
Can Modifying Data Address Graph Domain Adaptation?
Renhong Huang∗

Zhejiang University, Fudan University
renh2@zju.edu.cn

Jiarong Xu†

Fudan University
jiarongxu@fudan.edu.cn

Xin Jiang
Lehigh University
xjiang@lehigh.edu

Ruichuan An
Xi’an Jiaotong University
arctanx@stu.xjtu.edu.cn

Yang Yang
Zhejiang University
yangya@zju.edu.cn

ABSTRACT
Graph neural networks (GNNs) have demonstrated remarkable suc-
cess in numerous graph analytical tasks. Yet, their effectiveness
is often compromised in real-world scenarios due to distribution
shifts, limiting their capacity for knowledge transfer across changing
environments or domains. To this end, Unsupervised Graph Domain
Adaptation (UGDA) has been recently introduced as a solution and
aims to facilitate knowledge transfer from a labeled source graph to
an unlabeled target graph. Current UGDA efforts primarily focus on
model-centric methods, such as employing domain invariant learning
strategies and designing model architectures. However, our critical
examination reveals the limitations inherent to these model-centric
methods, while a data-centric method that is allowed to modify the
source graph provably demonstrates considerable potential. This in-
sight motivates us to explore UGDA from a data-centric perspective.
By revisiting the theoretical generalization bound for UGDA, we
identify two data-centric principles for UGDA: alignment principle
and rescaling principle. Guided by these principles, we propose
GraphAlign, a novel UGDA method that generates a small yet trans-
ferable graph. By exclusively training a GNN on this new graph with
classic Empirical Risk Minimization (ERM), GraphAlign attains
exceptional performance on the target graph. Extensive experiments
under various transfer scenario demonstrate GraphAlign outperforms
the best baselines by an average of 2.16%, training on the generated
graph as small as 0.25∼1% of the original training graph.

CCS CONCEPTS
• Networks → Network algorithms.

KEYWORDS
Graph Neural Network; Domain Adaptation; Data Centric
ACM Reference Format:
Renhong Huang, Jiarong Xu, Xin Jiang, Ruichuan An, and Yang Yang. 2024.
Can Modifying Data Address Graph Domain Adaptation?. In Proceedings

∗This work was done when the author was a visiting student at Fudan University.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’24, August 25–29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0490-1/24/08. . . $15.00
https://doi.org/10.1145/3637528.3672058

of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD ’24), August 25–29, 2024, Barcelona, Spain. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3637528.3672058

1 INTRODUCTION

target graph

source graph GNN with
model-centric design

generated graph

GNN
(ERM)

: labeled node : unlabeled node

alignment
 principle

rescaling
 principle

(a) Existing UGDA methods: model-centric

(b) GraphAlign (ours): data-centric

target graph

source graph

Figure 1: Comparison between existing UGDA methods
(which are all model-centric) and our data-centric method
GraphAlign. Guided by the rescaling and alignment principles,
GraphAlign generates a small yet transferable graph, on which
a simple GNN is trained with classic ERM. GraphAlign deviates
from conventional approaches that employ sophisticated model
design, and achieves outstanding practical performance.

Graph is a ubiquitous data structure that models complex dependen-
cies among entities, and examples include social networks [10, 13],
biological networks [28, 58] and web networks [23]. Graph Neural
Networks (GNNs) have demonstrated considerable potential in a
variety of tasks related to graph data. However, they face notable
challenges in real-world scenarios when distribution shift exists, e.g.,
GNNs are trained in one environment but then deployed in a different
environment. This frequently occurs, for example, in social networks
where interaction patterns among nodes change over time [46], and
in molecular networks with diverse species [7].

To address distribution shift in GNNs, Unsupervised Graph Do-
main Adaptation (UGDA) has emerged as a crucial solution. The goal
of UGDA is to take advantage of the labeled source graph to facilitate
the transfer of knowledge to an unlabeled target graph. Most existing
efforts in UGDA have been made from the model-centric perspective,
e.g., employing domain invariant learning strategies and designing

https://doi.org/10.1145/3637528.3672058
https://doi.org/10.1145/3637528.3672058

KDD ’24, August 25–29, 2024, Barcelona, Spain Huang, et al.

model architectures, as depicted in Figure 1 (a). Specifically, they aim
to learn consistent representations across different domains by mini-
mizing domain discrepancy metrics [41, 54, 61] or by incorporating
adversarial training with a domain discriminator [9, 49, 50].

