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ABSTRACT

The public sharing of user information opens the door for adver-

saries to infer private data, leading to privacy breaches and facilitat-

ing malicious activities. While numerous studies have concentrated

on privacy leakage via public user attributes, the threats associ-

ated with the exposure of user relationships, particularly through

network structure, are often neglected. This study aims to fill this

critical gap by advancing the understanding and protection against

privacy risks emanating from network structure, moving beyond di-

rect connections with neighbors to include the broader implications

of indirect network structural patterns. To achieve this, we first in-

vestigate the problem of Graph Privacy Leakage via Structure (GPS),

and introduce a novel measure, the Generalized Homophily Ratio,

to quantify the various mechanisms contributing to privacy breach

risks in GPS. Based on this insight, we develop a novel graph private

attribute inference attack, which acts as a pivotal tool for evaluat-

ing the potential for privacy leakage through network structures

under worst-case scenarios. To protect users’ private data from

such vulnerabilities, we propose a graph data publishing method

incorporating a learnable graph sampling technique, effectively

transforming the original graph into a privacy-preserving version.
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Extensive experiments demonstrate that our attack model poses a

significant threat to user privacy, and our graph data publishing

method successfully achieves the optimal privacy-utility trade-off

compared to baselines.
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1 INTRODUCTION

In the era of big data, with the increasing involvement of personal

data in information technology and shared on the web, privacy pro-

tection has emerged as a crucial concern [21, 24, 41]. In real-world

scenarios, individuals often share some information publicly while

safeguarding their private attributes. However, publicly available

user information gives adversaries opportunities to infer private at-

tributes, resulting in privacy breaches [40, 42, 44]. Furthermore, the

inferred private data can facilitate malicious activities. For instance,

in the 2010s, Cambridge Analytica collected personal data from 87

million Facebook users to infer their political stands, which were

further used for political advertising, resulting in a scandal with

over $100 billion in economic losses [20]. This incident emphasizes

the urgent need for privacy protection mechanisms.

To prevent the exposure of user privacy, traditional works typi-

cally focus on the privacy leakage through users’ public attributes [21,

https://doi.org/10.1145/3637528.3672013
https://doi.org/10.1145/3637528.3672013
https://doi.org/10.1145/3637528.3672013
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Figure 1: (a) Illustration of privacy leakage mechanisms:

proximity homophily highlighted in pink, structure-role

homophily in blue, alongside the privacy protection strategy

depicted in orange. (b) The results of private attribute infer-

ence attacks accounting for proximity homophily, structure-

role homophily, and a combination of both on Pokec-n.

47, 48]. However, these methods often overlook the privacy risks

stemming from the public relationships among users [22, 40, 59].

For example, in an online social platform like Facebook, users often

publicly display their followers or friends, where these relation-

ships collectively form a network. This network structure can also

give rise to potential privacy leakage [22, 40, 59].

This work delves into the problem of Graph Privacy leakage

via Structure (GPS), aimed at unveiling various mechanisms by

which network structure can lead to privacy exposure. Extant

works on privacy breach through network structure are primarily

premised in social homophily theory [39] that posits users with

similar private attributes tend to connect with each other. Hence,

they study privacy leak through direct connections with neigh-

bors [17, 22, 40, 59]. However, user privacy in networks can also be

compromised through more complex structural patterns, extending

beyond direct neighbors. Figure 1 (a) illustrates that privacy risks

for user “A” arise not only from direct neighbors (i.e., proximity

information), but also from users like “B” who, despite not being di-

rect connections, exhibit similar local structures (i.e., structure-role
information). An example of structure-role information in social

networks is the observation that younger and older users tend to

maintain social circles of different sizes [12]. This dimension of

privacy leakage, facilitated by such local structures, has not been

thoroughly investigated in existing studies. To fill this research gap,

we aim to develop a graph data publishing method aimed at compre-
hensively protecting against potential privacy breaches arising from
the network structure. Nevertheless, achieving this goal presents

several challenges.

The first challenge lies in how to measure the extent of privacy

exposure through network structures. Previous research mainly fo-

cus on privacy leakage through direct connections between nodes,

using homophily to quantify proximity-related exposure [23, 35, 49].

However, this approach falls short in assessing privacy risks from

structure-role information. In this study, we introduce the Gener-

alized Homophily Ratio (GHRatio), a novel measure to quantify

privacy risks associated with network structures. The GHRatio

is a general form that is adaptable to various structural features.

We explore two prevalent cases—proximity homophily, structure-

role homophily and their combination— that contribute to privacy

leakage.

The second challenge stems from the necessity to develop a

private attribute inference attack model that utilizes proximity ho-

mophily, structure-role homophily, and their combination to launch

attacks. Given that existing attack strategies merely exploit proxim-

ity homophily [3, 22, 40], suboptimal results are yielded (as depicted

by the red bar in Figure 1 (b)). To overcome this challenge, ourmodel

is designed to account for all identified privacy breaches through

a data-centric strategy. This strategy involves providing a graph

neural network (GNN) with various data forms, thus enhancing its

capacity to learn from different types of homophily. Consequently,

our attack model effectively behaves like a worst-case adversary,

as evidenced by the green bar in Figure 1 (b).

The last challenge lies in how to design a graph data publish-

ing approach that can effectively defend the worst-case private

attribute inference attack. Previous efforts in graph data publishing

have primarily focused on differential privacy (DP) [57, 60] and

graph sampling [5, 17], but DP often compromises the utility of

the data [30]. In addition, many sampling methods are rule-based

and reliant on domain-specific knowledge [37, 38], which restricts

their applicability. We therefore propose a learnable graph sampling

method for privacy protection, employing a generative network

that selectively samples edges to block privacy leakage (as illus-

trated by in Figure 1 (a)). This method ultimately produces a

sampled graph suitable for publication.

Our contributions are summarized as follows:

• Problem and measure: Our work pioneers a comprehensive

investigation into the problem of Graph Privacy leakage via Struc-

ture (GPS), introducing the innovative Generalized Homophily

Ratio (GHRatio) as a measure of privacy leakage. This helps us

unveil all identified mechanisms by which the network structure

can lead to privacy breaches in a quantitative manner.

• Attack model: We introduce a novel private attribute inference

attack leveraging a data-centric strategy to exploit all identified

privacy breaches. By feeding a GNN various data forms, it gains

the ability to learn from multiple homophily types that result in

privacy risks.

• Defensive model: To counter the attacks, we propose a graph

data publishing method that employs learnable graph sampling,

rendering the sampled graph suitable for publication.

• Extensive experiments: Experiments in five real-world scenar-

ios demonstrate that (1) our private attribute inference attack

beats the best baselines by an average of +2.93%, and (2) our

graph data publishing approach achieves the optimal privacy-

utility trade-off, outperforming existing defensive methods when

evaluated against worst-case attack scenarios.

2 PROBLEM DEFINITION

Network structure is a significant factor contributing to privacy

breaches, which stands as a fundamental data source for various

network analysis tasks, such as node classification and community

detection. Previous research has proven that modifying network
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structure is more effective than modifying node attributes in en-

hancing privacy protection [17]. Therefore, this work particularly

focuses on a privacy-preserving graph data publishing problem

with a specific emphasis on the network structure.

