𝑖 − 𝒄 | |.

• Relative direction: The directional vector from each node
to the spherical center, computed as 𝝋𝒊 = (𝒛𝑖 − 𝒄) /∥𝒛𝑖 − 𝒄 ∥.

Thus, by simultaneously measuring from both angular and radial
perspectives, each 𝑑−dimensional node embedding on the hyper-
spherical surface can be effectively represented using spherical
coordinates, defined as 𝝆𝒊 = [𝑟𝑖 , 𝝋𝒊].

To apply this concept in practice, consider the target graph G𝑡 .
We first train a base model and get the optimal parameter 𝜙0 on it
and obtain the corresponding learned spherical space. This process
yields the node embeddings 𝒛𝑖 and spherical coordinates 𝝆𝒕𝒊 for
each node 𝑣𝑖 in G𝑡 . The base model 𝜙0 encapsulates the current
understanding of normal patterns within G𝑡 . Building on this foun-
dation, we apply 𝜙0 to each candidate external graph, generating
node embeddings and spherical coordinates. These serve as crucial
metrics for identifying suitable external graphs to enhance anomaly
detection tasks.
SelectionCriteria To effectively select external data that enhances
model training and enriches the embedding space, our selection
mechanism adheres to two key criteria: (1) Representativity: As
illustrated by the yellow triangles in Figure 1(b), these data points
are distributed near the blue points, demonstrating a high degree of
similarity to the target graph. (2) Diversity: As depicted by gray tri-
angles in Figure 1(b), these data samples are widely scattered across

the space, capturing diverse aspects of the embedding structure.
These two criteria are complementary: representativity ensures
the relevance of the external data, while diversity maximizes the
breadth of normal patterns represented. The ideal external data
satisfies both, as exemplified by the half-yellow, half-gray triangle
in Figure 1(b). By integrating these principles, we calculate a final
score for each candidate graph dataset to determine its suitability
for improving anomaly detection tasks.
Representativity. The selected external data must closely re-
semble the target data to ensure effective integration. Otherwise,
insufficient similarity may introduce noise, causing a distributional
shift and potentially impairing model performance. We quantify
representativity by evaluating it from two key perspectives.
(1) Sphere-center Restriction The position of the embedding
space, after combining external data with the target graph, should
not diverge too much from its original configuration. Specifically,
the center of the learned spherical space should not shift exces-
sively. To measure this, we calculate the Euclidean distance between
the centers of the target graph’s embedding space and the mixed
space (which includes both the target and external data). It can be
formalized as:

scsim = ∥cin − cmix ∥2, (3)

where cin = 1
𝑛in

∑
𝑧𝑖 ∈𝒁𝑖𝑛

𝑧𝑖 , cmix = 1
𝑛in+𝑛out

∑
𝑧𝑖 ∈𝒁𝑖𝑛∪𝒁𝑜𝑢𝑡

𝑧𝑖 , 𝒁𝑖𝑛
and 𝒁𝑜𝑢𝑡 represent the node embeddings of the target graph and the
external data, while 𝑛in and 𝑛out denote the number of nodes in the
target graph and the external data. A small value for scsim indicates
a minimal shift, meaning the external data has been successfully
integrated without distorting the embedding space. Conversely, a
larger value suggests a significant shift, which may adversely affect
the model’s performance in detecting anomalies.
(2) Distributional Similarity To further assess representativity,
we measure the similarity between the distribution of the target
graph’s node embeddings and the distribution of the mixed node
embeddings. Specifically, we use the Wasserstein Distance to quan-
tify the discrepancy between the spherical coordinates of the target
graph’s embeddings 𝝆in, and that of the mixed embeddings 𝝆mix.
The Wasserstein Distance represents the minimum work required
to transform one distribution into the other, considering both the
values and directions of the embeddings. Mathematically, it is com-
puted as follows:

𝑠dsim =𝑊𝑎𝑟𝑠𝑠𝑒𝑛𝑠𝑡𝑒𝑖𝑛
(
P
(
𝝆in

)
, P

(
𝝆mix

) )
(4)

where P(·) represents the probability distribution of the embed-
dings. A smaller Wasserstein distance indicates that the mixed
data’s distribution is similar to the target graph’s distribution, en-
suring that the external data aligns well with the original data.
Diversity. While the representativity criterion ensures that the
selected external data is similar to the target graph, it alone may not
be sufficient. Relying solely on representativity can be misleading,
especially if the chosen data is overfitted to specific patterns. In
such cases, the model may become overly specialized in recogniz-
ing certain normal patterns, leading to a loss of generalizability.
To address this issue, we introduce diversity to ensure that normal
patterns are distributed more evenly across the embedding space.
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By promoting a more uniform spread of data samples, diversity en-
hances the model’s generalizability, enabling it to capture a broader
range of patterns and better perform on diverse data.