In this work, we critically investigate the inherent limitations
of existing model-centric UGDA methods. We identify scenarios
where, regardless of how the model parameters are modified, these
methods consistently fail in node classification tasks. On the contrary,
a data-centric approach that is allowed to modify the source graph
can theoretically achieve an arbitrarily low classification error with
the classic empirical risk minimization (ERM) setup. This highlights
the potential of data-centric methods in addressing UGDA.

Inspired by these findings, we aim to tackle UGDA from a
data-centric perspective. By revisiting the theoretical generalization
bound for UGDA [39], we propose two data-centric principles: (1)
Alignment principle suggests reducing the distribution discrepancy
between the modified source graph and the target graph. (2) Rescaling
principle states that a smaller graph modified from the source graph
can achieve a generalization error comparable to that of a larger
graph.

With the guidance of these principles, we present a data-centric
UGDA method, aiming to generate a new graph that is significantly
smaller than the original source graph, yet retains enough information
from the source graph and effectively aligns with the target graph.
The purpose of such a data-centric UGDA method is to achieve
outstanding performance on the target graph with a GNN trained on
the generated graph with standard ERM but without sophisticated
model design, as shown in Figure 1 (b). In essence, we encounter three
main difficulties: (1) how to measure and compute the distribution
discrepancy of non-Euclidean structure of graphs when aligning
the generated graph with the target graph; (2) how to ensure that
the generated graph (with a much smaller size) retains sufficient
information from the source graph; and (3) how to efficiently optimize
the generated graph, which involves multiple interdependent variables
related to graph structure, node features, and node labels.

To address the above difficulties, we propose a novel UGDA
method, named GraphAlign. We first use a surrogate GNN model
to map graphs into Euclidean representation spaces, and utilize a
computationally more efficient Maximum Mean Discrepancy (MMD)
distance as the discrepancy metric. Next, the generated graph is
expected to have a much smaller size (inspired by rescaling principle)
and at the same time, to be so informative that a GNN model trained
on the generated graph behaves similarly to that trained on the source
graph. To achieve this, we match the gradients of the GNN parameters
w.r.t. the generated graph and the source graph. Further, during the
optimization process of the generated graph, we model the graph
structure as a function of node features, so the main decision variables
are only the node features. We also introduce a novel initialization
approach for the generated graph, which is inspired by the theoretical
connection between GNN transferability and the spectral distance
to the target graph. This initialization is shown to enhance practical
performance and accelerate the optimization process.

Our contributions are summarized as follows:
• New perspective: For the first time, UGDA is addressed from a

data-centric perspective.
• New principles: Inspired by a theoretical generalization bound

for UGDA, we propose two data-centric principles that serve as

the guidelines for modifying graph data: the alignment principle
and the rescaling principle.

• New method: We propose GraphAlign, a novel UGDA method.
GraphAlign generates a small yet transferable new graph, on
which a simple GNN model is trained using classic ERM. In
particular, GraphAlign does not need sophisticated GNN design
and achieves outstanding performance on target graphs.

• Extensive experiments: Experiments on four scenarios and twelve
transfer setups demonstrate the effectiveness and efficiency of our
method in tackling UGDA. In particular, our method beats the best
baselines by an average of +2.16% and trains only on a smaller
generated graph, with size up to 1% of the original training graph.

The rest of the paper is organized as follows. We first present the
paradigm of UGDA and basic definitions in §2. Then, we present
the limitations of existing UGDA methods and propose data-centric
principles for UGDA in §3. Guided by these principles, we show in
§4 that the limitation of existing UGDA methods can be mitigated by
using our proposed model GraphAlign, which employs a data-centric
approach that generates a small yet transferable graph for GNN
training. Finally, we evaluate the effectiveness and efficiency of our
method in §5.

2 PRELIMINARIES
In this section, we present the basic paradigm of UGDA, and introduce
the contextual stochastic block model (CSBM), which will be used
in §3 to build a motivating example.
Unsupervised Graph Domain Adaptation (UGDA). We focus on
UGDA for node classification tasks, where we have a labeled source
domain graph and an unlabeled target domain graph. We denote the
labeled source graph as 𝐺S =

(
𝐴S, 𝑋 S, 𝑌 S) with 𝑛S nodes, where

𝐴S , 𝑋 S and 𝑌 S represent the adjacency matrix, node features, and
node labels of the source graph, respectively. The unlabeled target
graph is denoted by 𝐺T =

(
𝐴T , 𝑋 T) with 𝑛T nodes, where 𝐴T and

𝑋 T are the adjacency matrix and node features, respectively.
Given the labeled source graph𝐺S and unlabeled target graph𝐺T ,