In this study, we refer to privacy as a particular attribute that

nodes choose to keep hidden, which aligns with previous works [17,

28]. Let graph 𝐺 = (𝑉 , 𝐸, 𝑋 ) denote an undirected network, where

𝑉 = {𝑣1, ..., 𝑣𝑛} is the node set, 𝐸 ⊆ 𝑉 × 𝑉 is the edge set, and

𝑋 ∈ R𝑛×𝑚 is the node attribute matrix. 𝐴 ∈ R𝑛×𝑛 is the adja-

cency matrix of𝐺 , where 𝐴𝑖 𝑗 = 1 if there exists an edge (𝑖, 𝑗) ∈ 𝐸,
otherwise𝐴𝑖 𝑗 = 0. Each node 𝑣𝑖 ∈ 𝑉 is associated with a known/un-

known private attribute 𝑍𝑖 . Here, 𝑍𝑖 ∈ 𝑍 = 𝑍𝐿 ∪ 𝑍𝑈 , where 𝑍𝐿
denotes publicly available private attributes, and 𝑍𝑈 represents

hidden private attributes. In this context, privacy in the graph 𝐺 is

defined by the set of hidden private attributes 𝑍𝑈 .

Let us consider the following attack scenario. In a public social

network, some users choose to conceal their private attributes,

while others make them public. The adversary aims to infer these

hidden private attributes. The adversary is assumed to have access

to the network structure, node attributes (typically non-private),

and publicly available private attributes. Publicly available private

attributes can come fromuserswho do not consider this information

private or who seek to maximize visibility by sharing extensive

personal information.

Formally, we define this as graph private attribute inference

attack problem.

Problem 1 (Graph Private Attribute Inference At-

tack). Given graph𝐺 = (𝑉 , 𝐸, 𝑋 ) and the publicly available private
attributes 𝑍𝐿 , the graph private attribute inference attack aims to
learn a function

𝑓 : 𝐺,𝑍𝐿 → 𝑍𝑈 , (1)

that predicts the hidden private attribute 𝑍𝑈 .

The primary objective of this work is to tackle the problem of

privacy-preserving graph data publishing against the aforemen-

tioned graph private attribute inference attack. Specifically, instead

of directly releasing the original graph, the data publisher is en-

couraged to generate a sampled graph for publishing, such that

the sampled graph can defend against graph private attribute in-

ference attack. Based on the above definition, we formulate our

privacy-preserving graph data publishing problem as follows.

Problem 2 (Privacy-preserving graph data publish-

ing). Given graph 𝐺 = (𝑉 , 𝐸, 𝑋 ) and the publicly available pri-
vate attributes 𝑍𝐿 , the data publisher aims to sample a new graph
𝐺 ′ = (𝑉 , 𝐸′, 𝑋 ) by selectively removing edges in 𝐸, resulting in a
new edge set 𝐸′. The sampled graph 𝐺 ′ is expected to simultaneously
achieve the following two objectives:

Objective 1: privacy preservation. The adversary with𝐺 ′ and
𝑍𝐿 cannot accurately infer the private attribute 𝑍𝑈 , i.e.,

min

𝐺 ′
perf

(
𝑓 (𝐺 ′), 𝑍𝑈

)
, (2)

where perf denotes a performance metric to evaluate how well the
predicted value 𝑓 (𝐺 ′, 𝑍𝐿) aligns with the ground truth 𝑍𝑈 , such as
accuracy or ROC-AUC as used in our work.
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Figure 2: Visualization of proximity-related fraction and

structure-related fraction distributions on NBA and Pokec-n.

Objective 2: utility. The sampled graph𝐺 ′ should not deviate too
much from the original graph 𝐺 . This ensures that 𝐺 ′ conveys useful
information.

3 GRAPH PRIVACY-LEAKAGE VIA

STRUCTURE (GPS)

In this section, we delve into the problem of GPS, examining how the

structure of a graph can potentially lead to privacy breaches.We aim

to introduce a novel measure to quantify the various mechanisms

contributing to privacy breach risks in GPS.

We start with an exploratory analysis using the NBA and Pokec-n

datasets, two widely adopted datasets for graph privacy-preserving

learning [8, 9, 33]. We calculate (1) proximity-related fraction: the

fraction of a node’s neighbors sharing the same private attribute;

and (2) structure-related fraction: the fraction of nodes with similar

local structures and the same private attributes to the total nodes

with similar local structures for a specific node. Here, similar lo-

cal structures are defined where the structural similarity between

nodes’ ego networks exceeds a set threshold, assessed using degree

centrality. From the results shown in Figure 2, we derive two key

observations:

Observation 1: The necessity for node-level analysis. In Figure 2

(a), despite similar mean values for both fractions, their local dis-

tributions differ. Figure 2 (b) shows that even when the mean of

the proximity-related fraction dominates, some nodes have signif-

icantly lower values of the proximity-related fraction. This chal-

lenges the graph-level homophily ratios from prior studies, which

rely on mean values as indicators [32, 61], underscoring the need

for node-level analysis.

Observation 2: Proximity, structure, and their combination should
be simultaneously considered. We find that in Figure 2 (a), there are

nodes in which both fractions are relatively high; and in Figure 2

(b), there are instances where the proximity-related fractions of

certain nodes are small, while the structure-related fraction may

provide supplementary information. These observations emphasize

the importance of simultaneously considering proximity, structure,

and their combination when addressing privacy concerns.

In light of the insights gained from the exploratory analysis, we

propose a novel measure known as the Generalized Homophily
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Ratio (GHRatio), which is a generalized form that can be used in

conjunction with different definitions of structural features associ-

ated with graph privacy. Subsequently, we instantiate three forms

of GHRatio: proximity homophily, structure-role homophily, and

their combination. They represent the main pathways in graph

structure through which privacy can be leaked.

Generalized Homophily Ratio. As our goal is to investigate

how network structure discloses privacy, we begin by defining ho-

mophily indicator, which can be used to characterize the structural

characteristic or relation between two nodes.

Definition 1 (Homophily indicator). A homophily indicator
𝛿 (𝑣𝑖 , 𝑣 𝑗 , 𝑟 ) assesses whether node 𝑣𝑖 and 𝑣 𝑗 exhibit a shared structural
characteristic or relation 𝑟 . For example, when 𝑟 signifies similar local
structure, we have 𝛿 (𝑣𝑖 , 𝑣 𝑗 , 𝑟 ) = 1 if the similarity of 𝑣𝑖 and 𝑣 𝑗 exceeds
a certain threshold, and 0 otherwise; when considering 𝑟 as the relation
of adjacency, 𝛿 (𝑣𝑖 , 𝑣 𝑗 , 𝑟 ) = 1 if node 𝑣𝑖 and 𝑣 𝑗 are directly connected,
and 0 otherwise.

Based on the homophily indicator, we can define the GHRatio

as follows.

Definition 2 (Generalized Homophily Ratio (GHRatio)).

Given an observed graph𝐺 and private attribute matrix 𝑍 , the GHRa-
tio of node 𝑣𝑖 is defined as the conditional probability that node 𝑣𝑖
and any node 𝑣 𝑗 ( 𝑗 ≠ 𝑖) have the same private attributes, given that
𝛿 (𝑣𝑖 , 𝑣 𝑗 , 𝑟 ) = 1, i.e.,

GHRatio𝑖 = 𝑃 (𝑍𝑖 = 𝑍 𝑗 |𝛿 (𝑣𝑖 , 𝑣 𝑗 , 𝑟 ) = 1), 𝑗 ≠ 𝑖, (3)

where 𝑍𝑖 and 𝑍 𝑗 are private attributes of node 𝑣𝑖 and 𝑣 𝑗 , respectively.