In spherical space, diversity is achieved when embedding points
are distributed more uniformly across the hypersphere, rather than
being concentrated in a small region. This uniform scattering en-
sures that the node samples cover a larger portion of the hyper-
sphere, capturing a wider variety of patterns and characteristics. To
quantify this, we use the Minimum Hyperspherical Energy (MHE)
as a quantitative measure. This approach is motivated by the well-
known Thomson problem in physics [43], which seeks to distribute
𝑁 electrons on the surface of a unit sphere in such a way that their
potential energy is minimized. The core of solving this problem lies
in finding a uniform distribution that maximizes the equal spacing
between particles, thereby achieving the lowest energy state of the
system. In our context, a higher energy indicates a higher degree
of redundancy (i.e., more clustering of the points), while a lower
energy signifies a more uniform scattering of the points on the
hypersphere, which is essential for ensuring diversity. Specifically,
we define the hyperspherical energy in the space 𝑆𝑑 as follows:

𝑠𝑑𝑖𝑣 =

∫ 𝑟max

𝑟min

∫
𝑢

∫
𝑣

𝑢,𝑣∈M(S(𝑟 ) )

𝑒 (𝑢, 𝑣)d𝑣𝑑𝑢d𝑟 . (5)

whereM (S(𝑟 )) is the set of probability measures on the spherical
surface at radius 𝑟 , and 𝑢, 𝑣 are the samples within this set. 𝑒 (𝑢, 𝑣)
is the energy function that represents the potential energy between
two nodes 𝑢 and 𝑣 on the hypersphere. This function should be a
decreasing, distance-based real-valued function [17, 28, 30], assign-
ing higher energy to closer points and lower energy to more distant
points. Consequently, the sum of 𝑒 (𝑢, 𝑣) over all pairs of nodes
in the graph embedding space represents the total energy of the
dataset. Here we adopt a Gaussian potential kernel following [1, 9]
to quantify 𝑒 (𝑢, 𝑣), defined as:

𝑒 (𝑢, 𝑣) ≜ 𝑒−𝑡 ∥𝑢−𝑣 ∥
2
2 = 𝑒2𝑡 ·𝑢

⊤𝑣−2𝑡 , 𝑡 > 0 (6)

where 𝑡 is a hyper-parameter for the Gaussian potential kernel.
Moreover, we define 𝑟min = min (∥𝑧𝑖 − 𝑐 ∥ , 𝑧𝑖 ∈ 𝑍in ∪ 𝑍out ), 𝑟max =

max (∥𝑧𝑖 − 𝑐 ∥ , 𝑧𝑖 ∈ 𝑍in ∪ 𝑍out ). The integral over 𝑟 ensures that
we account for diversity at multiple scales of the hypersphere, rather
than limiting the calculation to a fixed radius (such as 𝑟 = 1). This
multi-scale approach provides a more comprehensive measure of
data diversity.
Final Score Calculation The proposed representativity and diver-
sity criteria together serve as a powerful indicator for evaluating
the quality of the external data. We calculate the final score for
each candidate dataset, transforming the selection problem into an
optimization problem as follows:

minimize J (𝐺) = 𝜂MEAN(𝑠c𝑠𝑖𝑚 + 𝑠d𝑠𝑖𝑚) + (1 − 𝜂)𝑠𝑑𝑖𝑣, (7)

where 𝜂 ∈ [0, 1] is a trade-off parameter and the small hat on
the terms 𝑠𝑐

𝑠𝑖𝑚
, 𝑠𝑑

𝑠𝑖𝑚
and 𝑠𝑑𝑖𝑣 indicates that all the values are 𝑧-

normalized. This ensures the objective is invariant to the original
scales of the values. Given the allocated budget of 𝑘 graphs, we
select the top-k external graphs G𝑜 with the smallest scores as
determined by 𝐸𝑞. 7.

4.3 Training Strategy
The model is initialized with the parameters 𝜃∗ of 𝜙0 that were
trained on the target graph 𝐺𝑡 , and then we continue training the
model using the selected external graphs G𝑜 . However, directly
applying external data poses a challenge, as it may introduce ir-
relevant information and cause the model forgetting the previous
knowledge learned from𝐺𝑡 . To mitigate this issue, we incorporate
an additional regularization term into the training objective. It en-
sures the new parameters learned from the external graph remain
close to the parameters previously obtained from the target graph.
Therefore, the loss function for the training model is :

L = Lano +
∑︁
𝑖

𝜆

2
𝐹𝑖𝑖

(
𝜃𝑖 − 𝜃∗𝑖

)2
, (8)

whereLano represents the anomaly detection task loss on the exter-
nal data, the parameter 𝜆 controls the balance between leveraging
external graph data and preserving prior knowledge from target
data, 𝐹 is the fisher information matrix, it quantifies the importance
of each model parameter with respect to the learned knowledge
from 𝐺𝑡 .

