
Handling Feature Heterogeneity with Learnable Graph Patches
Yifei Sun

Zhejiang University
Hangzhou, China

yifeisun@zju.edu.cn

Yang Yang∗
Zhejiang University
Hangzhou, China
yangya@zju.edu.cn

Xiao Feng
Zhejiang University
Hangzhou, China

functionendless@zju.edu.cn

Zijun Wang
Zhejiang University
Hangzhou, China

zwang745@ucsc.edu

Haoyang Zhong
Huazhong University of Science and

Technology
Wuhan, China

haoyangzhong@hust.edu.cn

Chunping Wang
Finvolution Group
Shanghai, China

wangchunping02@xinye.com

Lei Chen
Finvolution Group
Shanghai, China

chenlei04@xinye.com

Abstract

In recent years, the rapid development of foundation models and
graph pre-training technologies has spurred increasing interest in
constructing a universal pre-trained graph model or Graph Founda-
tion Model (GFM). However, a significant challenge is that existing
models are unable to address feature heterogeneity in graph data
without textual information, which hinders the transferability of
graph models across different datasets. To bridge this gap, we pro-
pose the concept of learnable graph patches, which we regard as the
smallest semantic units of any graph data. We decompose the graph
into learnable graph patches by unfolding the node features and
constructing corresponding patch structures separately. We then de-
sign PatchNet1, a framework that mines transferable information
from graph data across domains. Specifically, after extracting graph
patches, we propose a patch encoder to extract knowledge from
each unit and a patch aggregator to learn how the units is combined
into a whole. Due to its domain-agnostic nature, the model can be
applied to downstream data across different domains. Furthermore,
we analyze the connection between PatchNet and existing graph
models, as well as the transferability of the node embeddings it gen-
erates. Empirically, our approach not only achieves the capability
to use multi-domain graphs for pre-training but also demonstrates
continuous improvement in various downstream datasets and tasks.
Moreover, we observe consistent improvement in downstream per-
formance as the volume of pre-training data increases.

∗Corresponding author.
1Code is available at https://github.com/zjunet/PatchNet.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’25, August 3–7, 2025, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1245-6/25/08
https://doi.org/10.1145/3690624.3709242

CCS Concepts

• Networks→ Network algorithms.

Keywords

graph neural networks, graph pre-training, feature heterogeneity

ACM Reference Format:

Yifei Sun, Yang Yang, Xiao Feng, Zijun Wang, Haoyang Zhong, Chun-
ping Wang, and Lei Chen. 2025. Handling Feature Heterogeneity with
Learnable Graph Patches. In Proceedings of the 31st ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining V.1 (KDD ’25), August
3–7, 2025, Toronto, ON, Canada. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3690624.3709242

1 Introduction

Graph, as a prevalent data structure, is ubiquitous in a wide range of
applications, such as social network analysis [51], bio-informatics
[53], finance [52], etc. These graphs form a vast knowledge base,
encompassing rich and comprehensive information across various
fields. With the advancement of graph neural networks (GNNs) and
pre-training techniques, the development of universal graph pre-
train models or graph foundation models (GFMs) to absorb knowl-
edge across diverse graphs has gained significant attention [18, 22].

However, efforts to create transferable pre-trained models have
faced numerous challenges. The reason is that graph data exhibits
more complex heterogeneity compared to images in computer vi-
sion (CV) and sentences in natural language processing (NLP). One
reason is that from a structural perspective, graph data exhibits
vastly different patterns across various domains. For example, ben-
zene rings are commonly found in molecular graphs, while triangles
frequently appear in social networks. Fortunately, this issue has
seen considerable breakthroughs in recent research [26, 62].

On the other hand, feature heterogeneity poses significant chal-
lenges and has been less explored due to its complex nature. Specif-
ically, the sources of node information in graph data can be various,
and the process of converting raw data into features also varies
greatly. This leads to node features in different graph datasets po-
tentially existing in entirely different semantic spaces. For example,

https://github.com/zjunet/PatchNet
https://doi.org/10.1145/3690624.3709242
https://doi.org/10.1145/3690624.3709242
https://doi.org/10.1145/3690624.3709242

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Yifei Sun et al.

Tokenization

Social Patch Transaction Patch

Others

Feature
of Node

Leanable
Graph Patch

Corresponding
Structure

A Channel of
Node Tokens

+

Graph
Structure

Figure 1: Decomposing a graph into graph patches. The upper

side is an input graph (financial network as example). The

lower side shows two of the decomposed graph patches. The

first patch represents a social network, utilizing the social

attributes of users for its node token, with edges indicating

similarities in social aspects. The second patch is a transac-

tion network, featuring nodes characterized by transactional

information, where edges reflect transactional similarities.

node features in molecular graphs might be manually annotated
by experts in laboratories without further processing, whereas in
financial networks, features could be derived from tabular data
using some feature selecting method.

One existing solution involves introducing text feature and using
LLMs to map these into a common space [17]. However, most graph
data do not include text as part of the node information, and in
some cases, the original node information cannot be provided due to
privacy concerns. Another approach is to use simple singular value
decomposition (SVD) to convert feature to the same length [61],
but this only standardizes feature length without explicitly aligning
node features across different graphs. Thus, effectively addressing
feature heterogeneity on graphs becomes crucial for building a
unified graph pre-training model.

The core challenges in handling Feature Heterogeneity include,
firstly, the difficulty in extracting meaningful and transferable in-
formation from the vastly diverse features across different graph
data. Secondly, how to preserve such transferable information using
a scalable model during the pre-training process also presents a
significant challenge. In this paper, we propose that the associa-
tion of feature structures could be the key to transferability. Hence,
we aim to consider both node features and structural information
when addressing feature heterogeneity. The key idea is to design
a learnable graph patching module which is adaptable to various
kinds of feature and train it to extract the transferable information
to boost performance of downstream tasks.

First, we propose that each graph can be seen as a complex object
consisting of graph patches. As the example shown in Fig. 1, the
financial network on the upper side can be decomposed into a series

of graph patches, including a social graph patch and a transaction
graph patch, among others. Each graph patch contains a piece
of relatively independent and transferable information from the
original graph. Note that the node tokens 𝑇 of each graph patch 𝑃
are derived from the unfolding of the original node features, and its
graph structure𝐴 is learned from both the original structure and the
node tokens. We propose that such graph patches preserve the basic
transferable information between graphs, as other graphs may also
be decomposed into similar social and transactional information.

Second, we propose to build a scalable graph model, PatchNet,
to encode the captured information in the learnable graph patches.
Specifically, we first extract learnable graph patches from original
graph, which are composed of node tokens and corresponding
structure. Since the transferable information is hidden in the graph
patches, we design a patch encoder to aggregate graph patch of each
channel. Then we build a patch aggregation module to learn how
to combine these transferable information across graph patches.
Our method is the first one that can be pre-trained on data across
domains without the need for text or other side information, and
can be applied to downstream data across domains. Additionally,
the high degree of modularity of our model allows for stacking to
scale up the model’s parameter. Finally, we evaluate our model on
both existing settings and our new setting. The results indicate that
this is a promising step toward building a GFM.

The contribution of this paper are summarized as follows:
• We propose the concept of learnable graph patches to handle
feature heterogeneity, which enables the preserving of multi-
domain knowledge across different graphs.
• We propose a graph model, PatchNet, composed of patch
encoder and patch aggregator for generalized graph pre-
training. We analyze the obtained embedding quality and
the correlation between PatchNet and existing models.
• We empirically prove the effectiveness of PatchNet in vari-
ous settings which demonstrate the superior performance
across multiple graph datasets and tasks.

2 Related Work

Tackling feature heterogeneity. Developing transferable GNNs
or GFM has always been a hot topic of research in the graph com-
munity. One of the great challenges is dealing with feature hetero-
geneity [18, 22]. Existing methods for graph pre-training or transfer
learning suffer from feature heterogeneity due to varying feature
origins and semantic spaces. OFA [17] manually converts heteroge-
neous features into textual descriptions using LLMs. However, most
of the graphs mainly contain feature attributes without either side
information like text or homogeneous origin. GCOPE [61] employs
domain-specific virtual nodes that serve as inter-connectors linking
nodes across various domains. Although these virtual nodes enable
connections between domains, they only applied SVD to address
feature heterogeneity without explicitly capturing the transferable
information. However, we propose to use learnable graph patches to
capturing transferrable information within feature heterogeneity.
Graph patching or tokenization. Due to the complex non-
Euclidean nature of graph data, many existing studies have ad-
dressed the associated challenges by decomposing graphs into

Handling Feature Heterogeneity with Learnable Graph Patches KDD ’25, August 3–7, 2025, Toronto, ON, Canada

smaller units like patches or tokens to enable more effective mod-
eling and information extraction. These methods can be catego-
rized into 4 types based on the granularity of the decomposition:
node-level, path-level, subgraph-level, and combination-level. The
most common approach is node-level decomposition, a method
employed by various graph transformers [6, 24, 28, 54]. The ad-
vantage of this level is the natural way of segmentation, although
it does not reduce the complexity of the graph structure. Next is
the path level: PathNet [35] enhances the discriminability of graph
models on heterophily graphs by capturing path patterns, while
PathNNs [23] theoretically demonstrate that capturing full-range
paths can enhance both expressiveness and model performance.
The subgraph level includes NAGphormer [2], which efficiently
improves node classification on large graphs by aggregating each
layer of neighbors as separate patches, and GPatcher [60], which
proposes aggregating 𝑝 neighbors for each node based on topology
and node features in heterophily graphs; Graph ViT [9] employs
METIS for graph segmentation, validating that ViT-like approaches
can also be effective on graphs. The final category is the combina-
tion level, to which our method belongs. We propose that learning
such patch is transferable across graphs because these learnable
graph patches can learn common unit information across graphs
even with feature heterogeneity.