Two prevalent cases of GHRatio. Given the general form of

GHRatio, we further delve into two prevalent cases of it: proximity

homophily, structure-role homophily, by defining specific graph

structural feature associated with GHRatio.

(1) Proximity homophily ratio. By defining the 𝑟 in homophily

indicator𝛿 (𝑣𝑖 , 𝑣 𝑗 , 𝑟 ) as the relation of adjacency, we have𝛿 (𝑣𝑖 , 𝑣 𝑗 , 𝑟 ) =
1 if 𝑣𝑖 and 𝑣 𝑗 are connected, and 0 otherwise; We name this specific

case of GHRatio as Proximity Homophily Ratio (GHRatio
prox

):

GHRatio
prox

𝑖
=

|{ 𝑗 | 𝑗 ∈ N (𝑖) ∧ 𝑍 𝑗 = 𝑍𝑖 }|
|{ 𝑗 | 𝑗 ∈ N (𝑖)}| , (4)

where N(𝑖) denotes 𝑣𝑖 ’s neighborhood, and | · | denotes the car-
dinality of a set. In fact, GHRatio

prox
aligns with the node-level

homophily ratio defined in existing works [35, 49].

(2) Structure-role homophily ratio. We define 𝑟 in the ho-

mophily indicator 𝛿 (𝑣𝑖 , 𝑣 𝑗 , 𝑟 ) as the similar local structure. Then, we

have 𝛿 (𝑣𝑖 , 𝑣 𝑗 , 𝑟 ) = 1 if the similarity between the local structures of

𝑣𝑖 and 𝑣 𝑗 exceeds a certain threshold, and 0 otherwise. We name this

case of GHRatio as Structure-Role Homophily Ratio (GHRatio
role):

GHRatio
role

𝑖 =
|{ 𝑗 |𝑔( 𝑗) ∼ 𝑔(𝑖) ∧ 𝑍 𝑗 = 𝑍𝑖 }|

|{ 𝑗 |𝑔( 𝑗) ∼ 𝑔(𝑖)}| , (5)

where 𝑔(𝑖) is the ego network of node 𝑣𝑖 , 𝑔(𝑖) ∼ 𝑔( 𝑗) denotes that
the ego networks 𝑔(𝑖) and 𝑔( 𝑗) are sufficiently similar (e.g., this
similarity can be understood in terms of structural similarity, specif-

ically when the structural similarity between 𝑔(𝑖) and 𝑔( 𝑗) exceeds
a predetermined threshold). Empirically, we adopt the degree cen-

trality to characterize the similarity between ego networks, which

BA
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Figure 3: Illustration of our data-centric strategy of feed-

ing different data forms (i.e., graph vs subgraphs) into GNN

to learn different knowledge (i.e., proximity homophily vs

structure-role homophily).

have been validated for its strong effectiveness and efficiency in

previous studies [45, 58].

4 PRIVATE ATTRIBUTE INFERENCE ATTACK

This section introduces a novel private attribute inference attack

model that leverages proximity homophily, structure-role homophily

and their combination to disclose private information. We adopt

a data-centric approach, feeding varied data forms into a GNN to

extract the representations related to different homophily types

(see § 4.1). Then, a routing operator is introduced for the adaptive

integration of these homophily-related representations (see § 4.2).

See Figure 4 (a) for an overview of our proposed attribute inference

attack.

4.1 Enhancing GNNs with Data-Centric Strategy

Developing a GNN model capable of learning representations tai-

lored to different homophily types is challenging. Existing works

predominantly learn representations based on proximity informa-

tion [15, 26] or high-order node dependencies [1, 61], which can

not adequately learn structure-role information. Although some

network representation methods [2, 16, 45] are designed to learn

from node structure roles, their expressive power is limited.

In this work, we introduce a data-centric strategy designed to

enhance GNNs’ capacity to learn representations tailored to prox-

imity homophily and structure-role homophily. This is achieved by

feeding different forms of data into GNNs. An illustrative example

is provided in Figure 3. Our key insight is:

(1) Feeding the entire graph to a GNN enables it to learn proximity

homophily;

(2) Feeding the set of nodes’ subgraphs (e.g., ego networks) to a

GNN, where each node’s representation is computed as its sub-

graph’s representation, facilitates the learning of structure-role

homophily.

Learning proximity homophily from the entire graph. This

principle aligns with the message-passing mechanism in standard
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GNNs, where nodes update their representations by aggregating

information from their direct neighbors [26, 53]. This aggregation

process naturally encourages similarity in the representations of

connected nodes [53]. Specifically, we generate proximity-based

representations 𝐻prox ∈ R𝑛×𝑑 by feeding the entire graph 𝐺 to a

GNN encoder GNN
prox

, i.e.,

𝐻prox = GNN
prox (𝐺) . (6)

Learning structure-role homophily from subgraphs. This

approach first extracts 𝑘-hop ego networks for each node, resulting

in a set of subgraphs. These subgraphs are subsequently fed to a

GNN encoder. The resulting subgraph representation, which en-

capsulates the aggregated features of its constituent nodes, serves

as the representation for the subgraph’s central node.

This benefits the GNN’s ability to learn structure-role homophily

for two main reasons: First, by concentrating on subgraphs, the

central node’s representation becomes exclusively reflective of its

local structural context, isolating the central node from external

influences of nodes outside the subgraph. Secondly, GNNs are partic-

ularly adept at learning structural information of smaller subgraphs.

Although GNNs can identify structural patterns, comprehending

complex structures in larger graphs remains challenging, as ob-

served in [19]. Ultimately, this process allows the GNN to bring the

representations of nodes with similar local structures closer in the

latent space.

Specifically, we process the 𝑘-hop ego network of node 𝑖 , de-

noted as 𝑆𝑖 = (𝑉𝑖 , 𝐴𝑖 , 𝑋𝑖 ), and feed the subgraph to a GNN encoder

GNN
role

. The node representation 𝐻 role

𝑖
is computed as the sub-

graph representation, which is the mean of the representations of

all nodes in the subgraph:

𝐻 role

𝑖 = Pooling(GNN
role (𝑆𝑖 )), (7)

where Pooling is the mean pooling operator.

Theoretical analysis of learning from subgraphs. While cap-

turing proximity homophily from the entire graph is widely ac-

knowledged [25, 53, 56], few works explore learning structure-role

homophily from subgraphs. We therefore theoretically investigate

whether GNNs fed with subgraphs can learn structure-role ho-

mophily. The following theorem suggests that nodes with similar

local structures can obtain similar node representations.

Theorem 1. Let 𝑆𝑖 and 𝑆 𝑗 be two k-hop subgraphs induced from
node 𝑣𝑖 and 𝑣 𝑗 . After employing a 𝐾-layer GNN encoder with a 1-
hop graph filter Ψ(L) on each subgraph, the representations of the
center node 𝑣𝑖 and 𝑣 𝑗 are obtained via a pooling function, i.e., 𝐻 role

𝑖
=

Pooling(GNN
role (𝑆𝑖 )) and𝐻 role

𝑗
= Pooling(GNN

role (𝑆 𝑗 )). Without
loss of generality, assume that the attribute of each node is a vector of
ones, 𝐻 role

𝑖
and 𝐻 role

𝑗
satisfy:

∥𝐻 role

𝑖 − 𝐻 role

𝑗 ∥2 ≤ 𝜏 ∥L𝑖 − L 𝑗 ∥2,

where ∥ · ∥2 denotes 𝐿2 norm of matrix or vector, 𝜏 denotes a constant
depending on GNN

role, L𝑖 denotes the normalised Laplacian matrix
of 𝑆𝑖 .