4.4 Extension with labeled candidate data
In some practical scenarios where there are external anomaly detec-
tion datasets and abnormal labels the external data is available, our
framework can also be adopted. Such external signal can help to
adopt to real-world anomalous to some degree. Specifically, when
conducting data selection, we measure the representativity and
diversity for labeled normal samples and abnormal samples respec-
tively, taking their average as the final score.

5 EXPERIMENT
In this section, wemainly evaluate the effectiveness ofWild-GAD to
answer the following two questions: (1) Does the selection strategy
employed in our framework effectively measure the quality of the
external data? (2) Does the performance of the anomaly detection
task on the target graph improve with the selected external data?
(3) How much labeling effort can be saved by using our framework?

5.1 Experimental Setup
Datasets For test datasets, we collect six real-world graph datasets
with organic anomalies from a wide spectrum of domains (See the
bottom part of Table 2 for detailed statistics), namely C15 [10],
AmazonCN [50], YelpHotel [34], Twitter-20 [15], Tolokers [35] and
Enron [27]. C-15 is a dataset composed of genuine and fake Twitter
accounts, which are manually annotated. AmazonCN is a propri-
etary data collected from Amazon China. It consist of products
information, users and corresponding Chinese review. YelpHotel
features real hotel reviews from Yelp.com, curated through Yelp’s
proprietary filtering mechanism. Twitter-20 is a comprehensive
sample of the Twittersphere and it is representative of the current
generation of Twitter bots and genuine users. Tolokers is based on
data from the Toloka crowdsourcing platform. The nodes represent
tolokers (workers). Enron is a dataset of emails generated by em-
ployees of the Enron Corporation. More details of data processing
can be seen in Appendix A.
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Table 1: statistic of raw external data in the wild, where * denotes average statics of 16 augmented versions.

Domain Name num_nodes num_edges Description

ex
te
rn

al
da

ta

Co-purchase

P-Learning 651762 24599888 purchase transactions between customers and products for learning
P-Learning-augmented 543135* 14760788* same as above(P-Learning)

P-Electronic 243091 8767392 purchase transactions between customers and products for electronic
P-Electronic-augmented 202576* 5260526* same as above(P-Electronic)

P-Entertainment 606291 31779304 purchase transactions between customers and products for entertainment
P-Entertainment-augmented 505242* 19048777* same as above(P-Entertainment)

P-Household 374523 20448012 purchase transactions between customers and products for household
P-Household-augmented 312102* 12279150* same as above(P-Household)

P-Fashion 297098 14351216 purchase transactions between customers and products for fashion
P-Fashion-augmented 247581* 8592927* same as above(P-Fashion)

YelpNYC 138662 336489504 interaction relationship between users and businesses such as reviews
YelpNYC-augmented 135804* 306434502* same as above(YelpNYC)

YelpRes 28391 35786268 interaction relationship between users and restaurants such as reviews and ratings
YelpRes-augmented 25391* 33186543* same as above(YelpRes)

Social

Reddit 33434 198448 a social network representing reply relationships
Reddit-augmented 28290* 125242* same as above(Reddit)

Instgram 11339 144010 a social network representing following relationships
Instgram-augmented 10258* 133498* same as above(Instgram)

Citation

Cora 2708 10858 citations between Machine Learning papers
Cora-augmented 2291* 6849* same as above(Cora)

Pubmed 19717 88670 citations between scientific papers
Pubmed-augmented 16683* 55742* same as above(Pubmed)

Arxiv 169343 1166243 citations between papers on the arxiv
Arxiv-augmented 143290* 736371* same as above(Arxiv)

Hyper link Wikics 11701 431726 citations between Wikipedia articles
Wikics-augmented 9901* 271760* same as above(Wikics)

Table 2: statistics of target anomaly data

Domain Name num_nodes num_edges num_normals num_abnormals abnormal_ratio

ta
rg
et

da
ta co-purchase YelpHotel 4472 709480 4264 208 4.65%

AmazonCN 7778 6804032 7389 389 5.00%

Social-bot C-15 1890 8494 1219 671 35.50%
Twitter-20 11345 12816 4269 6393 56.35%

Work Collaboration Tolokers 11758 1038000 9192 2566 21.82%
Email-Communication Enron 13533 176987 13528 5 0.04%

Baselines We compare our proposed method with nine unsuper-
vised graph anomaly detection models, including DOMINANT [12],
AnomalyDAE [13], AdONE [2], GAAN [8], CoLA [31], CONAD [53],
DONE [2], GAE [26], OCGNN [47], TAM [36] and RAND [3].
Evaluation Metrics In order to evaluate the performance of our
proposed method and baselines, we adopt two popular and com-
plementary evaluation metrics for anomaly detection, Area Under
the Receiver Operating Characteristic Curve (AUROC) and Area
Under the precision recall curve (AUCPR). Higher AUROC/AUCPR
indicates better performance. All of our results are reported as the
averaged performance with standard deviation of five runs.
Implement details When constructing our database, UniWild-
Graph (introduced in Section 4.1), we align the feature space using
mBERT with a maximum token length of 512. For data selection, we
set the trade-off parameter 𝜂 to 0.5. For the Wasserstein Distance
calculation, we follow the default hyperparameters specified in [44].
For one-class model training, we set the parameter 𝛽 to 0.5. For
the baseline methods, we initialize them with the same parameters
suggested by their default settings. Apart from one-class, we also
adapt our framework to the auto-encoder model and the parameters

are set as the same as the default in [26]. More technique analysis
about this backbone model can be found in Appendix F.