3 Method

Notations. We denote a graph as G = (𝑉 ,𝐴,𝑋) and 𝑁 is the
number of nodes,𝐴 ∈ {0, 1}𝑁×𝑁 is the adjacency matrix and𝑋ori ∈
R𝑁×𝐷 is the node attribute matrix where 𝐷 is the dimension of
attributes that differs across domains. Due to feature heterogeneity,
we normalize the node attributes as 𝑋 ∈ [0, 1]𝑁×𝐷 .
Overview. The overall architecture of PatchNet is shown in Fig. 2
and the full algorithm can be found in Appendix. As discussed in
Sec. 1, the goal is to handle feature heterogeneity between graphs in
order to transfer the knowledge from various pre-training datasets
into target downstream datasets. Moreover, we propose that the
key is to build learnable patches that can capture the inherent fea-
ture and structure correlation. After obtaining graph patches, we
first perform an encoding within each graph patch to obtain the
inner-patch embedding, known as the Patch Encoder. Subsequently,
we aggregate across all patches, referred to as Patch Aggregation,
to produce the final node embedding 𝐹 , which can be used for
node classification or graph classification after pooling. This com-
plete processing represents one layer of PatchNet, meaning that
the entire process can be repeated multiple times to capture more
extensive and richer patch information.

3.1 Building Structure-aware Graph Patches

The construction of graph patches consists of two parts: the formu-
lation of node tokens and patch structure learning.

Definition 3.1 (Unfolding Node Tokens). Given a graphG = (𝑉 ,𝐴,𝑋),
the normalized attributes of each node𝑋𝑖 ∈ [0, 1]𝐷 can be unfolded
into node tokens 𝑇𝑖 ∈ [0, 1]𝐾×𝑀 , where 𝐾 is the number of chan-
nels of node tokens and𝑀 is the token size. This can be formalized
as follows:𝑇 𝑙

𝑖
= 𝑋 [𝑖, 𝑠𝑡𝑎𝑟𝑡𝑙 : 𝑒𝑛𝑑𝑙], 𝑠𝑡𝑎𝑟𝑡𝑙 = 𝑆×𝑙, 𝑒𝑛𝑑𝑙 = 𝑆×𝑙+𝑀, 𝑙 =

0, ..., 𝐾 , 𝑀 is the size of each token, step 𝑆 refers to the stride of

the unfolding window, which can be calculated by 𝑆 = ⌊𝐷−𝑀
𝐾
⌋.

Here, each token 𝑇 𝑙
𝑖
∈ [0, 1]𝑀 , 𝑙 ∈ 1, ..., 𝐾 is a smaller information

unit of node. Each channel of tokens for all nodes is denoted as
𝑇 𝑙 ∈ [0, 1]𝑁×𝑀 . Hence, the node token matrix of this graph is
𝑇 ∈ [0, 1]𝑁×𝐾×𝑀 .

The node token in Fig. 1 is represented by the tokenized pink
vectors, which are extracted from the original node features. The
core idea is to use the tensor unfold operation to losslessly expand
each node’s features into tokens. This unfold operation resembles
the first half of a convolution operation, which is akin to spreading
out potentially useful information. The single channel of tokens for
all nodes in the graph contains a single perspective of all features.
Relation between node tokens. We explain the following two re-
lations: The relation between node tokens on the same node 𝑇 1

𝑖
,𝑇 2
𝑖

and the relation between node tokens across different nodes 𝑇 𝑙1 ,𝑇
𝑙
2 .

Note that subscripts represent node indices, while superscripts
denote token or patch indices. 𝑇 𝑙

𝑖
= 𝑋 [𝑖, 𝑠𝑡𝑎𝑟𝑡𝑙 : 𝑒𝑛𝑑𝑙], the neigh-

boring 𝑇 1
𝑖
,𝑇 2
𝑖
share the overlap feature. Since 𝑠𝑡𝑎𝑟𝑡1 < 𝑠𝑡𝑎𝑟𝑡2 <

𝑒𝑛𝑑1 < 𝑒𝑛𝑑2 and 𝑒𝑛𝑑1 − 𝑠𝑡𝑎𝑟𝑡2 = (𝑀 − 𝑆), the shared part between
𝑇 1
𝑖
,𝑇 2
𝑖
is a subset of token 𝑇 1

𝑖
. Since the process of splitting tokens

from node features does not involve interactions between nodes,
the relationship between 𝑇 𝑙1 ,𝑇

𝑙
2 is similar to that between 𝑋1, 𝑋2,

meaning that they are relatively independent.
After we formulate tokens from each node with the original

structure (dotted edges in Fig. 2), we then introduce a structure
learning method to derive learnable graph patches based on the
original graph structure and node tokens. This part is our key to
handling feature heterogeneity across graphs.

Definition 3.2 (Learning Graph Patches). Given a channel of to-
kens𝑇 𝑙 and the original graph structure𝐴, a graph patch is denoted
𝑃𝑙 =

(
𝑇 𝑙 , 𝐴𝑙

)
, where 𝑙 = 1, ..., 𝐾 . Here, 𝐴𝑙 ∈ {0, 1}𝑁×𝑁 is learned

for each token channel 𝑙 with a shared graph learner Ψ in parallel.
That is, 𝐴𝑙 = Ψ(𝑇 𝑙 , 𝐴).

Thus, a graph can be divided into 𝐾 learnable graph patches
for further modeling. We propose that the key to tackling feature
heterogeneity is to find/learn the transferable information across
different graphs. Here we propose to design a learnable module to
extract the graph patches that contain feature-structure correlation
information. In other words, the learned graph patches themselves
are not transferable, but the learning mechanism within the param-
eters of graph learning module is transferable. Note that the graph
learner module are learned simultaneously with patch encoder and
aggregator which are introduced in following sections.

There are many ways to construct such a graph learner module.
In this paper, we utilize an attention-based approach.

𝑆𝑖, 𝑗 = 𝑓𝜙 (𝑊 ⊙ 𝑇 𝑙𝑖 ,𝑊 ⊙ 𝑇
𝑙
𝑗), (1)

𝐴𝑖, 𝑗 (𝑇) =
{
𝜎 (𝑆𝑖, 𝑗), 𝑗 ∈ top-k(𝑆𝑖,:)
0, 𝑗 ∉ top-k(𝑆𝑖,:)

, (2)

where 𝑇 𝑙
𝑖
and 𝑇 𝑙

𝑗
denote two node tokens, ⊙ is the Hadamard oper-

ation,𝑊 is a learnable parameter vector, 𝑓𝜙 denotes the similarity
metric such as cosine similarity, 𝜎 stands for non-linear activation
function like relu. Moreover, we employ residual connections to

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Yifei Sun et al.

odes
1~

odes
1~

Patches
1~K

Transformer Block

Token-wise Pooling

ode Embeddings
Z

Original
Structure A

Input graph
of any domain

Node Feature
/ Embedding

Unfolding

Node Tokens

Channel 1

Channel 2

Channel 3 (K)
Graph Patching

Structure
Learning

Structure
Learning

Patch
Encoder

Structure
Learning

Share
Weights

Share
Weights

Patch
Encoder

Patch
Encoder

Patch
Aggregation

Share
Weights

X / F
F

Input for Next Layer

Input as sequence

Graph PatchesT P

Figure 2: Overall architecture of PatchNet. (a) Building Graph Patches: The input node attributes 𝑋 are unfolded into multiple

node tokens, which are then paired with a graph learner to form patches. (b) Encoding Patches: Each patch is encoded using a

shared-parameter encoder, resulting in patch embeddings 𝑍 without information passing between patches. (c) Aggregating

Patches: Patch embeddings are aggregated within each node to yield the final node embeddings 𝐹 .

update the learned𝐴 to accelerate and stabilize the training process:

𝐴 = 𝛼𝐴 + (1 − 𝛼)𝐴 (3)

where 𝛼 stands for the trade-off parameter for how much trainable
structure to adopt.