In Theorem 1, the term ∥L𝑖 − L 𝑗 ∥2 measures the difference of

local structure around 𝑣𝑖 and 𝑣 𝑗 . As similar local structures bring

smaller differences in Laplacian matrices, the upper bound of node
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Figure 4: An overview of (a) the proposed attribute inference

attack and (b) the proposed graph data publishing method.

representation distance is reduced. Consequently, nodes with simi-

lar local structures become closer in the latent space. The proof of

this theorem can be found in Appendix A.2.

4.2 Routing Operator

After obtaining the two types of representations, the challenge

arises in determining the optimal method to integrate them, espe-

cially given the uncertainty about the extent of information that

should be merged from each type. To tackle this issue, we intro-

duce a routing operator that leverages our proposed GHRatio to

effectively combine these representations.

Since GHRatio
prox

and GHRatio
role

serve to quantify the extent

to which proximity and structural role disclose privacy, respectively.

Utilizing these ratios, we can integrate the two types of representa-

tions, aiming for a balanced and informed combination that reflects

the significance of both proximity and structural information in

revealing privacy. However, calculating these ratios requires the

knowledge of the private attributes of all nodes, which presents

another difficulty. To address this, our approach involves estimating

the ratios by employing the pseudo-labels of private attributes.

Formally, we apply Multilayer Perceptrons (MLPs) to obtain

inference results from proximity-based representation 𝐻prox and

structure role-based representation 𝐻
role

. Then we use the esti-

mated GHRatios as the proportions to integrate them. The inte-

grated result 𝑍𝑖 in turn serves as the pseudo-labels. Due to the

interdependence between pseudo-labels and GHRatios, we initial-

ize GHRatios with constants and iteratively update them during

training. The above process can be described as follows:

𝑍
prox

𝑖
= MLP(𝐻prox

𝑖
), 𝑍 role

𝑖 = MLP(𝐻 role

𝑖 ),

𝑍𝑖 = GHRatio
prox

𝑖
· 𝑍prox

𝑖
+ GHRatio

role

𝑖 · 𝑍 role

𝑖 , (8)

where 𝑍𝑖 denotes the final inference result for node 𝑣𝑖 .

The model is optimized as follows:

min

Θ
𝐿

adv
= − 1

|𝑉𝐿 |
∑︁
𝑣𝑖 ∈𝑉𝐿

𝐶∑︁
𝑐=1

𝑍𝑖,𝑐 log𝑍𝑖,𝑐 , (9)

where 𝐶 denotes the number of categories for the private attribute,

𝑉𝐿 denotes the nodes with known private attributes, and Θ denotes

the parameters of the attack model.
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5 PRIVACY-PRESERVING GRAPH DATA

PUBLISHING

In this section, we introduce a learnable graph sampling approach

for privacy-preserving graph data publishing. We first outline the

learnable strategy for graph sampling in § 5.1. Following this, the

optimization objectives and training algorithm are detailed in § 5.2

and § 5.3, respectively. Figure 4 (b) provides an overview of the

proposed graph data publishing method.

5.1 Learnable Graph Sampling

To generate a sampled graph 𝐺 ′
with adjacency matrix 𝐴′

, we first

feed the graph𝐺 into a GNN encoder to obtain node representation

𝐻 samp
:

𝐻 samp = GNN(𝐺). (10)

Given any connected node pair {𝑣𝑖 , 𝑣 𝑗 }, an MLP with sigmoid acti-

vation takes the concatenation of their node representations 𝐻
samp

𝑖

and 𝐻
samp

𝑗
as input to compute the probability T𝑖 𝑗 of preserving

the edge between {𝑣𝑖 , 𝑣 𝑗 }:

T𝑖 𝑗 = 𝜎 (MLP(𝐻 samp

𝑖
⊕ 𝐻 samp

𝑗
)), (11)

where 𝜎 denotes sigmoid activation, and ⊕ represent the concate-

nation operation. With an edge’s T𝑖 𝑗 calculated, we sample whether

to retain the edge in the synthetic graph 𝐺 ′
according to this prob-

ability, where

𝐴′
𝑖 𝑗 ∼ Bernoulli(T𝑖 𝑗 ) . (12)

In particular, the Gumbel-Softmax reparameterization trick [36]

is utilized to tackle the non-differentiable nature of the sampling

process. In doing so, we obtain a continuous sampling result, i.e.,
𝐴′
𝑖 𝑗

= 𝜎 ((log𝑈 −log (1 −𝑈 )+logT𝑖 𝑗 )/𝜀), where𝑈 ∼ Uniform(0, 1).
As the temperature hyper-parameter 𝜀 tends to zero, the reparam-

eterized result smoothly converges to binary values, while main-

taining the relative order of each Gumbel [36].

5.2 Optimization Problem

We propose three optimization objectives for training learnable

parameters within the graph sampling procedure: one aimed at

defending against worst-case attacks, one designed for a broader

spectrum of attacks, and another dedicated to preserving essential

graph properties. These objectives collectively ensure that the sam-

pled synthetic graph maintains user privacy while simultaneously

achieving desirable data utility.

Defending Against Worst-Case Attack. Given the proposed

inference attack, the most straightforward and effective approach

is to defend against this attack under the worst-case. Specifically, to

obtain the worst-case attack, we maximize the performance of the

attack model, and subsequently, we defend against such an attack.

This can be formulated as

min

Φ
max

Θ
−𝐿

adv
(𝐺 ′ (Φ),Θ), (13)

where Φ and Θ denote the parameters of the sampling component

and the attack model respectively. Φ determines 𝐺 ′
by influencing

𝐴′
.

Defending Against a Broad Spectrum of Attacks via GHRatio.

Eq. (13) ensures that our publishing method can defend against

the proposed worst-case attack. However, in real-world scenarios,

the released graph may face various attacks, and not all of them

necessarily reach the worst case [34, 43]. In such scenarios, we

devise a universal protection strategy via GHRatio, which serves

as a measure independent of a specific attack.

Essentially, GHRatio quantifies how much information the net-

work structure can disclose for inferring the private attribute. By

minimizing GHRatio, we can mitigate the risk of privacy leakage

in an attack-agnostic manner:

min

Φ
𝐿

dis
=

1

|𝑉 |
∑︁
𝑣𝑖 ∈𝑉

∥GHRatio𝑖 (Φ) − GHRatio
0

𝑖 ∥, (14)

where GHRatio𝑖 (Φ) represents the new GHRatio of the sampled

graph𝐺 ′
. GHRatio

0

𝑖
represents 𝑃 (𝑍𝑖 = 𝑍 𝑗 ), indicating the probabil-

ity that nodes 𝑣𝑖 and any node 𝑣 𝑗 ( 𝑗 ≠ 𝑖) have the same private at-

tribute. When 𝐿
dis

= 0, the structural characteristic in GHRatio𝑖 (Φ)
provides no benefits for attribute inference.