All baseline methods are implemented using the PyGOD pack-
age [29], which is specifically designed for graph anomaly (outlier)
detection. The learning rate for each method (except OCGNN) is set
to 0.1, and the number of epochs is set to 100. For OCGNN, we set
the learning rate to 0.001. The other parameters remain the same as
the default settings in PyGOD. To ensure the successful execution
of experiments on the C15 dataset, we set the hidden dimension to
128 for each method, in addition to the default hyperparameters.
Due to the complexity of the AmazonCN dataset, we set the number
of neighbors in sampling to 5, alongside the base hyperparame-
ter settings. Our codes are available at https://github.com/zjunet/
Wild-GAD.

5.2 Experimental results

Effectiveness of Wild-GAD We evaluate our framework based
on two backbone models (i.e., One-Class (OC) based Model and
Graph-AutoEncoder (GAE)based Model) denoted asWild-GAD(OC)
and Wild-GAD(AE) respectively. We conduct experiments with the
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Table 3: Comparison of AUC-PR of different graph anomaly detection methods; OOM means out of memory, “OC” means
one-class backbone, “GAE” means auto-encoder backbone, “s” and “M” means the external data budget is 1 and 2 respectively,
“UL” and “L” means whether external data are labeled.

Method YelpHotel AmazonCN C-15 Twitter-20 Tolokers Enron
ANOMALOUS 5.99(0.77) 10.21(8.34) 31.01(1.06) 53.76(0.10) 15.32(0.09) 0.07(0.04)

Radar 5.18(0.00) 10.80(0.00) 31.15(0.00) 53.53(0.00) 15.4(0.00) 0.06(0.01)
DOMINANT 3.98(0.10) 6.34(4.38) 54.61(0.21) 53.85(0.86) 25.51(0.29) 0.06(0.02)
AnomalyDAE 4.66(0.82) 11.09(2.48) 36.2(2.87) 57.96(3.63) 20.98(4.23) 0.05(0.01)

AdONE 4.43(0.08) 3.11(0.04) 33.82(2.31) 57.13(1.63) 29.03(2.00) 0.07(0.01)
GAAN 3.68(0.18) 2.88(0.12) 27.57(0.61) 60.05(0.47) 27.77(1.89) 0.12(0.15)
CoLA 4.77(0.15) 5.75(1.40) 45.26(2.95) 58.96(5.57) 21.98(1.25) 0.04(0.01)

CONAD 4.07(0.14) OOM 53.76(1.93) 53.77(0.75) 25.58(0.42) 0.06(0.01)
DONE 4.17(0.18) 10.82(6.67) 29.29(2.86) 59.74(1.09) 26.83(1.28) 0.12(0.15)
GAE 6.09(0.69) 5.04(0.80) 21.67(0.57) 58.84(1.35) 24.87(1.08) 0.05(0.01)

OCGNN 7.04(0.31) 5.36(2.74) 27.41(1.01) 63.52(1.46) 19.57(3.95) 0.09(0.03)
TAM 7.07(0.03) 3.16(0.02) 66.27(0.39) 52.01(0.00) 26.68(0.03) 0.04(0.00)
RAND 3.78 (0.21) 3.43(0.00) 51.79(0.01) 56.35(0.10) 28.96(0.35) 0.05(0.00)

A
U
C-
PR

Wild-GAD(OC/S/UL) 8.65(1.02) 31.99(1.24) 86.85(3.32) 62.32(1.12) 28.93(1.35) 0.13(0.02)
Wild-GAD(OC/M/UL) 8.84(0.64) 35.38(0.54) 89.24(2.45) 64.23(1.25) 30.21(1.21) 0.14(0.13)
Wild-GAD(GAE/S/UL) 8.21(0.12) 33.38(0.63) 85.72(1.78) 70.62(2.25) 30.79(0.89) 0.12(0.05)
Wild-GAD(GAE/M/UL) 8.35(1.53) 34.28(1.24) 87.72(1.28) 72.42(1.05) 32.79(1.39) 0.13(0.05)
Wild-GAD(OC/S/L) 9.32(0.43) 35.65(1.23) 85.45(0.23) 65.12(1.02) 31.61(1.23) 0.14(0.08)
Wild-GAD(OC/M/L) 9.75(0.34) 38.64(1.20) 87.82(1.43) 67.23(0.89) 32.52(2.83) 0.13(0.05)
Wild-GAD(GAE/S/L) 9.14(2.35) 37.64(0.57) 87.45(1.21) 73.68(1.37) 33.21(1.80) 0.15(0.03)
Wild-GAD(GAE/M/L) 9.31(1.27) 38.12(0.67) 88.82(1.04) 74.13(2.24) 34.52(0.46) 0.14(0.04)