3.2 Theoretical Analysis of Graph Patches

Fundamental assumption. The success of transfer learning relies
on the pre-training and downstream data having similar distribu-
tions as model inputs [63]. Compared to the original graph, patches
of the same granularity are more likely to exhibit similar distribu-
tions, as the extracted tokens have the same dimensions, and the
patch structures are learned by a transferable graph learner. This
enables the model to transfer learned knowledge effectively when
modeling and aggregating patches across different datasets.
Physical meaning. Any graph data is partitioned into learnable
graph patches 𝑃𝑙 = (𝑇 𝑙 , 𝐴𝑙) with the same token feature space
𝑇 𝑙 ∈ [0, 1]𝑁×𝑀 and the same space of learned structure 𝐴𝑙 ∈
{0, 1}𝑁×𝑁 , representing the division into smaller graph patches
with the same Cartesian Product space of𝑇×𝐴. Ultimately, patching
reduces the distributional differences between Pr(𝑇 (𝐺𝑎), 𝐴(𝐺𝑎))
and Pr(𝑇 (𝐺𝑏), 𝐴(𝐺𝑏)) of different graphs 𝐺𝑎,𝐺𝑏 .
Relation among patches. Note that when generating node to-
kens 𝑇 1,𝑇 2 from the original node features, we use an unfolding
operation with overlap (𝑇 1∩𝑇 2 ≠ ∅). The𝐴 of each patch is learned
based on the same 𝐴. Thus, the information between two adjacent
patches (adjacent in the token splitting process) partially overlaps,
which means these patches are not entirely independent. On the
other hand, since the node tokens obtained through unfolding can
be restored via the folding operation (

⋃𝐾
𝑙=1𝑇

𝑙
𝑖
= 𝑋𝑖 , 𝑖 = 1, ..., 𝑁),

all the patches can be combined to reconstruct the original graph (⋃𝐾
𝑙=1 𝑃

𝑙 = 𝐺 (𝑋,𝐴)).

3.3 Encoding and Aggregating Graph Patches

In this section, we introduce scalable graph patch encoder and
aggregator to extract transferable knowledge in graph patches.
Encoding Graph Patches. We propose a dual-branch attention
mechanism to adaptively encode the patches. Specifically, given
each token 𝑇 𝑙 ∈ [0, 1]𝑁×𝑀 , the original 𝐴 and learned 𝐴, the 𝑙-th
patch are encoded in following two steps: we first use GNN with
shared parameters to respectively encode both the learned patches
and the combination of the original graph with node tokens.

𝐻 𝑙 = Φ(𝑇 𝑙 , 𝐴), 𝐻 𝑙 = Φ(𝑇 𝑙 , 𝐴(𝑇 𝑙)), (4)

where Φ denotes a GNN. This results in embeddings𝐻 𝑙 , 𝐻 𝑙 , both
in R𝑁×hid. Then we combine both 𝐻 𝑙 and 𝐻 𝑙 to get the representa-
tion of the 𝑙-th patch of the whole graph.

𝑓MLP (𝐻 𝑙 | |𝐻 𝑙) = 𝐸 ∈ R𝑁×2, 𝛿 (𝐸) = 𝛽 ∈ (0, 1)𝑁×2, (5)

where 𝑓MLP is a two-layer MLP and 𝛿 stands for Softmax operation.
The Softmax operation is applied along the second dimension to
produce normalized importance scores 𝛽 . Finally, we utilizes the
scores 𝛽 to combine 𝐻 𝑙 , 𝐻 𝑙 .

𝑍 𝑙 =
∑︁

𝛿 (𝐸), (6)

where the summation is applied along the second dimension.
The output 𝑍 𝑙 ∈ R𝑁×hid (𝑙 = 1, ...𝐾) is encoded patch embedding
for 𝑁 nodes.

Handling Feature Heterogeneity with Learnable Graph Patches KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Aggregating Graph Patches. For images or natural languages,
after extracting the patches, it is vital to combine with positional
embedding before aggregating the patches. However, the positional
embedding of tokens, and even that of each dimension of node
attributes, is meaningless for graph data. For example, in a social
network where users are nodes, swapping the age and gender at-
tributes does not affect the information of the nodes or the graph
itself. Thus, we directly feed the patch embeddings into the patch
aggregation process. Moreover, since we have node-wisely (along
the 1st dimension) aggregated the tokens with graph structure, we
propose to patch-wisely (along the 2nd dimension) aggregate the
patches for every node.

One straight way is to aggregate all the patches through a MLP-
based module. However, since PatchNet is designed to transfer
across different domainswhich can not guarantees the same number
of patches, we propose to employ a module with unlimited capacity
of aggregation length, transformer block. It enables PatchNet to
capture contextual information throughout the entire feature. Given
𝑍 ∈ R𝑁×𝐾×hid as input, the

𝑈 = LayerNorm(MHA(𝑍)), (7)
𝑈 ′ = LayerNorm(FFN(𝑈)), (8)
𝐹 = Pooling(𝑊 ′) (9)

where MHA function computes the attention for each of the ℎ
heads and concatenates them together, FF function applies two
linear layers with ReLU activation in between, LayerNorm is used to
provide training stability and the Pooling refers to pooling along the
direction of𝐾 patches. Thus, we get the final embeddings 𝐹 ∈ R𝑁×𝑓 .
Overall, the time complexity of patch aggregation is O(𝑁𝐾2) .

It is noteworthy that, through the aggregation within patches
and between patches, only one layer of the proposed framework
is completed. Similar to the concept of the layer in classical GNNs,
we can stack multiple layers of PatchNet. Specifically, when using
PatchNet for the first layer, the input features are the original
node features. In the second layer of using PatchNet, we perform
a new layer of graph patch construction and modeling based on
the node embeddings generated in the first layer.

3.4 Pipeline and Intuition

In this section, we aim to illustrate the process of using PatchNet
during pre-training and fine-tuning, and to explain the intuition
behind our model’s ability to handle feature heterogeneity.
Detailed Implementation. Firstly, we shuffle multiple datasets
and feed them into PatchNet. We segment all graphs into graph
patches and encoding and aggregating graph patches to get node
embedding. Then, we use existing self-supervised tasks to enable
PatchNet to learn transferable information across graph datasets.
During downstream fine-tuning, the downstream data must also
be segmented according to the patching steps shown in Sec. 3.1.
The major difference in fine-tuning is that the tasks are switched to
downstream tasks. After fine-tuning on the training data, we use
the tuned PatchNet to infer on the test set.

Here we give the analysis of time complexity of PatchNet.
The pre-processing the tokens takes O(𝑁𝐾𝑀), where number of
patches is 𝐾 and token size is𝑀 . The encoding of structure-aware
graph patches is divided into two parts: For the structure learning

Figure 3: The decomposed operation of PatchNet from the

perspective of MPNN.

part, we account for complexities involving locality-sensitive kNN
sparsification post-processing [8], where neighbors of each node are
selected from a batch of nodes (batch size = 𝑏, hidden dimension
≈ 𝑀). Thus, the complexity is O(𝑁𝑀2 + 𝑁𝑀𝑏) [21]. The GNN
aggregation typically takes O(𝑁 + 𝐸). Lastly, patch Aggregation
takes O(𝑁𝐾2). Hence, the overall complexity is: O(𝑁 (𝐾𝑀 +𝑀2 +
𝑀𝑏 + 𝐾2)).
Intuition. Here we intuitively explain why the proposed graph
patch learning is transferable to tackle feature heterogeneity. The
success of transfer learning relies on the pre-training and down-
stream data having similar distributions as model inputs [63]. Com-
pared to the original graph, patches of the same granularity are
more likely to exhibit similar distributions, as the extracted tokens
have the same dimensions and the patch structures are learned
by a transferable graph learner. This enables the model to trans-
fer learned knowledge effectively when modeling and aggregating
patches across different datasets. Note that Fig. 1 is merely illustra-
tive, assuming that in a financial network, some features represent
social information while some represent transaction information.
In reality, the token features in the data may not always correspond
to clearly defined or linguistically describable aspects. Thus, we
use the the learnable parameters in structure learning module to
automate learning the patch construction.

Sincewe have learned the transferable information across datasets
during patch extraction, we further preserve these information by
encoding and aggregating the patches. Then, we use encoder to
acquire knowledge within graph patches with the same informa-
tion granularity. Subsequent transformer-based patch aggregation
learns how different graphs combine these graph patches. In sum-
mary, the information transferred by PatchNet is encapsulated
within the extracted graph patches. The richer the variety of graph
patches during pre-training, the more likely it is that similar graph
patches will be encountered in downstream data, thus enhancing
downstream performance.

3.5 Model Analysis

Connection to others. Compared to the existing graph pre-
training backbone, where only transferable information could be
learned from a complete graph, dividing the graph into patches
allows for learning both fine-grained inner-patch patterns and cor-
relations between coarse-grained inter-patches information. In this
section, we analyze the correlation between PatchNet, existing
MPNNs and other graph transformers.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Yifei Sun et al.

Figure 4: The SVE and LSVR of the embedding generated by

PatchNet.