Note that since 𝑍𝑖 is given, we have GHRatio
0

𝑖
= 𝑃 (𝑍𝑖 ). In prac-

tice, we propose to optimize the two prevalent cases of GHRatio,

GHRatio
prox

and GHRatio
role

, being described as:

min

Φ
𝐿

dis
=

1

|𝑉 |
∑︁
𝑣𝑖 ∈𝑉

∥GHRatio
prox

𝑖
(Φ) − 𝑃 (𝑍𝑖 )∥

+ ∥GHRatio
role

𝑖 (Φ) − 𝑃 (𝑍𝑖 )∥, (15)

where 𝑃 (𝑍𝑖 ) represents the empirical estimation of 𝑃 (𝑍𝑖 ).
Regularization for Ensuring Utility. To ensure the utility of

the sampled graph, we aim to align the properties of 𝐺 ′
with those

of 𝐺 . Thus, we incorporate a reconstruction-based regularization

term to control the deviation of the sampled graph:

min

Φ
𝐿reg = − 1

|𝐸 |
∑︁

(𝑖, 𝑗 ) ∈𝐸
𝐴𝑖 𝑗 log(T𝑖 𝑗 ), (16)

where T𝑖 𝑗 denotes the sampling probability of edge (𝑖, 𝑗). By Eq.

(16), 𝐺 ′
will retain as many edges as possible from 𝐺 .

To sum up, we formalize the overall optimization problem:

min

Φ
max

Θ
𝐿 = −𝛾 · 𝐿

adv
+ 𝜂 · 𝐿

dis
+ 𝜆 · 𝐿reg, (17)

where 𝛾, 𝜂, 𝜆 > 0 are hyper-parameters.

For different scenarios, we can also modify Eq. (17) to obtain

different variants. If the goal is to protect against the proposed

worst-case attack, only retaining 𝐿
adv

and 𝐿reg would be sufficient.

On the other hand, if the goal is not specifically for the worst case

but to be effective against a broad range of attacks, retaining 𝐿
dis

and 𝐿reg is suitable.

5.3 Training Algorithm

In the training phase, the parameters Φ of the sampling component

and the parameters Θ of the proposed attack model are jointly

trained. Specifically, The training algorithm iterates through the

following main steps: (1) Learn Φ to minimize −𝐿
adv

, 𝐿reg and 𝐿dis
while keeping Θ fixed, and (2) Learn Θ to maximize −𝐿

adv
while

keeping Φ fixed. Repeat these steps until the maximum iteration is

reached. The detailed training algorithm and complexity analysis

are summarized in Appendix A.3.
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6 EXPERIMENTS

In this section, we evaluate the effectiveness of both the proposed

attack model and the defensive model of data publishing.

6.1 Experiment Setting

Datasets. We conduct attribute inference and data publishing

experiments on three datasets: Pokec-n, Pokec-z, and NBA [8, 33].

Following prior works [8], we treat country as the private attribute

in NBA, and region as the private attribute in Pokec-n and Pokec-z.

Additionally, we also treat users’ age as another private attribute in

Pokec-n and Pokec-z, categorizing it according to the split in [18]:

Young (18-24), Young-Adult (25-34), Middle-aged (35-49), and Senior

(> 49). All private attributes are randomly split, with 10% publicly

available and the remaining 90% hidden. In the experiments of data

publishing, we also consider salary as the label in NBA and working

field as the label in Pokec-n and Pokec-z [8, 33]. We conduct node

classification on these labels as downstream tasks (using a training-

testing split of 0.1:0.9), and assess the utility of published graphs

by evaluating the performance of these tasks. The statistics of the

three datasets are summarized in Table 6.

Implementation details. All experiments are conducted on a

machine of Ubuntu 20.04 system with AMD EPYC 7763 (756GB

memory) and NVIDIA RTX3090 GPU (24GB memory). All models

are implemented in PyTorch version 2.0.1 with CUDA version 11.8

and Python 3.8.0. Each experiment is repeated 5 times to report the

average performance with standard deviation.

For the attack model, the encoder GNN
prox

and GNN
role

are

implemented by two 2-layer GIN [54] encoders, with the same

model architecture. The hidden dimensions are set to 128 in Pokec-

z, Pokec-n, and 64 in NBA. The two MLPs are both implemented

by 1-layer linear transformations. The model is trained by AdamW

optimizer with a learning rate of 0.001 for 300 epochs in Pokec-n,

Pokec-z, and 500 epochs in NBA. For the defensive model, the sam-

pling component consists of a two-layer Graphsage [15] encoder

and a two-layer MLP. The hidden dimension of the Graphsage en-

coder is 64, and the hidden dimension of theMLP is 32 in all datasets.

The model is trained by AdamW optimizer with a learning rate of

0.002 for 200 epochs in Pokec-n, Pokec-z, and 100 epochs in NBA.

The weight decay is consistently set as 0.0005. Both models use

ReLU as the non-linear activation function. For hyper-parameters

settings. We perform a grid search of the degree similarity threshold

(see Eq. 5) in [0,20] with a step size of 5 in all datasets. We set 𝜆 to

1, and vary 𝛾 and 𝜂 (see Eq. 17) within [10,30] in NBA and (0,20] in

Pokec-z and Pokec-n, with a step size of 5. Our codes are available

at https://github.com/zjunet/GPS_KDD.

6.2 Experiments on Private Attribute Inference

Baselines. We compare with the following attack models, which

are divided into three types: (1) MLP: multilayer perceptions; (2)

GCN [26], GAT [50], GraphSAGE, Mixhop [1] and H2GCN [61]:

three foundational GNNs and two heterogeneous GNNs, used as

comparisons to evaluate the effectiveness of the proposed attack

model in capturing privacy leakage from both proximity homophily

and structure-role homophily; (3) AttriInfer [22], ComInfer [40],

AI-N2V, AI-DW [13]: four methods designed for private inference

Table 1: Accuracy (age) and ROC-AUC (rest) of graph private

attribute inference, where Ours denotes the proposed attack

model. The best results are bolded.

Pokec-n Pokec-z NBA

Age Region Age Region Country

MLP 54.01 (3.42) 58.61 (1.36) 56.54 (3.53) 57.49 (1.10) 51.30 (3.22)

GCN 65.37 (1.03) 81.34 (0.52) 66.53 (1.28) 82.88 (0.58) 80.35 (2.21)

GAT 64.20 (1.44) 77.37 (2.28) 65.09 (2.01) 78.15 (2.74) 79.03 (4.35)

SAGE 65.29 (1.04) 81.15 (0.85) 67.14 (0.79) 82.51 (0.69) 80.71 (0.74)

MixHop 64.46 (0.50) 85.93 (0.87) 66.94 (0.38) 87.46 (0.83) 72.90 (1.89)

H2GCN 63.13 (0.27) 80.26 (1.34) 65.78 (1.61) 83.80 (1.09) 60.59 (3.31)

AttriInfer 64.83 (0.11) 63.85 (0.53) 63.18 (0.39) 63.76 (0.40) 65.93 (2.30)

ComInfer 34.18 (0.59) 62.35 (0.29) 39.64 (0.81) 55.34 (0.75) 65.97 (1.10)

AI-N2V 61.13 (0.52) 72.12 (0.42) 59.42 (0.76) 74.85 (0.87) 73.00 (1.91)

AI-DW 62.25 (0.69) 75.30 (2.18) 58.81 (0.19) 78.90 (3.61) 71.53 (2.88)

Ours 66.69 (1.03) 89.39 (0.35) 68.80 (0.89) 90.01 (0.36) 83.32 (1.36)

on graphs. AttriInfer and ComInfer are non-deep learning models,

based on Markov random fields and community detection respec-

tively. AI-N2V and AI-DW are representation-based models that

utilize Node2Vec and DeepWalk to obtain node representations.