Table 4: Comparison of AUC-ROC of different graph anomaly detection methods; OOMmeans out of memory, “OC” means
one-class backbone, “GAE” means auto-encoder backbone, “s” and “M” means the external data budget is 1 and 2 respectively,
“UL” and “L” means whether external data are labeled.

Method YelpHotel AmazonCN C-15 Twitter-20 Tolokers Enron
ANOMALOUS 48.88(2.35) 54.99(9.63) 16.08(0.89) 41.52(0.05) 28.47(0.5) 50.00(8.76)

Radar 46.74(0.00) 56.65(0.00) 15.61(0.00) 42.14(0.00) 28.8(0.00) 52.54(0.00)
DOMINANT 44.81(1.17) 42.30(8.25) 67.49(0.51) 41.62(2.57) 48.05(0.42) 47.85(3.72)
AnomalyDAE 47.53(4.13) 76.93(4.94) 53.98(3.31) 48.98(5.16) 46.91(7.66) 53.17(2.53)

AdONE 46.81(0.59) 23.82(0.98) 52.74(4.76) 45.28(3.20) 53.96(3.10) 43.87(4.51)
GAAN 40.85(1.68) 19.61(3.61) 33.53(1.21) 50.44(0.45) 56.11(1.74) 58.19(8.72)
CoLA 49.83(1.48) 54.38(11.31) 58.04(2.35) 50.02(8.14) 49.33(1.80) 42.03(16.65)

CONAD 45.94(1.59) OOM 78.61(2.27) 41.32(2.71) 48.18(0.63) 47.1(0.80)
DONE 45.71(1.43) 61.9(13.19) 42.05(7.18) 50.03(1.60) 52.27(1.38) 45.69(2.51)
GAE 58.29(3.06) 49.27(9.17) 11.02(5.65) 50.3(3.26) 49.27(1.75) 41.91(10.35)

OCGNN 59.44(1.20) 45.42(12.3) 36.90(3.85) 53.70(1.41) 43.83(6.80) 43.42(9.10)
TAM 62.51(0.17) 22.57(0.33) 83.48(0.34) 36.43(0.01) 60.35(0.13) 45.24(0.01)
RAND 42.59(0.03) 33.51(0.01) 75.92(0.01) 42.58(0.27) 56.85(0.59) 39.95(3.09)

A
U
C-
RO

C

Wild-GAD(OC/S/UL) 66.11(1.20) 80.03(2.57) 97.22(1.23) 54.72(2.32) 54.35(3.80) 66.08(3.10)
Wild-GAD(OC/M/UL) 68.55(1.22) 81.43(1.23) 97.72(1.78) 57.68(1.35) 60.19(0.45) 64.12(0.25)
Wild-GAD(GAE/S/UL) 62.31(0.28) 76.04(1.23) 95.82(1.23) 63.29(1.24) 65.52(1.83) 63.65(2.05)
Wild-GAD(GAE/M/UL) 64.20(0.13) 77.38(0.45) 96.62(1.92) 65.62(1.35) 67.29(0.16) 65.65(1.23)
Wild-GAD(OC/S/L) 68.32(1.32) 82.14(2.31) 97.45(1.23) 58.32(1.32) 55.61(1.23) 64.42(1.32)
Wild-GAD(OC/M/L) 71.31(0.28) 84.64(1.89) 98.82(1.13) 64.13(1.24) 60.52(1.83) 64.02(2.05)
Wild-GAD(GAE/S/L) 64.94(1.35) 78.64(2.57) 96.45(1.03) 67.68(2.32) 66.21(2.80) 63.42(1.18)
Wild-GAD(GAE/M/L) 66.31(2.34) 79.04(1.23) 97.82(1.04) 70.13(1.24) 67.42(0.93) 65.02(2.12)
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selection budget (i.e., the number of datasets selected) of 1 ( denoted
as Wild-GAD(S))and 2( denoted as Wild-GAD(M)) What’s more,
We also test the performance of our framework with exposure to
external labeled anomaly detection datasets. We use Wild-GAD(UL)
to represent the setting that all the external data are unlabeled and
Wild-GAD(L) to represent the external label setting.