Theoretically, PatchNet can be seen as a decoupled version of
existing MPNNs. Formally, each layer of an MPNN can be formu-
lated as the combination of “propagation” and “transformation”:

H = 𝜎
(
ÂXW), Â = D̃−

1
2 ÃD̃−

1
2 , (10)

where 𝑊 is the weight matrix of the “transformation” process.
As shown in Fig. 3, our patch encoder decouples the aggregation
process between patches, which was originally achieved through
aggregation with graph structure 𝐴 in MPNNs, and implements
it through the transformer block in Section 3.3. Thus, our patch
encoder can be seen as setting the parameters of the white part in
the𝑊 matrix to zeros. These blank parameters are replaced by the
powerful transformer block, which not only retains the learning
ability but also reduces the noise impact of the graph structure
on the misaligned patches. In addition, since our structure-aware
module shares weights for 𝐾 patches, the parameters near the
diagonal of our𝑊 matrix are duplicated and identical, which is
shown to be parameter-efficient. From another perspective,𝑊 in
Fig. 3 is essentially a block diagonal matrix. Such matrices are
often used in scenarios aimed at enhancing efficiency while still
maintaining the accuracy of the algorithm [5].

Generally, PatchNet reduces information exchange between
patches compared to MPNN in the patch encoding stage and ear-
lier steps, which we compensate for during patch aggregation. In
other words, our method retains the flexibility of parameter trans-
formations on input features similar to MPNN, while significantly
surpassing MPNN in terms of generalizability.
Quality of embedding. To further analyze PatchNet, we propose
to qualify the generated node embedding from the perspective
of singular value. The singular value spectrum of the embedding
space, which is widely considered to be related to the generalization
performance [3, 25, 50]. More specifically, we perform singular

value decomposition (SVD) on the node embedding F ∈ R𝑀×𝐷 by
PatchNet: F = U𝚺V⊤.1.

Definition 3.3 (Singular Value Entropy). Singular value entropy
(SVE) is characterized as the entropy associated with the normalized
singular values. It serves as a quantifier for the distribution’s flatness
among singular values.

SVE = −
𝐷∑︁
𝑖=1

𝜎𝑖∑𝐷
𝑗=1 𝜎 𝑗

log
𝜎𝑖∑𝐷
𝑗=1 𝜎 𝑗

(11)

Higher SVE values suggest an enhanced capture of data structure
within the feature space, attributed to either the learning of more
distinct features or the memorization of noise, thereby expanding
its dimensional span.

Definition 3.4 (Largest Singular Value Ratio). The largest singular
value ratio (LSVR) is determined by taking the logarithm of the
quotient obtained from dividing the largest singular value, denoted
as 𝜎1, by the aggregate of all singular values:

LSVR = − log 𝜎1∑𝐷
𝑖=1 𝜎𝑖

. (12)

LSVR quantifies the disparities in data encapsulated by the singular
vector associated with the largest singular value, 𝜎1, indicative of
the model’s transferability [3].

We plot the SVE and LSVR for the embedding generated by
PatchNet in Fig. 4. The input data here is PCQM4Mv2 [10]. Specif-
ically, the dashed lines represent the average values of SVE and
LSVR obtained from the original data’s node features, while the
different colored solid lines represent the average values of SVE
and LSVR for the node representations obtained by our model af-
ter different numbers of rounds of training. The solid lines with
dots represent the values of SVE, and the solid lines with crosses
represent the values of LSVR. The results indicate that during the
forward propagation process of PatchNet, both SVE and LSVR for
the node representations are continuously increasing, demonstrat-
ing that our model is constantly improving the transferability and
distinguishability of the representations.

4 Experiments

In this section, we answer the following four questions through
experiments to validate the effectiveness of our method:

• RQ1. Can PatchNet handle feature heterogeneity on differ-
ent downstream datasets through cross-domain pre-training?
• RQ2. Does the performance of PatchNet improve with the
increase of the scale of pre-training datasets?
• RQ3. Can PatchNet outperform other pre-trained back-
bones in both graph and node classification tasks?
• RQ4. How sensitive is PatchNet to the size of node tokens?

Note that each set of experiments is repeated five times. Detailed
hyper-parameters can be found in the Appendix.

1U and V denotes the left and right singular vector matrices, respectively, and Σ
denoting the diagonal singular value matrix {𝜎1, . . . , 𝜎𝐷 }.

Handling Feature Heterogeneity with Learnable Graph Patches KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Table 1: Cross domain pre-training and fine-tuning performance in terms of

mean and std. deviation of ROC-AUC (for Sider, HIV, Bace) and F1 (for Flickr and

DBLP). Improvement (IMP) and P-value are used to measure the gap between

using PatchNet with all pre-training data and without any pre-training.

Pre
Down Sider HIV Bace Flickr DBLP

RAW 52.14±0.56 56.58±2.57 55.84±3.16 47.25±3.54 74.86±2.26
PatchNet (RAW) 51.88±0.59 57.72±1.31 57.35±2.77 46.29±3.86 75.05±2.52

ZINC 53.06±0.47 58.74±1.72 59.74±0.54 45.30±2.98 76.44±2.32
Arxiv 52.77±0.58 57.01±1.80 56.00±2.66 50.64±2.69 79.01±2.84

ZINC+Arxiv 53.71±0.48 60.23±1.15 59.75±1.02 50.81±1.94 79.12± 1.93

IMP (%) 1.29 2.51 2.40 4.52 4.07
P-value 0.012 0.008 0.010 0.003 0.003 Figure 5: Performance on scaling of the size

fo pre-training datasets.

4.1 Cross Domain Transfer Learning

To address RQ1, we set up experiments (Tab. 1) with cross-domain
pre-training and fine-tuning. Some graph data’s features are

derived from text and are not the target of our model, as

they can either be uniformly regenerated using the same

text encoder to obtain homogenous node features, or use

models like OFA [17] with LLM. To the best of our knowledge,
no other models have yet been pre-trained across multiple domains
and then applied to different tasks in various downstream domains,
so we only use PatchNet to evaluate.

During pre-training, we selected molecular dataset ZINC [34]
and paper citation dataset Ogbn-Arxiv [11]. These datasets not only
exhibit feature heterogeneity but also have different forms: Arxiv
is a single large graph, whereas ZINC consists of many smaller
molecular graphs. Thus, we employ neighbor sampling for Arxiv
and graph sampling for ZINC. We load these two datasets simul-
taneously to pre-train one PatchNet using existing two pre-text
tasks, Attribute Masking (AM) and Context prediction (CP) [12].
We empirically find out that the using these multi-task trick [16]
to combine AM and CP perform the best. Note that since ZINC
has 2M samples (graphs) while Arxiv only has 0.17M samples (sub-
graph stems from nodes), we randomly choose 0.17M samples out
of ZINC in each epoch. The reason is to keep balance between the
pre-training information. In the fine-tuning phase, we employed
two different types of tasks across datasets: graph and node classifi-
cation; the graph classification involved Sider, HIV, and Bace from
[43], while the node classification included datasets Flickr [58] and
DBLP [1]. Notably, the downstream data also originated from dif-
ferent domains: Sider, HIV, and Bace are molecular datasets, while
Flickr and DBLP are social network and citation graph, respectively.
Not only is there feature heterogeneity between the pre-train and
downstream datasets, but they also belong to different tasks. During
fine-tuning, we conduct fine-tuning and testing according to the
data splits specific to each dataset. In Tab. 1, each row represents a
combination of pre-training data, and each column represents a dif-
ferent downstream dataset. The first two rows represent end-to-end
learning without any transfer.
Results. From Tab. 1, it is evident that our model handles fea-
ture heterogeneity effectively, both between pre-train datasets and

between pre-train and downstream datasets. Large IMP values
demonstrate that our method has achieved performance improve-
ments through pre-training and transfer learning, while small p-
values ensure that these improvements are statistically significant.
Moreover, although PatchNet may sometimes perform compa-
rably to basic models like GIN [48] (used in RAW setting) in an
end-to-end manner, it consistently shows improvement after pre-
training. Furthermore, the underlined scores representing the sec-
ond best generally indicate that pre-training with the same task
data tends to yield relatively better results. Additionally, we find
that even when the two pre-training datasets come from completely
different backgrounds, combined pre-training still leads to improve-
ments in downstream tasks. Evenwhen there is significant variation
among downstream datasets, this type of cross-domain transfer
pre-training still achieves good results in downstream tasks. This is
also the outcome we hope to see in future graph foundation models,
making PatchNet a step towards achieving a GFM.

4.2 Data Scaling Perspective

To address RQ2, we chose a more intuitive scenario, which in-
volves simply modifying the scale of the pre-training datasets. We
tried different combinations of pre-training datasets to increase the
volume of pre-training data. Fig. 5 features pre-training data that
includes ZINC, PCQM [10], and PCBA [11]. By combining these
for pre-training, we obtain three models, plus one model without
pre-training (RAW), resulting in 4 horizontal axis data points. The
downstream data includes Toxcast, Sider, MUV and BBBP from [43],
corresponding to 4 line graphs.
Results. From Fig. 5, we find that PatchNet is capable of multi-
dataset pre-training and efficiently handling larger amounts of pre-
training data. Additionally, certain pre-train datasets contribute
more significantly to improvements in specific downstream datasets
compared to others. For example, PCBA has a greater impact on
enhancing MUV than it does on Toxcast and Sider. This could be
due to PCBA and MUV both belonging to the Biophysics category,
whereas Sider is categorized under Physiology data [43]. Moreover,
PatchNet performs better when pre-trained with more datasets
under the same setting, which reveals that our model has great
potential when trained with enormous data.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Yifei Sun et al.