Comparison results. For evaluation, Table 1 presents the perfor-

mance results of the proposed attack model in comparison with

other baseline methods on the five aforementioned private at-

tributes. The results reveal several key insights: Firstly, the notable

performance drop observed in the MLP model empirically demon-

strates the crucial role of GPS. Secondly, AI-N2V and AI-DW exhibit

lower performance, possibly due to their limited ability to simul-

taneously capture both proximity and structure-role information

in these representation methods. Additionally, the performance of

AttriInfer and ComInfer is weaker than that of the GNN models.

The reason may be attributed to the more powerful expressive ca-

pabilities of the latter models. Thirdly, the proposed attack model

outperforms other baseline methods on all datasets, highlighting

its remarkable efficacy in capturing GPS from both structure-role

homophily and proximity homophily.

Ablation study. We conduct ablation studies to demonstrate the

efficacy of each component within our attackmodel, including three

variants: (1) Ours-prox: the inference results are solely obtained

by aggregating on the entire graph; (2) Ours-role: the results are

solely obtained by aggregating within each subgraph. (3) Ours-

equal: dropping the GHRatios and combining the two prediction

results in a 0.5:0.5 ratio. Table 2 shows the results on the five private

attributes. Notably, the complete model consistently surpasses the

performance of all variants, showing the effectiveness and necessity

of simultaneously leveraging proximity homophily and structure-

role homophily to capture privacy leakage.

6.3 Experiments on Data Publishing

https://github.com/zjunet/GPS_KDD
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Figure 5: Privacy-utility trade-off of our defensive model and baselines. The upper-left corner represents the ideal performance.

Table 2: Ablation study of the proposed attack model.

Pokec-n Pokec-z NBA

Age Region Age Region Country

Ours-prox 65.23 (1.79) 88.00 (0.76) 67.53 (0.88) 88.96 (0.42) 82.27 (1.43)

Ours-role 65.33 (2.20) 88.37 (0.79) 66.03 (2.48) 89.01 (1.24) 79.23 (2.71)

Ours-equal 65.04 (2.31) 88.76 (0.62) 67.09 (1.62) 89.50 (0.94) 81.72 (1.65)

Ours 66.69 (1.03) 89.39 (0.35) 68.80 (0.89) 90.01 (0.36) 83.32 (1.36)

Baselines. We evaluate the performance of the proposed defensive

model with five baselines, including: (1) Rand.: randomly dropping

edges; (2) Deg./Betw. [4]: dropping edges based on the degree or

betweenness centrality in descending order; (3) RABV [57]: an edge

perturbation method that satisfies 𝜖-edge local differential privacy,

where each pair of symmetric bits in the adjacency matrix is per-

turbed one and only one bit; (4) NetFense [17]: a data publishing

method against GNN-based inference attack on binary private at-

tribute, the goal is to maintain data utility and protect privacy. We

adopt the multi-target setting as suggested in the paper.

Comparative results. Utilizing our attack model as a worst-case

adversary due to its superior performance in prior tests, we exam-

ine the privacy preservation performance by evaluating the attack

models trained on the graphs generated by our defensive model and

baselines. For data utility, we assess downstream task performance.

Specifically, a GNN-based classifier (the same implementation as

GNN
prox

and MLP in § 6.1) is employed to conduct node classifica-

tion of each dataset’s label on the perturbed graphs. To ensure a

fair comparison, we fix the hyper-parameters for our attack model

and downstream classifier, while tuning the hyper-parameters of

each defensive method to explore their privacy-utility trade-offs.

We select the best three trade-off points for each method and vi-

sualize them in Figure 5. The upper-left corner of each sub-figure

represents the ideal performance, with higher downstream perfor-

mance and lower attack performance. Note that we also report the

trade-off performance of the two variants of our defensive model,

namely (1) Ours-adv: only retaining 𝐿
adv

and 𝐿reg in Eq. (17) and

(2) Ours-dis: only retaining 𝐿
dis

and 𝐿reg in Eq. (17).

Figure 5 demonstrates that our defensive model consistently

achieves the best privacy-utility trade-off on the five private at-

tributes. Our variants Ours-adv and Ours-dis also demonstrate a

commendable trade-off, such as in NBA country, Pokec-n age, and

Table 3: MMD distance of the degree distributions (d.d) and

clustering coefficient distribution (c.c) between the original

and the published graph of each method.

Pokec-n Pokec-z NBA

Age Region Age Region Country

d.d c.c d.d c.c d.d c.c d.d c.c d.d c.c

Rand. 1.354 0.897 4.184 2.847 2.057 0.777 6.546 2.539 6.442 1.356

Deg. 2.834 0.185 6.077 1.114 4.190 0.271 9.196 0.682 7.769 1.781

Betw. 2.173 0.348 5.381 1.009 3.096 0.327 8.082 1.036 7.292 1.654

RABV 2.339 1.843 7.455 3.453 3.892 1.657 8.613 2.532 8.740 2.665

NetF. 2.093 0.218 4.138 1.315 2.229 0.391 5.765 0.596 7.673 1.674

Ours 0.192 0.118 1.759 0.945 0.392 0.073 3.279 0.694 2.498 0.998

Pokec-z age. In contrast, methods such as Rand., Deg., and Eigen.

do not take the private attribute into account during perturba-

tion, thus compromising data utility. RABV exhibits suboptimal

privacy preservation effects when introducing additional noise to

the network structure. NetFense fails to adequately capture pri-

vacy leakage from both structure-role homophily and proximity

homophily, thereby achieving less optimal trade-offs. In addition,

it presents higher computational complexity.

Evaluation of graph property change. To evaluate from a

broader perspective, we characterize the utility by measuring the

extent to which the sampled graph deviates from the original graph.

Specifically, the properties of the published graph should closely

resemble those of the original graph. Therefore, we employ the

Maximum Mean Discrepancy (MMD) distance as our evaluation

metric, comparing the degree distribution and clustering coefficient

distribution of the original graph with those of the published net-

work under our model and baselines. To ensure fairness, we tune

the hyperparameters of these models to achieve comparable results

in terms of privacy-preserving performance. The MMD scores in

Table 3 (the smaller, the better) demonstrate that our model outper-

forms others on each dataset except for the Pokec-z region. These

results suggest that our model, while eliminating edges associated

with privacy breaches, optimally preserves the remaining graph

structure, effectively maintaining data utility.
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Table 4: Defending against various attackmodels on Pokec-n.

AttriInfer ComInfer AI-N2V AI-DW

Rand. 63.90 (0.63) 34.01 (1.01) 60.98 (0.39) 61.76 (0.77)

Deg. 63.20 (1.51) 33.62 (0.52) 60.92 (0.58) 61.23 (0.37)

Betw. 62.96 (0.63) 33.17 (0.64) 61.03 (0.89) 61.42 (0.45)

RABV 63.34 (0.81) 33.49 (0.83) 60.52 (0.45) 61.49 (0.87)

NetFense 62.84 (0.41) 32.73 (0.59) 60.01 (0.52) 61.10 (0.62)

Ours 62.02 (0.19) 31.92 (0.63) 59.78 (0.11) 60.86 (0.55)

Evaluation of transferability. As our defensive model adopts

the proposed inference as the worst-case adversary during training,

we aim to assess its transferability. In other words, we evaluate

whether the defensive model can perform effectively against other

attribute inference attack models. Table 4 reports the performance

of our defensive model compared with other baselines on Pokec-n

age. The results show that our defensive model outperforms other

methods in protecting against various attackmodels, demonstrating

its outstanding transferability.