Table 4 and Table 3 show the overall AUCROC and AUCPR re-
sults on six real-world GAD datasets. From the results, We have the
following observations that (1) our framework Wild-GAD outper-
forms the baseline methods, having an average 18% AUCROC and
32% AUCPR improvement over the best-competing methods. The
key reason behind the performance improvement can be attributed
to the proper involvement of external data. (2) We find that in most
cases, adding more external data can lead to higher performance
improvements in anomaly detection compared to adding just one
data source, which means more diverse normal patterns have been
seen during training. (3) It can be found that in some cases, com-
pared to only unlabeled external data, the performance of using
labeled external data has little improvement sometimes and even
drops (e.g., dataset Enron and dataset Tolokers). It can be explained
by the abnormal behavior patterns of the external abnormal signal
sometimes can be largely different from that of target data. As our
labeled external data Instagram is from social network, YelpNYC
and YelpRes are co-purchase network, while Enron is an email
network and Tolokers are workers network.
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Figure 2: The score of external data vs. the detection perfor-
mance (AUC-ROC) on different datasets

Effectiveness of selection strategy We evaluate Pearson correla-
tion coefficient between the AUROC performance and the external
data score. A higher coefficient indicates a better estimation. Fig-
ure 3 shows our estimated external data score (in x-axis) versus the
best AUC performance based on WilD-GAD(OC/S/UL) (in y-axis)
of all <external data, target data> pairs (one point represents the
result of one pair). Another correlation display based on GAE back-
bone can be found in Appendix B Figure 3. We find that there is a
strong positive correlation between estimated data score and the
performance on all datasets, which also suggests the significance
of our strategy of selection.
Performance Comparison with Semi-Supervised Methods To
assess the performance of our framework under different levels of
supervision, we extended our comparison to encompass a range
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Figure 3: The score of external data vs. the detection perfor-
mance (AUC-ROC) on different datasets

of label ratios: 1%, 3%, 5%, 10%, 40%, 50%, 60% and 70% of different
semi-supervised methods BernNet [22], AMNet [7], BWGNN [42],
GATSep [58], DCI [48], andGHRN [19]. The outcomes are presented
in Figure 4. We note that Wild-GAD outperforms its counterparts at
label ratios up to 70% based on both AUCROC and AUCPR metrics,
demonstrating the effectiveness of leveraging external data for
graph anomaly detection.
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Figure 4: Comparison with semi-supervised methods under varying
supervision on YelpHotel.

6 CONCLUSION
In this study, we introduce Wild-GAD, an approach that leverages
external graph data through an unsupervised paradigm to address
the challenges in graph anomaly detection (GAD). By developing
the UniWildGraph database, which offers diverse domain coverage
and a unified feature space, we enhance the capability of GAD mod-
els to learn the patterns of normality more effectively. The design
of the strategic data selection process based on representativity and
diversity ensures the relevance and utility of external data for im-
proving anomaly detection performance on specific target graphs.
Extensive experiments on multiple test datasets demonstrate the
effectiveness of our proposed method.
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A Datasets Details
In YelpHotel and AmazonCN, users are represented as nodes, and
an undirected edge is established between them if two users have
both commented on the same hotel or products. The embedding of
each user is calculated as the average on vectors of every text-based
review. It should be noted that the vectorization utilizes the same
feature alignment approach introduced in Section 4.1 to unify the
feature space. To simulate the true situation of business context,
we control the proportion of abnormal nodes as around 5%. Also,
we take the maximal connected subgraph of the resulted graph for
usage. In C-15 and Twitter-20, a directed edge is created between
users when a user follows another user. We filter out users without
comments and use the same method in co-purchase datasets to
calculate user embedding. In Tolokers, an edge connects two tolok-
ers if they have worked on the same task. In Enron, if an address
sends at least one email to another address, the graph contains
an undirected edge between them. We use the same feature align-
ment approach to get node embbedings and get maximal connected
subgraphs for usage in these two datasets.

The Twitter-20 dataset used in our study is initially obtained
from [15], which is designed for Twitter bot detection. It contains
5,237 humans, 6,589 bots (anomalies). In order to preserve the dense
graph structure follow relationship forms, the authors also supply
217,754 unsupervised users (with no labels). In our experiments,
we classify bots as anomalies and apply Twitter-20 for anomaly
detection in social networks. It is worth noting that unsupervised
users are included in the training process, while evaluation is based
solely on labeled samples. To maintain dataset integrity, we remove
inactive users (those who have no posts, followers, or followings).
We then organize the remaining users into a complete graph with-
out further processing, preserving the original characteristics of
Twitter-20. In the final version of Twitter-20 used for our study,
there are 4,269 humans, 6,393 bots, and 683 unsupervised users. This
results in a higher proportion of anomalies in Twitter-20 compared
to normal users.