UGDA aims to train a GNN ℎ that predicts accurately the node labels
𝑌 T of target graph. The GNN ℎ = 𝑔 ◦ 𝑓 typically consists of a feature
extractor 𝑓 : G → Z and a classifier 𝑔 : Z → Y, where G, Z
and Y represent input space, representation space, and label space,
respectively. A common approach of UGDA is to learn invariant
representations by ensuring that the feature extractor 𝑓 outputs
representations whose distribution remains consistent across both
source and target graphs [9, 49, 61].
Contextual Stochastic Block Model. The contextual stochastic
block model (CSBM) is an integration of the stochastic block model
(SBM) with node features for random graph generation [11]. CSBM
generates a graph based on a prescribed edge connection probability
matrix, and the distribution for node features is determined by distinct
Gaussian mixture models for each class. In the context of UGDA,
two distinct CSBMs can be used to model the source and target
graphs, facilitating the examination of the domain shift. Before we
formally define CSBM, we remark that CSBM is only used to build
the motivating example in §3 and is not needed in the design of our
model. For simplicity, we consider the CSBM with two classes.

Can Modifying Data Address Graph Domain Adaptation? KDD ’24, August 25–29, 2024, Barcelona, Spain

Definition 1 (Contextual Stochastic Block Model). CSBM is a
generative model that builds a labeled graph 𝐺 = (𝐴,𝑋,𝑌) (with
node size 𝑛) as follows. The node labels are random variables drawn
from a Bernoulli distribution (e.g.,𝑌𝑖 ∼ Bern(0.5)). The entries of the
adjacency matrix follow a Bernoulli distribution 𝑎𝑖 𝑗 ∼ Bern(𝐶𝑝𝑞)
if node 𝑖 belongs to class 𝑝 and 𝑗 belongs to class 𝑞, where the
matrix 𝐶 ∈ [0, 1]2×2 is a prescribed probability matrix that is used
to model edge connections. Node features are drawn independently
from normal distributions 𝑋𝑖 ∼ N(𝝁, 𝐼) if 𝑌𝑖 = 0 and 𝑋𝑖 ∼ N(𝝂, 𝐼)
if 𝑌𝑖 = 1, where 𝐼 is the identity matrix. Such a CSBM is denoted by
CSBM(𝑛,𝐶, 𝝁,𝝂).

3 DATA-CENTRIC PRINCIPLES
In §3.1, we present a constructive example to demonstrate the inherent
limitation in current model-centric UGDA methods that only focus
on sophisticated GNN model design. This example further motivates
our exploration of data-centric principles for UGDA in §3.2.

3.1 Motivating Example
To understand the potential issues in existing UGDA models, we
investigate the performance of GNN models on a constructive graph
pair (𝐺S,𝐺T). Example 1 describes the source and target graphs
constructed via CSBMs. Proposition 1 identifies the limitation of
existing model centric-based UGDA approaches, that are typically
designed with the goal of learning domain-invariant representations.
Proposition 2 shows the potential benefits of adopting a data-centric
approach in UGDA.

Example 1. Consider the source and target graphs generated by two
CSBMs: CSBM(𝑛,𝐶S, 𝝁,𝝂) and CSBM(𝑛,𝐶T , 𝝁̃, 𝝂̃), respectively. In
both CSBMs, each class consists of 𝑛/2 nodes, and their edge
connection probability matrices are

𝐶S =

[
𝑎 𝑎

𝑎 𝑎 − Δ

]
, 𝐶T =

[
𝑎 − Δ 𝑎

𝑎 𝑎

]
,

where 𝑎 and Δ are constants with 0 < Δ < 𝑎 < 1.

The following proposition shows that existing UGDA model-
centric methods focusing solely on sophisticated GNN model design
would fail even for the simple case in Example 1.

Proposition 1. Assuming the feature extractor 𝑓 is a single-layer
GNN, and it is trained with the domain-invariant constraintP(𝑓 (𝐺S))
= P(𝑓 (𝐺T)), and then used for inference on the target graph. When
such a GNN 𝑓 is applied to Example 1, the classification error in
the target domain is always larger than a strictly positive constant,
regardless of the parameters of the GNN.

The proofs of Proposition 1 can be found in Appendix A.2.
Proposition 1 suggests that model-centric UGDA models would
fail the node classification task for the graphs in Example 1. In
comparison, if we are allowed to “modify” the source graph, it could
yield a GNN model with an arbitrarily small classification error, as
shown in the following proposition.