Evaluation of transferability on other private attributes and more

comprehensive experiments can be found in the full version.

7 RELATEDWORK

Private attribute inference. Early approaches to attribute in-

ference have primarily focused on using user-individual public

attributes. These attributes include profile labels [14, 29], textual

content [42, 44], and location information from users’ public posts

[27]. These approaches heavily rely on the correlation between pub-

lic and hidden private attributes to build inference models. Despite

their demonstrated effectiveness, these methods often overlook

valuable information from the connections between users, result-

ing in a noticeable performance decline.

Subsequent explorations of attribute inference leverage network

structure [13, 22, 40, 59] and involve the utilization of graph propa-

gation algorithms, such as GCN [52] and MRF [22], to facilitate the

propagation of information across connected nodes. These mod-

els aggregate information from adjacent nodes [22, 59], leverage

community structures [40], or random walk [13] to infer private

attributes. While they underscore the exploitation of proximity

homophily [3], they often overlook the other crucial aspect of

structure-role homophily, thereby achieving less than optimal per-

formance.

Privacy-preserving learning on graph. Privacy-preserving

techniques are crucial to graph data publishing, among which

anonymization [11, 60], sampling-based [17], model training-based

[28, 51] and differential privacy [6, 10, 31, 46, 57, 62] defense meth-

ods have been proposed. The anonymization methods [11, 60] face

constraints due to the need to mitigate operational complexities and

often compromise privacy and utility for efficiency. The sampling-

based method [17] proposes an edge perturbation technique to

defend against GNN-based inference on binary private attributes.

However, it fails to consider privacy leaks from structural infor-

mation and has high computational complexity. Regarding model

training-based defense methods [28, 51], they often fall short when

dealing with complex scenarios that require direct processing of

graph data. In addition, differential privacy (DP) is a common pri-

vacy protection technique. Early efforts [6, 55, 62] extend DP to

correlated settings, where data records are assumed to be correlated

with each other (e.g., network structure). They primarily rely on

noise injection for privacy preservation. In contrast, our method

systematically addresses the attack-defense problem by considering

the complex relationships and structural patterns encompassed in

graph data. Recently, DP-DGAE [31] perturbs the objective function

of graph auto-encoders to prevent attackers from re-identifying

nodes. Local DP [7] allows individuals to locally perturb their graph

metrics, such as node degree and adjacency list before aggregation

to mitigate the risk of privacy leakage [10, 46, 57]. Striking a balance

between utility and privacy remains a challenge for them in graph

data publication. Note that our method differs from DP in two key

aspects: first, the determination of the edge sampling probability

in DP is established according to predetermined mechanisms with

respect to network structure. In contrast, our method learns the

sampling probability based on the risks associated with GPS. Sec-

ond, DP aims to preserve membership privacy, that is, altering one

sample (e.g., node or edge) doesn’t significantly change the output

distribution, while the privacy we investigate in this work pertains

to attribute-wise privacy.

8 CONCLUSION

In this work, we delve into the problem of GPS and uncover the

underlying mechanisms, including structure-role homophily, prox-

imity homophily, and their intricate interplay. Based on this un-

derstanding, we introduce a novel data-centric approach for graph

private attribute inference, capable of capturing privacy leaks from

thesemechanisms. Serving as the worst-case adversary, this method

provides a comprehensive evaluation of potential privacy risks. To

combat GPS, we propose a learnable graph sampling model for

privacy-preserving data publishing. Our model enhances privacy

security by learning the risks associated with each edge in GPS. Ex-

tensive experiments validate the effectiveness of our attack method

and demonstrate the advantageous balance achieved by our de-

fensive model between privacy preservation and utility retention.
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A APPENDIX

A.1 Notations

To facilitate clarity in our presentation, Table 5 summarizes major

notations used in this work.

A.2 Proof of Theorem 1

Lemma 1. For any 𝐴 ∈ R𝑛×𝑑 , let 𝑎𝑖 ∈ R1×𝑑 denote the 𝑖-th row
of 𝐴, we have

∥𝑎𝑖 ∥2 ≤ ∥𝐴∥2,∀1 = 1, ..., 𝑛 (18)

Proof. Let 𝑒𝑖 = [0, ..., 1, ..., 0]𝑇 be a vector of zero, except for the

𝑖-th element. By the definition of matrix norm, we have ∥𝐴𝑇 𝑒𝑖 ∥2 ≤
∥𝐴𝑇 ∥2∥𝑒𝑖 ∥2 and ∥𝐴𝑇 ∥2 = ∥𝐴∥2. Then we have ∥𝑎𝑖 ∥2 = ∥𝐴𝑇 𝑒𝑖 ∥2 ≤
∥𝐴𝑇 ∥2∥𝑒𝑖 ∥2 = ∥𝐴∥2. □

We now give the proof of Theorem 1.

Proof. Without loss of generality, we prove Theorem 1 by in-

stantiating the encoder as a 𝐾-layer GCN encoder and a 1-hop

graph filter Ψ(L) = 𝐼𝑑 − L. For simplicity, we denote the 𝑙-th
layer’s node representation in 𝑆𝑖 as 𝐻

𝑙
𝑆𝑖
, which is obtained as

𝐻 𝑙𝑆𝑖
= 𝜎 (Ψ(L𝑖 )𝐻 𝑙−1

𝑆𝑖
𝑊 𝑙 ) (19)

where 𝜎 denotes a 𝜏𝜎 -Lipschitz activation function,𝑊 𝑙 ∈ R𝑑×𝑑
denotes the learnable parameters in the 𝑙-th layer.

Assume that 𝑆𝑖 and 𝑆 𝑗 have the same number of nodes, and

max𝑙 ∥𝐻 𝑙𝑆𝑖 ∥2 ≤ 𝜏ℎ and max𝑙 ∥𝑊 𝑙 ∥2 ≤ 𝜏𝑤 . Then ∀𝑙 = 1, ..., 𝐾 , we

have

∥𝐻 𝑙𝑆𝑖 − 𝐻
𝑙
𝑆 𝑗
∥2 ≤∥𝜎 (Ψ(L𝑖 )𝐻 𝑙−1

𝑆𝑖
𝑊 𝑙 ) − 𝜎 (Ψ(L 𝑗 )𝐻 𝑙−1

𝑆 𝑗
𝑊 𝑙 )∥2

≤𝜏𝜎 ∥Ψ(L𝑖 )𝐻 𝑙−1

𝑆𝑖
𝑊 𝑙 − Ψ(L 𝑗 )𝐻 𝑙−1

𝑆 𝑗
𝑊 𝑙 ∥2

≤𝜏𝜎𝜏𝑤 ∥Ψ(L𝑖 )𝐻 𝑙−1

𝑆𝑖
− Ψ(L 𝑗 )𝐻 𝑙−1

𝑆 𝑗
∥2

≤𝜏𝜎𝜏𝑤 ∥Ψ(L𝑖 )𝐻 𝑙−1

𝑆𝑖
− Ψ(L 𝑗 )𝐻 𝑙−1

𝑆𝑖

+ Ψ(L 𝑗 )𝐻 𝑙−1

𝑆𝑖
− Ψ(L 𝑗 )𝐻 𝑙−1

𝑆 𝑗
∥2

≤𝜏𝜎𝜏𝑤𝜏ℎ ∥Ψ(L𝑖 ) − Ψ(L 𝑗 )∥2

+ 𝜏𝜎𝜏𝑤 ∥Ψ(L 𝑗 )∥2∥𝐻 𝑙−1

𝑆𝑖
− 𝐻 𝑙−1

𝑆 𝑗
∥2 (20)

The above equation be equivalently rewritten as 𝑅𝑙 ≤ 𝑎 + 𝑏𝑅𝑙−1
,

then we have

𝑅𝑙 ≤ 𝑎 + 𝑏𝑅𝑙−1

≤ 𝑎(𝑏 + 1) + 𝑏2𝑅𝑙−2

. . .