Tox21 Toxcast Sider ClinTox MUV HIV BBBP Bace Rank
RAW 67.90±1.48 58.39±0.96 52.14±0.56 56.43±4.23 58.53±2.52 56.58±2.57 58.57±7.72 55.84±3.16 12.5
ContextPred [12] 66.45±1.75 58.16±0.85 51.53±0.22 55.83±1.07 59.49±2.66 56.58±1.31 63.57±1.16 57.92±1.07 11.3
AttrMask [12] 67.17±1.31 59.33±1.37 52.21±1.12 56.69±1.78 58.58±2.18 57.34±0.98 63.65±2.18 57.27±1.94 9.3
AM+CP [16] 67.62±1.84 58.19±0.68 52.44±0.29 57.17±0.96 59.06±2.63 56.53±1.43 63.79±1.60 57.96±3.64 9.3
GPT-GNN [13] 67.98±1.75 58.39±1.51 52.97±0.91 57.07±1.73 58.56±1.54 56.68±1.03 65.06±3.05 56.25±2.05 8.5
GraphCL [57] 68.22±1.61 59.09±1.18 52.67±0.09 56.99±1.63 58.73±1.85 56.82±1.64 64.68±1.44 56.92±1.26 7.9
GraphMVP [19] 68.01±0.93 55.43±0.44 52.24±0.57 55.54±2.12 57.36±2.69 56.88±1.75 65.41±0.39 57.77±0.35 10.3
3D InfoMax [33] 67.05±1.26 58.22±0.58 52.58±0.35 54.56±2.55 59.85±2.36 56.65±1.67 67.64±1.33 58.66±1.40 9.0
Mole-BERT [45] 70.07±0.69 59.72±0.15 52.58±0.35 55.52±3.09 61.05±1.35 57.79±1.79 68.44±2.90 60.07±1.71 4.0
PatchNet (RAW) 67.77±1.80 56.74±0.59 51.88±0.59 55.78±1.15 60.16±1.17 57.72±1.31 59.15±2.85 57.35±2.77 10.4
PatchNet (AM) 64.84±1.41 56.95±0.74 52.29±0.39 57.26±2.81 60.65±2.50 54.27±1.39 60.32±4.27 57.20±1.94 11.1
PatchNet (CP) 66.22±1.83 59.56±0.27 53.06±0.52 58.60±1.35 61.79±1.47 54.11±1.46 55.01±6.11 57.55±1.34 7.9
PatchNet (AM+CP) 68.56±1.34 59.64±0.71 53.06±0.47 59.50±1.79 62.19±1.46 58.74±1.72 68.55±3.75 59.74±0.54 1.4

Table 2: The comparison on graph classification task (Full version see Appendix).

Tox21 Toxcast Sider ClinTox BBBP Bace Rank
GCN[41] 55.25 ± 1.68 52.14 ± 0.44 51.94 ± 0.26 50.96 ± 3.73 65.27 ± 1,76 53.62 ± 0.92 5.3
GIN [48] 60.17 ± 1.84 54.19 ± 0.68 51.44 ± 0.29 53.59 ± 0.96 68.10 ±1.60 50.02 ± 3.64 5.0
GAT [38] 61.62 ± 2.37 53.86 ± 0.46 51.83 ± 0.28 58.41 ± 2.08 68.14 ± 2.11 54.01 ± 1.73 3.8
Graphormer [55] 63.04 ± 1.47 57.14 ± 0.70 52.54± 0.19 55.61 ± 1.60 66.24 ± 1.62 57.56 ± 1.85 3.2
GraphGPS [28] 65.77 ± 1.78 56.13 ± 0.78 52.80± 0.21 58.75 ± 1.13 68.73 ± 2.17 52.11 ± 1.76 2.5
PatchNet 68.56 ± 1.34 59.64 ± 0.71 53.06 ± 0.47 59.50 ± 1.79 68.55 ± 3.75 59.74 ± 0.54 1.2

Table 3: The comparison of backbones on graph classification task.

Coauthor-CS Coauthor-physics

GCN 82.15±1.93 87.25±0.72
GAT 82.72±1.96 88.41±0.52
DGI 83.09±2.02 88.34±0.75

GRACE 83.43±2.96 88.69±0.87
GraphMAE 84.33±2.75 90.13±0.57
GraphMAE2 84.67±2.43 91.80±0.64
PatchNet 87.69±1.28 92.87±0.27

Table 4: Results of node classification evaluation.

4.3 Pre-training and Fine-tuning

To address RQ3, we conducted experiments on two types of down-
stream tasks: graph classification and node classification.
Graph classification evaluation. In this section, we conduct
two parts of experiments: comparing with different pre-text tasks
(Tab. 2) comparing with different backbones (Tab. 3). We choose
ZINC as our pre-training datasets in both experiments. Note that the
size of node feature is 𝐷 = 300, which is different from the publicly
available feature size 𝐷 = 2. It’s well known that most of the
researches involving molecular graphs all expand two-dimensional
original feature to 300 dimensions of learnable features [47]. Thus,
we replace the learnable feature with non-trainable features by
using group VQ-VAE [37] which is also used by Mole-bert [45]
which are frozen throughout the training process.

For patch extraction, we use token size 𝑀 = 32 and step size
𝐾 = 20. For downstream evaluation, we adopt the widely-used 8
binary classification datasets from MoleculeNet [43]. Due to the

difficulty of obtaining sufficient labels in practical applications, we
adopt a 1:1:8 train-validation-test label split . Note that we employ
scaffold splitting [29] to split molecules based on their structures,
which emulates real-world scenarios.

On the one hand, we fix the backbone of baselines as their origi-
nal GIN. Tab. 2 is divided into 4 main blocks by row. The first row
is using GIN as backbone and without pre-training. The second
block consists of current popular pre-training strategies. The third
block contains those strategies designed for molecular graphs. In
the last block we adopt 3 combination of pre-text tasks: attribute
masking, context prediction, and both. From Tab. 2, we can see
that: Compared to all baselines, PatchNet achieves competitive or
better performance under the same experimental protocols. Since
we only use simple pre-training strategies and its combination,
it is apparent that our backbone plays the most significant role.
Moreover, we find that single pre-training strategies may lead to
negative transfer on both GIN and PatchNet. But after applying
multi-task pre-training strategy, PatchNet opens up a significant
gap with GIN, which means our model does better on combining
pre-training strategies. When testing PatchNet’s raw capability,
we are surprised to find that PatchNet outperformed some GIN
series models in certain datasets even without pre-training, which
indicates that even under the condition of such extreme label ratio
and more model parameters, PatchNet still achieves better per-
formance, reflecting that PatchNet is adaptive and robust. Due to
space limitation, we show the full version in Appendix.

On the other hand, we compare with different backbones using
the same pre-training strategy as the combination of AM and CP.
Tab. 3 is also divided into 3 blocks, universal backbones, molecu-
lar specialized backbones and our backbone from top to bottom.

Handling Feature Heterogeneity with Learnable Graph Patches KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Tox21 Toxcast Sider ClinTox MUV HIV BBBP Bace

PatchNet 68.56±1.34 59.64±0.71 53.06±0.47 59.50±1.79 62.19±1.46 58.74±1.72 68.55±3.75 59.74±0.54
Inter-Mean 60.87±1.50 53.41±0.86 52.11±0.90 51.46±1.26 59.35±1.09 55.91±2.20 50.58±3.08 52.01±0.54
Inter-Sum 60.65±2.17 51.48±0.80 52.80±0.43 58.79±1.30 58.05±1.92 52.34±3.07 52.02±7.82 53.89±0.93
Inner-GCN 63.78±2.10 55.93±0.53 51.62±0.47 50.13±1.66 58.74±1.17 53.82±1.70 54.04±5.18 53.18±2.02
Inner-GAT 59.14±3.76 56.07±1.34 52.54±0.60 57.98±1.23 59.79±1.27 58.21±3.21 54.19±5.83 54.84±1.58
Non-overlap 60.62±2.36 54.68±0.92 52.89±0.41 58.31±1.54 61.47±1.86 56.60±2.39 53.71±4.57 55.54±1.59

Table 5: Ablation on our backbone

From Tab. 3, we can see that: As is known to all, the effect of trans-
fer between pre-train and downstream datasets is an important
measurement for backbones. PatchNet provides a well-performed
transfer compared to traditional backbones such as GCN, GAT
and GIN. This is because patch extraction process significantly
increases the generalizability of our model, and the transformer
module can avoid the old problems such as over-smoothing, allow-
ing ourmodel to effectively use a greater amount of parameters than
normal GNNs. Moreover, our method performs better than mole-
cule specialized backbones such as Graphormer. That’s because we
combine the merit from both GNN aggregation and transformer.
Since our backbone can obtain more detailed semantic information
in original feature by learning from tokens, it is much more efficient
and effective than other backbones.
Node classification evaluation. Herewe use two datasets, Coauthor-
CS [32] and Coauthor-Physics [32] for both pre-training and down-
stream evaluation due to their rich node features. For patch extrac-
tion, we use token size 𝑀 = 1024 and step size 𝐾 = 512. Tab. 4
contains 3 blocks: classical end-to-end methods, well-known self-
supervised methods and PatchNet. As for dataset split, we follow
ParetoGNN [14] with 1:1:8 for training/validation/test. We report
the average ROC-AUC with the corresponding standard deviation.
Table 4 shows that our backbone is more powerful and capable of ex-
tracting more information from the limited downstream data. Since
PatchNet is trained on both datasets, our method has achieved
cross-dataset transferability, which enables us to pre-train a model
using more large-scale datasets to get a more powerful model.