B Discussion about graph data in the wild
In general, "data in the wild" refers to real-world data collected from
natural environments characterized by diversity, unstructured and
inconsistent formats, and label scarcity. This data typically comes
from various sources and domains, making it more challenging
to process compared to clean, curated datasets [18]. In our con-
text, "graph data in the wild" refers to external graph data sourced
from multiple real-world domains, including e-commerce, social
networks, citation networks, and hyperlink networks. This aligns
with findings in the literature that emphasize the need for diverse
data sources to enhance model performance [42]. To enhance our
collected graph data in the wild, we applied several augmentation
techniques with varying ratios to increase diversity. More impor-
tantly, similar to the survey literature on data in the wild, graph
data in the wild also exhibits unstructured and inconsistent for-
mats, and label scarcity characteristics. Accordingly, to address
the heterogeneity of features across these datasets, we performed
unified feature processing. Since most graph data in the wild lacks
labels, our framework focuses on leveraging unlabeled data, making
unsupervised techniques crucial for effectively utilizing this data.

C Regarding the extra noise introduced by
external data

We have considered the potential extra noise introduced by external
data and correspondingly adopt several strategies. We introduce
a representativity criterion during the selection of external data,
focusing on the similarity between the external graphs and the
target graph. This criterion helps ensure that the selected external
data shares common characteristics with the target data, thereby
reducing the likelihood of incorporating irrelevant or misleading in-
formation. What’s more, the application scope (which target dataset
can potentially benefit from our work) of our framework can be
characterized by the threshold of our calculated data score. Target
data that does not meet this threshold is excluded from consider-
ation, thereby avoiding potential biases introduced by irrelevant
external data and preventing a decrease in model performance.

D Ablation Studies
To evaluate the effectiveness of our criteria, we conduct ablation
studies on the absence of representativity and Diversity criteria,
as Wild-GAD-R and Wild-GAD-D respectively based on one-class
model. As shown in Table 5 and Table 6, we found that performance
declines in both cases without representativity or diversity, indi-
cating that both criteria are crucial for robust anomaly detection.
Specifically, for the YelpHotel and C-15 datasets, there is a signif-
icant drop in performance without representativity. This can be
attributed to the small scale of these datasets and is vulnerable to
external noise. When incorporating external data without a sim-
ilarity constraint, the model’s understanding of normal patterns
can become distorted, leading to decreased accuracy in anomaly
detection. While for larger datasets like Twitter-20 and Tolokers,
diversity plays a more critical role by enhancing the model’s ability
to capture a broader range of normal patterns.

E Regarding increasing the selection budget.
We conducted experiments using 3 and 5 external data budgets
within the Wild-GAD(OC/UL) settings, and we report the perfor-
mance in Table 7 and Table 8: Wild-GAD(OC/T/UL) and Wild-
GAD(OC/F/UL), respectively. We have found that generally, after
increasing the external data budget, the performance can have some
improvement due to introducing more data and expose more nor-
mal patterns to the model, but the improvement can be very little
and slightly, especially when the number of external data achieves
5. This can be explained by the fact that, after a certain point, ad-
ditional external data may not contribute significantly to learning
new normal patterns, as the model may have already captured the
essential behaviors from a smaller subset of the external data.

F GAE Backbone
Our framework is primarily designed with one-class SVDD as the
backbone. However, we also seek to demonstrate the flexibility
of our approach by incorporating GAE-based anomaly detection,
which is a widely used and well-established method in the field.
When employing GAE-based methods, the training objective and
the score function have corresponding adaptations. GAE-based
anomaly detection methods aim to leverage graph autoencoder to
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Table 5: Ablation Study AUC-PR Comparisons

Method YelpHotel AmazonCN C-15 Twitter-20 Tolokers Enron
Wild-GAD-R(OC/S) 4.54(1.34) 18.72(1.98) 68.66(1.54) 61.12(1.06) 25.17(2.34) 0.10(0.02)
Wild-GAD-D(OC/S) 7.34(1.62) 24.52(1.87) 84.23(2.31) 59.13(0.98) 25.12(1.23) 0.11(0.02)
Wild-GAD(OC/S) 8.65(1.02) 31.99(1.24) 86.85(3.32) 62.32(1.12) 28.93(1.35) 0.13(0.02)
Wild-GAD-R(OC/M) 5.86(2.60) 17.13(2.25) 67.62(2.08) 54.24(1.56) 23.65(2.43) 0.09(0.02)
Wild-GAD-D(OC/M) 6.76(0.31) 23.12(0.43) 83.12(1.54) 53.12(3.12) 24.12(1.14) 0.12(0.03)
Wild-GAD(OC/M) 8.84(0.64) 35.38(0.54) 89.24(2.45) 64.23(1.25) 30.21(1.21) 0.14(0.13)