Proposition 2. Suppose that the feature extractor 𝑓 is a single-layer
GNN. Also, suppose that a data-centric approach is employed to
construct a new graph 𝐺 ′ by modifying 𝐺S with the constraint
P(𝐺 ′) = P(𝐺T). The GNN 𝑓 is trained with standard ERM on

𝐺 ′, which minimizes the classification error on 𝐺 ′, and then used
for inference on the target graph. There exist examples of graphs
generated in Example 1 such that the classification error in the target
domain is arbitrarily small.

The proofs of Proposition 2 can be found in Appendix A.2.
Proposition 2 highlights that, in certain cases, adapting the data can
be more beneficial than adapting the model. An intuitive reason
is that data-centric approaches that modify the source data could
mitigate the inherent difference of the data distribution between the
source and target domains (i.e., P(𝐺 ′) = P(𝐺T)). Thus, the GNN
model trained on the modified graph 𝐺 ′ can be seamlessly applied
to the target graph, resulting in a reduction in the error in the target
domain. Overall, Propositions 1 and 2 reveal the potential benefits of
a data-centric approach for UGDA.

3.2 Data-Centric Principles for UGDA
As demonstrated previously, our objective is to address UGDA
through a data-centric approach. Before we delve into the detailed
methods, we first discuss two principles that serve as the guidelines
for modifying source data. Specifically, we present a generalization
bound for UGDA that lays the theoretical foundation for these
principles. In our case, the generalization error is defined as the
classification error in the target domain [39]:

𝜖T (𝑔, 𝑓) = EP(𝐺T)
(
∥𝑔 ◦ 𝑓 (𝐺T) −𝜓 T (𝐺T)∥

)
,

where 𝜓 T : GT → YT is the true labeling function on the target
graph. Based on [39], we can derive the generalization bound in the
following theorem.

Theorem 1 (Generalization bound for UGDA [39]). Denote by 𝐿GNN
the Lipschitz constant of the GNN model 𝑔 ◦ 𝑓 . Let the hypothesis
set be H = {ℎ = 𝑔 ◦ 𝑓 : G → Y}, and let the pseudo-dimension be
Pdim(H) = 𝑑. The following inequality holds with a probability of
at least 1 − 𝛿:

𝜖T (𝑔, 𝑓) ≤ 𝜖S (𝑔, 𝑓) + 𝜂 + 2𝐿GNN𝑊1
(
P(𝐺S), P(𝐺T)

)︸ ︷︷ ︸
alignment term

+

√︄
4𝑑
𝑛S

log
(
𝑒𝑛S

𝑑

)
+ 1
𝑛S

log
(
1
𝛿

)
︸ ︷︷ ︸

rescaling term

,
(1)

where 𝜖S (𝑔, 𝑓) = (1/𝑛S)∥𝑔 ◦ 𝑓 (𝐺S) −𝜓S (𝐺S)∥ is the empirical
classification error in source domain with𝜓S the true labeling func-
tion on the source domain, 𝜂 = minℎ∈H

{
𝜖S (𝑔∗, 𝑓 ∗) + 𝜖T (𝑔∗, 𝑓 ∗)

}
denotes the optimal combined error that can be achieved on both
source and target graphs by the optimal hypothesis 𝑔∗ and 𝑓 ∗, P(𝐺S)
and P(𝐺T) are the graph distribution of source and target domain
respectively, the probability distribution P(𝐺) of a graph𝐺 is defined
as the distribution of all the ego-graphs of 𝐺 , and 𝑊1 (·, ·) is the
Wasserstein distance.

Proof of Theorem 1 can be found in Appendix A.2. The last two
terms on the right-hand side of (1), labeled as the alignment term
and rescaling term, inspire the following two principles that will
serve as critical guidelines when modifying source data.

KDD ’24, August 25–29, 2024, Barcelona, Spain Huang, et al.

the number of nodes in source graph

small scale

large scale

Figure 2: The figure illustrates how the rescaling term varies
with the scale of the source graph. We specify 𝛿 = 0.01 to ensure
that the (1) holds with a probability of at least 99%. The pseudo-
dimension𝑑 is set to 1000, which is a reasonable assumption based
on [12] (note that the trend of the rescaling term’s variation is
consistent, regardless of the value of 𝑑). The horizontal axis is
presented on a logarithmic scale.

Alignment principle: Modifying the source graph to minimize the
distribution discrepancy between the modified source and target
graphs can reduce the generalization error.