≤ 𝑏𝑙 − 1

𝑏 − 1

𝑎 + 𝑏𝑙𝑅0 (21)
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Let 𝑙 = 𝐾 and let ∥𝐻𝑆𝑖 − 𝐻𝑆 𝑗 ∥2 = ∥𝐻𝐾
𝑆𝑖

− 𝐻𝐾
𝑆 𝑗
∥2 denote the repre-

sentation difference in the last layer, we have

∥𝐻𝑆𝑖 − 𝐻𝑆 𝑗 ∥2 ≤
(𝜏𝜎𝜏𝑤)𝐾 ∥Ψ(L 𝑗 )∥𝐾

2
− 1

𝜏𝜎𝜏𝑤 ∥Ψ(L 𝑗 )∥2 − 1

𝜏𝜎𝜏𝑤𝜏ℎ ∥Ψ(L𝑖 ) − Ψ(L 𝑗 )∥2

+ (𝜏𝜎𝜏𝑤)𝐾 ∥Ψ(L 𝑗 )∥𝐾2 ∥𝑋𝑖 − 𝑋 𝑗 ∥2 (22)

Since we assume that the attribute of each node is a vector of ones,

we have ∥𝑋𝑖 −𝑋 𝑗 ∥2 = 0. Since the graph Laplacians are normalized,

we assume min𝑙 ∥Ψ(L 𝑗 )∥2 ≤ 𝜏𝑙 . Thus

∥𝐻𝑆𝑖 − 𝐻𝑆 𝑗 ∥2 ≤ (𝜏𝜎𝜏𝑤𝜏𝑙 )𝐾 − 1

𝜏𝜎𝜏𝑤𝜏𝑙 − 1

𝜏𝜎𝜏𝑤𝜏ℎ ∥Ψ(L𝑖 ) − Ψ(L 𝑗 )∥2

≤ 𝜏 ∥L𝑖 − L 𝑗 ∥2 (23)

where 𝜏 =
(𝜏𝜎𝜏𝑤𝜏𝑙 )𝐾 −1

𝜏𝜎𝜏𝑤𝜏𝑙−1
𝜏𝜎𝜏𝑤𝜏ℎ .

By a pooling function of mean, we obtain the final center node

representation 𝐻 role

𝑖
, 𝐻 role

𝑗
of 𝑆𝑖 , 𝑆 𝑗 . From Lemma 1, we have:

∥𝐻 role

𝑖 − 𝐻 role

𝑗 ∥2 ≤ 1

𝑛

𝑛∑︁
𝑣=1

∥𝐻𝑆𝑖 ,𝑣 − 𝐻𝑆 𝑗 ,𝑣 ∥2 ≤ 𝜏 ∥L𝑖 − L 𝑗 ∥2 (24)

which completes the proof. □

A.3 Training Algorithm and Complexity

Analysis

Algorithm 1 Learnable graph sampling method

Input: Graph 𝐺 = (𝑉 , 𝐸, 𝑋 ), available private attributes 𝑍𝐿 , num-

ber of epochs 𝑡 , update interval 𝑙 , and 𝛾, 𝜂, 𝜆.

Output: The sampled graph 𝐺 ′ = (𝑉 , 𝐸′, 𝑋 ).
1: Initialize GHRatio

prox
and GHRatio

role
for all nodes as 0.5.

2: for epoch 𝑒 = 1, 2, · · · , 𝑡 do
3: Calculate the edge sampling probability by Eq. (11).

4: Calculate the training loss by Eq. (13), Eq. (15) and Eq. (16).

5: Update the parameters Θ of the attack model by maximizing

Eq. (17).

6: Update the parameters Φ of the sampling component by

minimizing Eq. (17).

7: if 𝑒%𝑙 == 0 then

8: Update GHRatio
prox

and GHRatio
role

by Eq. (4) and (5).

9: end if

10: end for

11: Use the learned edge sampling probability to obtain 𝐺 ′
.

We divide our data publishing method into four computational

steps, and we provide an analysis of the time complexity for each

step.

(1) Preprocessing: In this phase, we extract the subgraphs of all

nodes. Let graph 𝐺 = (𝑉 , 𝐸, 𝑋 ), the complexity of extraction

is 𝑂 (𝑛 ¯𝑑𝑘 ), where 𝑘 is the number of hops, 𝑛 is the number of

nodes,
¯𝑑 is the average degree of nodes. This step is computed

only once.

(2) Sampling: In this phase, we compute the sampling probability

for each edge and perform graph sampling. The complexity of

obtaining node representations for each node through Graph-

SAGE is𝑂 (𝑟𝑛𝐾𝑡), where 𝑟 is the number of sampled neighbors,

𝐾 is the number of layers, and 𝑡 is the number of iterations. Here,

we omit the time complexity of matrix operations. Then, obtain-

ing edge sampling probability and performing sampling has a

complexity of 𝑂 (𝑚), where𝑚 represents the number of edges.

Therefore, the total complexity of this step is 𝑂 (𝑟𝑛𝐾𝑡 +𝑚).
(3) Inference: In this phase, we perform attribute inference on the

sampled graph. Firstly, the time complexity of obtaining pre-

dictions using GIN on the entire graph is 𝑂 (𝑛𝐾𝑡). To mitigate

the time overhead caused by repeated subgraph extraction, we

store the global masks of corresponding edges in each node’s

𝑘-hop subgraph during the preprocessing step. After each sam-

pling step, we only need to determine which edges in the 𝑘-hop

subgraph of each node are retained based on these masks. And

using GIN on the subgraph for prediction has a time complex-

ity of 𝑂 (𝑛 ¯𝑑𝑘𝐾𝑡). Thus, the overall complexity of this step is

𝑂 (𝑛 ¯𝑑𝑘𝐾𝑡).
(4) Loss calculation: the complexities of computing 𝐿

adv
, 𝐿

dis
, and

𝐿reg are 𝑂 (𝑛), 𝑂 (( ¯𝑑 + ¯𝑏)𝑛), and 𝑂 (𝑚), Where
¯𝑑 denotes the

average degree (number of neighbors) for a node, and
¯𝑏 denotes

the average number of nodes with a similar degree to a given

node. The overall complexity of this step is 𝑂 (( ¯𝑑 + ¯𝑏)𝑛 +𝑚)

A.4 Datasets statistics

We provide the statistics of the three used datasets in this work.

Table 6: The statistics of datasets

Dataset Pokec-n Pokec-z NBA

# nodes 66,569 67,797 403

# node attr. 59 59 39

# edges 729,129 882,765 16,570

Private attr. region/age region/age country

Label working field working field salary
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