Table 6: Ablation Study AUC-ROC Comparisons

Method YelpHotel AmazonCN C-15 Twitter-20 Tolokers Enron
Wild-GAD-R(OC/S) 52.13(2.12) 70.34(2.38) 89.13(2.32) 55.09(2.45) 53.32(3.45) 62.87(2.98)
Wild-GAD-D(OC/S) 61.72(1.87) 76.48(2.51) 93.62(1.83) 53.98(1.31) 52.99(2.12) 63.81(1.70)
Wild-GAD(OC/S) 66.11(1.20) 80.03(2.57) 97.22(1.23) 54.72(2.32) 54.35(3.80) 66.08(3.10)
Wild-GAD-R(OC/M) 53.46(1.95) 71.91(2.45) 87.24(3.09) 55.15(2.67) 52.38(2.45) 61.98(2.01)
Wild-GAD-D(OC/M) 64.43(1.49) 77.12(1.45) 94.65(2.01) 51.13(1.42) 55.12(2.56) 63.03(0.98)
Wild-GAD(OC/M) 68.55(1.22) 81.43(1.23) 97.72(1.78) 57.68(1.35) 60.19(0.45) 64.12(0.25)

Table 7: Increasing selection budget AUC-PR Comparisons

Method YelpHotel AmazonCN C-15 Twitter-20 Tolokers Enron
Wild-GAD(OC/S/UL) 8.65(1.02) 31.99(1.24) 86.85(3.32) 62.32(1.12) 28.93(1.35) 0.13(0.02)
Wild-GAD(OC/M/UL) 8.84(0.64) 35.38(0.54) 89.24(2.45) 64.23(1.25) 30.21(1.21) 0.14(0.03)
Wild-GAD(OC/T/UL) 8.95(1.34) 35.79(1.03) 88.49(2.12) 64.82(1.24) 30.06(1.26) 0.12(0.02)
Wild-GAD(OC/F/UL) 8.82(1.25) 35.98(1.04) 89.13(1.97) 64.67(1.35) 29.67(1.44) 0.14(0.03)

Table 8: Increasing selection budget AUC-ROC Comparisons

Method YelpHotel AmazonCN C-15 Twitter-20 Tolokers Enron
Wild-GAD(OC/S/UL) 66.11(1.20) 80.03(2.57) 97.22(1.23) 54.72(2.32) 54.35(3.80) 66.08(3.10)
Wild-GAD(OC/M/UL) 68.55(1.22) 81.43(1.23) 97.72(1.78) 57.68(1.35) 60.19(0.45) 64.12(0.25)
Wild-GAD(OC/T/UL) 68.29(1.08) 82.19(1.29) 97.49(1.36) 58.02(1.22) 59.98(2.26) 66.55(1.01)
Wild-GAD(OC/F/UL) 67.99(1.35) 82.35(1.41) 98.02(1.59) 57.79(1.49) 60.13(1.18) 65.24(0.79)

reconstruct the with the assumption that normal data can be recon-
structed well while abnormalities will induce large reconstruction
loss. Specifically, let 𝑓𝐸 represent the graph encoder, the graph de-
coder, and 𝑍 = 𝑓𝐸 (𝐴,𝑋 ) ∈ R𝑁×𝑑ℎ as the embeddings generated by
the encoder. The training objective minimizes the reconstruction
loss between the original adjacency matrix𝐴 and the reconstructed
adjacency matrix𝐴 = sigmoid(𝑍𝑍⊤) , and between the original fea-
ture matrix 𝑋 and the reconstructed feature matrix 𝑋 = 𝑓𝐷 (𝐴,𝑍 ).
The training objective is the reconstruct loss, which is defined as
follows: LGAE = (1 − 𝛼)∥𝐴 −𝐴∥2

𝐹
+ 𝛼 ∥𝑋 − 𝑋 ∥2

𝐹
, then we take the

scoring function of the GAE-based model as the reconstruction loss
itself to determine the normal nodes and anomalies.

G Regarding relation with fine-tuning.
Both our method and the conventional pre-train and fine-tune
paradigm take advantage of external data, but there are notable
differences between the two approaches. The conventional graph

pre-train and fine-tune paradigm leverages a large amount of ex-
ternal data during the pre-training phase to learn generalizable
knowledge [5, 20, 51]. The pre-trained models are then fine-tuned
on downstream tasks, using the specific target data to refine the
learned features and align them more closely with the task require-
ments. In this framework, fine-tuning typically relies on the avail-
ability of a supervision signal from the downstream data, which
guides the adjustment of the pre-trained model to better suit the
target task [14, 24, 40]. However, in our unsupervised anomaly
detection, the goal is to learn the distribution of normal patterns
from the target data. By training on the target graph first, the model
captures the fundamental normal behaviors specific to that dataset.
This ensures that the core representation learned by the model is
closely aligned with the characteristics of the target data. Once the
model has established a basic understanding of the target graph, we
then introduce external graph data to expand its knowledge of nor-
mal patterns by incorporating diverse behaviors. The external data
is used to supplement and reinforce the learned normal patterns,
providing a richer context for the model.
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