Figure 6: Performance of varying token size𝑀 .

4.4 Ablation and Sensitivity Study

To address RQ4, we conducted two experiments: an ablation study
of PatchNet’ s sub-modules and a sensitivity analysis of the most
critical hyperparameter, the token size𝑀 .

As shown in Tab. 3, backbone with transformer performs signifi-
cantly better than that with simple pooling, since the rich informa-
tion among different patches can’t be simply aggregated by pooling.
And the inner-patch aggregation with GIN does a better work than
others. This is due to the fact that GIN has high expressiveness,
which is also the reason why GIN has become the preferred choice
in many molecular graph-based research studies. What’s more, we
test the behavior of our model when there is no overlapping in-
formation between patches. Since splitting original feature of any
dataset is quite challenging, we allow overlapping tokens to form
graph patches. And as our expectation, backbone with token over-
lapping performs better. But to our surprise, some of the results
are better than the setting without pre-training, which means our
model could potentially learn to complete missing features. From
Fig. 6, we find that having a large number of token size isn’t a good
idea. This is because if the number of token channels is relatively
low, the learning process for aggregating information between to-
kens will be partially lost. In extreme scenarios where there’s only
one token, this process will be lost entirely, which means our back-
bone will involution to normal GNN model.Moreover, we can find
out that even when token size is small, satisfactory results can still
be achieved. It indicates that GNN’s ability to learn structure is not
abandoned even when the backbone focuses more on transformer’s
token aggregation.

5 Conclusion

In summary, we highlight the challenges in addressing the limita-
tions of current graph pre-training models for the incapability of
handling cross-domain transfer. We identify the main challenge as
feature heterogeneity. Then, by introducing the learnable graph
patches as a basic semantic unit for graph data, we propose Patch-
Net, a framework capable ofmining transferable information across
different graph domains. Our empirical analyses show PatchNet’s
capability to generate distinguishable and transferable node rep-
resentations, advancing pre-training on multi-domain non-textual
graphs and showing continuous improvement on various down-
stream datasets and tasks.
Limitation and future work. Our method has an inherent limi-
tation in using a fixed size for unfolding node features into node
tokens, determined by a hyperparameter based on empirical experi-
ence. Future work will explore automatic learning of optimal node
token sizes to improve generalization.

6 Acknowledgment

This work is supported by National Natural Science Foundation of
China (No. 62176233, No. 62322606, No. 62441605).

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Yifei Sun et al.

References

[1] Uchenna Akujuobi, Han Yufei, Qiannan Zhang, and Xiangliang Zhang. 2019.
Collaborative Graph Walk for Semi-Supervised Multi-label Node Classification.
In 2019 IEEE International Conference on Data Mining (ICDM). 1–10. https:
//doi.org/10.1109/ICDM.2019.00010

[2] Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. 2023. NAGphormer: A Tok-
enized Graph Transformer for Node Classification in Large Graphs. In Proceedings
of the International Conference on Learning Representations.

[3] Xinyang Chen, SinanWang, Mingsheng Long, and JianminWang. 2019. Transfer-
ability vs. Discriminability: Batch Spectral Penalization for Adversarial Domain
Adaptation. In Proceedings of the 36th International Conference on Machine Learn-
ing (Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and
Ruslan Salakhutdinov (Eds.). PMLR, 1081–1090.

[4] Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei,
Shuaiqiang Wang, Dawei Yin, Wenqi Fan, Hui Liu, et al. 2023. Exploring the
potential of large language models (llms) in learning on graphs. arXiv preprint
arXiv:2307.03393 (2023).

[5] Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan,
Alexander Liu, Aniruddh Rao, Atri Rudra, and Christopher Ré. 2022. Monarch:
Expressive structured matrices for efficient and accurate training. In International
Conference on Machine Learning. PMLR, 4690–4721.

[6] Vijay Prakash Dwivedi and Xavier Bresson. 2020. A generalization of transformer
networks to graphs. arXiv preprint arXiv:2012.09699 (2020).

[7] Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jian, Bill Yuchen
Lin, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D Hwang, et al.
2023. Faith and Fate: Limits of Transformers on Compositionality. arXiv preprint
arXiv:2305.18654 (2023).

[8] Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. 2021. Slaps: Self-
supervision improves structure learning for graph neural networks. Advances in
Neural Information Processing Systems 34 (2021), 22667–22681.

[9] Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier
Bresson. 2023. A generalization of vit/mlp-mixer to graphs. In International
conference on machine learning. PMLR, 12724–12745.

[10] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure
Leskovec. 2021. OGB-LSC: A Large-Scale Challenge for Machine Learning on
Graphs. arXiv:2103.09430 [cs.LG]

[11] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. arXiv preprint arXiv:2005.00687 (2020).

[12] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. 2019. Strategies for pre-training graph neural networks. arXiv
preprint arXiv:1905.12265 (2019).

[13] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
Gpt-gnn: Generative pre-training of graph neural networks. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1857–1867.

[14] Mingxuan Ju, Tong Zhao, Qianlong Wen, Wenhao Yu, Neil Shah, Yanfang Ye, and
Chuxu Zhang. 2023. Multi-task Self-supervised Graph Neural Networks Enable
Stronger Task Generalization. (2023).

[15] Kevin Lin, LijuanWang, and Zicheng Liu. 2021. Mesh Graphormer. 2021 IEEE/CVF
International Conference on Computer Vision (ICCV) (2021), 12919–12928.

[16] Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong. 2019. Pareto
multi-task learning. Advances in neural information processing systems 32 (2019).

[17] Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen,
and Muhan Zhang. 2023. One for All: Towards Training One Graph Model for
All Classification Tasks. arXiv preprint arXiv:2310.00149 (2023).

[18] Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting
Bai, Yuan Fang, Lichao Sun, Philip S Yu, et al. 2023. Towards graph foundation
models: A survey and beyond. arXiv preprint arXiv:2310.11829 (2023).

[19] Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, and
Jian Tang. 2021. Pre-training molecular graph representation with 3d geometry.
arXiv preprint arXiv:2110.07728 (2021).

[20] Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, and
Jian Tang. 2022. Pre-training Molecular Graph Representation with 3D Geometry.
arXiv:2110.07728 [cs.LG]

[21] Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan.
2022. Towards unsupervised deep graph structure learning. In Proceedings of the
ACM Web Conference 2022. 1392–1403.

[22] Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil
Shah, Michael Galkin, and Jiliang Tang. 2024. Graph foundation models. arXiv
preprint arXiv:2402.02216 (2024).

[23] Gaspard Michel, Giannis Nikolentzos, Johannes F Lutzeyer, and Michalis Vazir-
giannis. 2023. Path neural networks: Expressive and accurate graph neural
networks. In International Conference on Machine Learning. PMLR, 24737–24755.

[24] ErxueMin, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao,Wenbing Huang,
Peilin Zhao, Junzhou Huang, Sophia Ananiadou, and Yu Rong. 2022. Trans-
former for graphs: An overview from architecture perspective. arXiv preprint
arXiv:2202.08455 (2022).

[25] Samet Oymak, Zalan Fabian, Mingchen Li, and Mahdi Soltanolkotabi. 2019. Gen-
eralization guarantees for neural networks via harnessing the low-rank structure
of the jacobian. arXiv preprint arXiv:1906.05392 (2019).

[26] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. GCC: Graph Contrastive Coding for Graph
Neural Network Pre-Training. KDD (2020).

[27] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[28] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu,
Guy Wolf, and Dominique Beaini. 2022. Recipe for a general, powerful, scalable
graph transformer. Advances in Neural Information Processing Systems 35 (2022),
14501–14515.

[29] Bharath Ramsundar, Peter Eastman, Pat Walters, and Vijay Pande. 2019. Deep
learning for the life sciences: applying deep learning to genomics, microscopy, drug
discovery, and more. " O’Reilly Media, Inc.".

[30] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang,
and Junzhou Huang. 2020. Self-supervised graph transformer on large-scale
molecular data. Advances in Neural Information Processing Systems 33 (2020),
12559–12571.

[31] Abulhair Saparov and He He. 2022. Language models are greedy reasoners: A
systematic formal analysis of chain-of-thought. arXiv preprint arXiv:2210.01240
(2022).

[32] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of Graph Neural Network Evaluation. arXiv preprint
arXiv: 1811.05868 (2018).

[33] Hannes Stärk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian
Dallago, Stephan Günnemann, and Pietro Liò. 2022. 3d infomax improves gnns for
molecular property prediction. In International Conference on Machine Learning.
PMLR, 20479–20502.

[34] Teague Sterling and John J Irwin. 2015. ZINC 15–ligand discovery for everyone.
Journal of chemical information and modeling 55, 11 (2015), 2324–2337.

[35] Yifei Sun, HaoranDeng, Yang Yang, ChunpingWang, Jiarong Xu, RenhongHuang,
Linfeng Cao, Yang Wang, and Lei Chen. 2022. Beyond Homophily: Structure-
aware Path Aggregation Graph Neural Network. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI-22, Lud De Raedt
(Ed.). International Joint Conferences on Artificial Intelligence Organization,
2233–2240. https://doi.org/10.24963/ijcai.2022/310 Main Track.

[36] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. 2021. Adversarial graph
augmentation to improve graph contrastive learning. Advances in Neural Infor-
mation Processing Systems 34 (2021), 15920–15933.

[37] Aäron van den Oord, Oriol Vinyals, and K. Kavukcuoglu. 2017. Neural Discrete
Representation Learning. NIPS (2017).

[38] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[39] Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and
Yulia Tsvetkov. 2023. Can Language Models Solve Graph Problems in Natural
Language? arXiv preprint arXiv:2305.10037 (2023).

[40] Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. 2022.
Molecular Contrastive Learning of Representations via Graph Neural Networks.
arXiv:2102.10056 [cs.LG]

[41] MaxWelling and Thomas N Kipf. 2016. Semi-supervised classification with graph
convolutional networks. In J. International Conference on Learning Representations
(ICLR 2017).

[42] Zhanghao Wu, Paras Jain, Matthew A. Wright, Azalia Mirhoseini, Joseph E.
Gonzalez, and Ion Stoica. 2022. Representing Long-Range Context for Graph
Neural Networks with Global Attention. arXiv:2201.08821 [cs.LG]

[43] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Ge-
niesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. 2018. MoleculeNet: a
benchmark for molecular machine learning. Chemical science 9, 2 (2018), 513–530.

[44] Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. 2022. Simgrace: A
simple framework for graph contrastive learning without data augmentation. In
Proceedings of the ACM Web Conference 2022. 1070–1079.

[45] Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu,
Siyuan Li, and Stan Z Li. 2023. Mole-bert: Rethinking pre-training graph neural
networks for molecules. (2023).

[46] Jun Xia, Yanqiao Zhu, Yuanqi Du, and Stan Z Li. 2022. A survey of pretraining on
graphs: Taxonomy, methods, and applications. arXiv preprint arXiv:2202.07893
(2022).

[47] Jun Xia, Yanqiao Zhu, Yuanqi Du, and Stan Z. Li. 2022. A Systematic Survey of
Chemical Pre-trained Models. arXiv preprint arXiv: Arxiv-2210.16484 (2022).

[48] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In ICLR.

[49] Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, and Jian Tang. 2021. Self-
supervised graph-level representation learning with local and global structure.
In International Conference on Machine Learning. PMLR, 11548–11558.

[50] Yihao Xue, Kyle Whitecross, and Baharan Mirzasoleiman. 2022. Investigating
why contrastive learning benefits robustness against label noise. In International

https://doi.org/10.1109/ICDM.2019.00010
https://doi.org/10.1109/ICDM.2019.00010
https://arxiv.org/abs/2103.09430
https://arxiv.org/abs/2110.07728
https://doi.org/10.24963/ijcai.2022/310
https://arxiv.org/abs/2102.10056
https://arxiv.org/abs/2201.08821

Handling Feature Heterogeneity with Learnable Graph Patches KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Type Name 𝑁 𝐸

P
r
e
-
t
r
a
i
n
i
n
g

Graph level ZINC [34] 53,254,058 115,472,818
PCQM4Mv2 [10] 52,970,652 109,093,626

Ogbg-molpcba [11] 11,373,137 24,618,372
Node level Ogbn-arxiv [11] 169,343 1,166,243

Flickr [58] 105,938 2,316,948
DBLP [1] 28,702 68,335

D
o
w
n
s
t
r
e
a
m

Graph level Tox21 [43] 145,459 302,190
Toxcast [43] 161,088 330,356
Sider [43] 48,006 100,912

ClinTox [43] 38,637 82,372
MUV [43] 2,255,846 4,892,252
HIV [43] 1,049,163 2,259,376
BBBP [43] 49,068 105842
Bace [43] 51,577 111,536

Node level Flickr [58] 105,938 2,316,948
DBLP [1] 28,702 68,335

Coauthor-CS [32] 18,333 81,894
Coauthor-Physics [32] 34,493 247,962

Table 6: The statistics of all datasets.

Hyperparameter Range

𝐾 {15→ 25}
𝑀 64
number of GIN layers 3
number of Attention heads 3
Learning Rate {1e-3→ 3e-3}
Weight decay {0→ 1e-6}
GIN dropout rate 0.2
Attention dropout rate {0.3→ 0.7}
Batch size {256, 512, 1024}

Optimizer Adam
Epoch 100
GPU GeForce RTX 4090

Table 7: Hyper-parameter of graph classification task.

Conference on Machine Learning. PMLR, 24851–24871.
[51] Yang Yang, Yuhong Xu, Yizhou Sun, Yuxiao Dong, Fei Wu, and Yueting Zhuang.

2019. Mining fraudsters and fraudulent strategies in large-scale mobile social
networks. IEEE Transactions on Knowledge and Data Engineering 33, 1 (2019),
169–179.

[52] Yang Yang, Yuhong Xu, Chunping Wang, Yizhou Sun, Fei Wu, Yueting Zhuang,
and Ming Gu. 2019. Understanding default behavior in online lending. In CIKM.
2043–2052.

[53] Jiacai Yi, Chengkun Wu, Xiaochen Zhang, Xinyi Xiao, Yanlong Qiu, Wentao
Zhao, Tingjun Hou, and Dongsheng Cao. 2022. MICER: a pre-trained encoder–
decoder architecture for molecular image captioning. Bioinformatics 38, 19 (2022),
4562–4572.

[54] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. 2021. Do transformers really perform badly
for graph representation? Advances in Neural Information Processing Systems 34
(2021), 28877–28888.

[55] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. 2021. Do Transformers Really Perform Badly
for Graph Representation?. In Thirty-Fifth Conference on Neural Information
Processing Systems. https://openreview.net/forum?id=OeWooOxFwDa

[56] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. 2021. Graph
contrastive learning automated. In International Conference on Machine Learning.
PMLR, 12121–12132.

[57] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
neural information processing systems 33 (2020), 5812–5823.

[58] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2019. Graphsaint: Graph sampling based inductive learning method.
arXiv preprint arXiv:1907.04931 (2019).

[59] Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. 2020. Graph-bert:
Only attention is needed for learning graph representations. arXiv preprint
arXiv:2001.05140 (2020).

[60] Shuaicheng Zhang, Haohui Wang, Si Zhang, and Dawei Zhou. 2023. GPatcher:
A Simple and Adaptive MLP Model for Alleviating Graph Heterophily. arXiv
preprint arXiv:2306.14340 (2023).

[61] Haihong Zhao, Aochuan Chen, Xiangguo Sun, Hong Cheng, and Jia Li. 2024. All
in one and one for all: A simple yet effective method towards cross-domain graph
pretraining. arXiv preprint arXiv:2402.09834 (2024).

[62] Qi Zhu, Carl Yang, Yidan Xu, Haonan Wang, Chao Zhang, and Jiawei Han.
2021. Transfer learning of graph neural networks with ego-graph information
maximization. Advances in Neural Information Processing Systems 34 (2021),
1766–1779.

[63] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. 2020. A comprehensive survey on transfer learning.
Proc. IEEE 109, 1 (2020), 43–76.

A Details of Experiments

A.1 Datasets

The datasets used are shown in Tab. 7. The scale of the graphs
used in pre-training and downstream tasks also highlights the high
scalability of PatchNet.

A.2 Hyperparemeter Strategy

Overall, our proposed framework is implemented via PyTorch. As
for software versions, we use Python 3.7.0, PyTorch 1.13.1, OGB
1.3.6, and CUDA 11.3. Moreover, the range of hyperparameters are
listed in Table 7.

A.3 Additional Experiments

Here we present the complete graph evaluation results in Tab. 8,
comparing our model against a broader range of self-supervised
tasks. It is evident that our model indeed outperforms existing self-
supervised methods. Please refer to the main text for the simplified
Tab. 2. As is shown in the table, our model’s performance, combined
with simple pre-training tasks, surpasses other existing approaches
on datasets within a single domain. This result demonstrates that
our model not only exhibits strong generalization capabilities but
also effectively learns domain-specific knowledge.

B Algorithm

The algorithm of Fig. 2 is shown in Algo. 1. The computation of
PatchNet includes three parts: node tokenization, patch construc-
tion, encoding and aggregation of graph patches. Hence, the overall
complexity is: O(𝑁 (𝐾𝑀 +𝑀2 +𝑀𝑏 + 𝐾2)).

C More Related Work

We provide additional information here on related work concerning
pre-training and fine-tuning GNNs. The concept of graph founda-
tion model (GFM) is comprehensively established [18, 22] and envi-
sioned to be adept across various tasks and datasets. Yet, there cur-
rently does not exist a GFM that fully meets the criteria. However,
building a cross-domain and cross-task graph model has always
been a hot topic. One of the pathways to build graph foundation
models is to design graph pre-training framework.

https://openreview.net/forum?id=OeWooOxFwDa

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Yifei Sun et al.

Tox21 Toxcast Sider ClinTox MUV HIV BBBP Bace Rank
w/o pre 67.90±1.48 58.39±0.96 52.14±0.56 56.43±4.23 58.53±2.52 56.58±2.57 58.57±7.72 55.84±3.16 12.5
AD-GCL [36] 64.81±1.22 55.55±0.79 51.13±0.17 53.46±2.20 59.41±2.42 56.01±1.02 59.26±1.86 52.27±2.08 15.3
ContextPred [12] 66.45±1.75 58.16±0.85 51.53±0.22 55.83±1.07 59.49±2.66 56.58±1.31 63.57±1.16 57.92±1.07 11.3
AttrMask [12] 67.17±1.31 59.33±1.37 52.21±1.12 56.69±1.78 58.58±2.18 57.34±0.98 63.65±2.18 57.27±1.94 9.3
AM+CP [16] 67.62±1.84 58.19±0.68 52.44±0.29 57.17±0.96 59.06±2.63 56.53±1.43 63.79±1.60 57.96±3.64 9.3
SimGRACE [44] 67.49±1.37 58.79±0.34 52.73±0.08 56.54±2.34 59.98±2.45 57.65±1.96 63.27±2.30 56.03±1.84 8.8
GraphLoG [49] 64.09±1.47 58.88±0.59 52.74±0.55 57.38±1.76 60.39±1.99 57.04±1.07 62.49±2.80 56.14±1.88 8.6
GPT-GNN [13] 67.98±1.75 58.39±1.51 52.97±0.91 57.07±1.73 58.56±1.54 56.68±1.03 65.06±3.05 56.25±2.05 8.5
GraphCL [57] 68.22±1.61 59.09±1.18 52.67±0.09 56.99±1.63 58.73±1.85 56.82±1.64 64.68±1.44 56.92±1.26 7.9
JOAO [56] 68.41±1.59 58.92±0.42 52.45±0.14 57.78±1.36 60.73±2.06 56.88±1.45 62.99±2.29 57.35±1.46 7.0
GraphMVP [19] 68.01±0.93 55.43±0.44 52.24±0.57 55.54±2.12 57.36±2.69 56.88±1.75 65.41±0.39 57.77±0.35 10.3
3D InfoMax [33] 67.05±1.26 58.22±0.58 52.58±0.35 54.56±2.55 59.85±2.36 56.65±1.67 67.64±1.33 58.66±1.40 9.0
Mole-BERT [45] 70.07±0.69 59.72±0.15 52.58±0.35 55.52±3.09 61.05±1.35 57.79±1.79 68.44±2.90 60.07±1.71 4.0
Ours(AM) 64.84±1.41 56.95±0.74 52.29±0.39 57.26±2.81 60.65±2.50 54.27±1.39 60.32±4.27 57.20±1.94 11.1
Ours w/o pre 67.77±1.80 56.74±0.59 51.88±0.59 55.78±1.15 60.16±1.17 57.72±1.31 59.15±2.85 57.35±2.77 10.4
Ours(CP) 66.22±1.83 59.56±0.27 53.06±0.52 58.60±1.35 61.79±1.47 54.11±1.46 55.01±6.11 57.55±1.34 7.9
Ours(AM+CP) 68.56±1.34 59.64±0.71 53.06±0.47 59.50±1.79 62.19±1.46 58.74±1.72 68.55±3.75 59.74±0.54 1.4

Table 8: The comparison of overall performance on graph classification task.

Algorithm 1 Pseudo code for the forward process of the model
The Patch Encoder Φ, the multi-head self-attention encoder
𝑊 and a feed forward network using ReLU 𝐹 . An Attention
Mechanism 𝐴𝑡𝑡 .
The graph structure and node feature after patch extraction
is 𝑔, 𝑥 . If we regarded each channel separately, we will get
𝑔, 𝑥𝑖 , 𝑖 = 0..𝐾 for different tokens 𝑖 .
/* Model training starts */
Obtain their node embeddings 𝑧0 by [Some Method].
for each token 𝑗 do
Learn the new graph structure 𝑔′.
for each node 𝑢, node 𝑣 do
Calculate similarity 𝑆 𝑗𝑢𝑣 = 𝑆𝐼𝑀 (𝑊 · 𝑥𝑢 𝑗 ,𝑊 · 𝑥𝑣 𝑗).

Apply non-linear transformation to 𝑆 𝑗 .
Normalize 𝑆 𝑗 .
Update graph structure 𝑔′ ← 𝑇𝑜𝑝𝑘 (𝑔, 𝑆 𝑗).
Combine node embeddings using attention mechanism:
𝑧0, 𝑗 ← 𝐴𝑡𝑡 (Φ(𝑔, 𝑥 𝑗),Φ(𝑔′, 𝑥 𝑗)).

end for

Aggregate through patches by𝑊 and pass through 𝐹 : 𝑧1 ←
𝑊 (𝑧0).
Combine embeddings: 𝑧2 ← 𝐹 (𝑧0 + 𝑧1).
Merge all channels by mean-pooling: 𝑧3 ← 𝑃 (𝑧0 + 𝑧1 + 𝑧2).

Pre-training graph models has achieved significant success, with
various self-supervised pre-training methods proposed for both
node-level and graph-level tasks. For node classification task, fol-
lowing the generative language model GPT [27], GPT-GNN [13]
factorizes graph generation into Attribute Generation and Edge
Generation. While for graph classification task, GraphCL [57] maxi-
mizes agreement between two representations of the same node by
injecting random perturbations, and [12] use subgraphs to develop
several self-supervised learning strategies combining node-level

and graph-level pre-training information. Graph Contrastive Cod-
ing (GCC) [26] captures the universal network topological proper-
ties through subgraph instance discrimination as pre-training task.
In particular, these predictive and contrastive methods are effec-
tive for graphs with rich annotated information, such as molecular
graphs, protein interaction graphs and social networks. However, a
majority of these works still utilize a plain GNN, such as the 5-layer
Graph Isomorphism Network(GIN) [46, 48], and therefore cannot
be reused when encountering different downstream tasks without
corresponding data. Graph-BERT [59] trains GNN and transformer
in parallel with Attribute Reconstruction and Structure Recovery
tasks. GROVER [30] first uses GNNs to capture local structural
information, which then serves as queries, keys and values for a
Transformer encoder. GraphTrans [42] proposes the first hybrid
architecture, using a stack of MPNN layers before fully-connecting
the graph. Mesh Graphormer [15] proposes a hybrid architecture
stacking Graph Residual Block (GRB) on a multi-head Transformer
block. Besides, some other works utilize the uniqueness of input
data in designing architectures. For example, MolCLR [40] uses mol-
ecule SMILES to implement graph augmentation for contrastive
learning. GraphMVP [20] pretrains by leveraging the consistency
between 3D geometry and 2D topology. Since these models utilize
more semantic information, they are even more domain-specific.
Some of above methods only transfer structural information, ne-
glecting the node attributes that contain valuable information.

Recently, attempts have been made to adapt Large Language
Models (LLMs) to tasks associated with graph analysis. Despite
their proficiency in natural language processing, directly converting
graph data for LLM processing has not been entirely effective,
leading to less than ideal outcomes, as demonstrated in research on
both textual [4] and non-textual graphs [39]. Nevertheless, LLMs
still encounter challenges when processing graph data [7, 31].

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Building Structure-aware Graph Patches
	3.2 Theoretical Analysis of Graph Patches
	3.3 Encoding and Aggregating Graph Patches
	3.4 Pipeline and Intuition
	3.5 Model Analysis

	4 Experiments
	4.1 Cross Domain Transfer Learning
	4.2 Data Scaling Perspective
	4.3 Pre-training and Fine-tuning
	4.4 Ablation and Sensitivity Study

	5 Conclusion
	6 Acknowledgment
	References
	A Details of Experiments
	A.1 Datasets
	A.2 Hyperparemeter Strategy
	A.3 Additional Experiments

	B Algorithm
	C More Related Work