This principle is inspired by the alignment term in the bound (1).
The smaller the divergence of distribution between the source and tar-
get graphs (i.e.,𝑊1 (P(𝐺S), P(𝐺T))), the smaller the generalization
bound.
Rescaling principle: Modifying the source graph to reduce its
scale could achieve a generalization error comparable to that of a
larger-scale source graph.

This principle encourages us to decrease graph size to improve
efficiency while achieving comparable accuracy. It is drawn from
the behavior of the rescaling term in the bound (1). Figure 2 shows
that this term increases at first, and then decreases as the node size
further grows. Notably, a smaller-scale source graph is capable of
achieving an accuracy comparable to that of a larger-scale source
graph (indicated by the red points in the figure). Yet, as expected,
an overly small node size is not advisable, as it loses too much
information.

We further discuss the first two terms in the bound (1). The
first term is related to the performance of the source domain, and
it is a common practice to enhance source domain performance
in order to obtain a good performance on the target domain [9,
36, 39, 49]. Regarding the second term, it is often overlooked
by other unsupervised domain adaptation methods [9, 36, 39, 49,
54, 61]. Given that previous research [24] have demonstrated that
generating transferable examples by confusing domain discriminator
can effectively bridge the domain divergence and reduce this term,
similar effects can be achieved by modifying the source graph to
better align with the target graph by our approach.

4 PROPOSED METHOD: GRAPHALIGN
In this section, we propose a novel UGDA method GraphAlign.
GraphAlign strictly adheres to the alignment and rescaling principles
and generates a new graph to replace the source graph for training.
These two principles guide us in the generation of a new graph that

(1) is much smaller than the original source graph, (2) aligns well
with the target graph, and (3) retains enough information from the
source graph.
Definition 2 (Data-Centric UGDA). Given the labeled source
graph 𝐺S =

(
𝐴S, 𝑋 S, 𝑌 S) with 𝐴S ∈ R𝑛S×𝑛S

, 𝑋 S ∈ R𝑛S×𝑑 , 𝑌 S ∈
{0, · · · , 𝑐 − 1}𝑛S , and the unlabeled target graph 𝐺T =

(
𝐴T , 𝑋 T) ,

Data-Centric UGDA generates a new graph 𝐺 ′ = (𝐴′, 𝑋 ′, 𝑌 ′) with
𝐴′ ∈ R𝑛′×𝑛′

, 𝑋 ′ ∈ R𝑛′×𝑑 , 𝑌 ′ ∈ {0, · · · , 𝑐 − 1}𝑛′ and 𝑛′ ≪ 𝑛S . The
graph 𝐺 ′ is designed to (1) align with the target graph 𝐺T , and (2)
incorporate sufficient information from the source graph 𝐺S , such
that the GNN model trained with standard ERM on 𝐺 ′ rather than
𝐺S yields enhanced performance on 𝐺T .

Next, we will introduce the problem for optimizing 𝐺 ′ in §4.1.
Following this, we describe our approach to relaxing the optimization
problem and modeling the generated graph 𝐺 ′ in §4.2. We finally
provide the complexity analysis of our method in §4.3.

4.1 Optimization Problem
We here formulate the optimization problem that guides the alignment
of graph 𝐺 ′ with the target graph while incorporating sufficient
information from the source graph.
Enhancing generalization based on alignment principle. The
alignment principle tells us to achieve a lower generalization bound,
and it is better to align the distribution of the generated graph𝐺 ′ more
closely with that of the target graph 𝐺T . Referring to the alignment
term in the generalization bound, this can be achieved by optimizing
𝐺 ′ so as to minimize the Wasserstein distance:

𝑊1 (P(𝐺 ′), P(𝐺T)) = inf
𝛾 ∈Γ (P(𝐺 ′),P(𝐺T))

E(𝑢,𝑣)∼𝛾 𝑐 (𝑢, 𝑣), (2)

where 𝑢 and 𝑣 are ego-graphs sampled from P(𝐺 ′) and P(𝐺T)
respectively, 𝑐 (𝑢, 𝑣) is the distance function between the ego-graphs
𝑢 and 𝑣 , Γ is the set of all joint distribution of 𝛾 ∈ Γ(P(𝐺 ′), P(𝐺T)),
and the marginals for 𝛾 are P(𝐺 ′) and P(𝐺T) on the first and second
factors respectively.

Although the Wasserstein distance is a natural objective in the
optimization problem, its minimization remains a great challenge for
the following reasons. First, calculating the Wasserstein distance for
a given pair of (𝑢, 𝑣) involves solving a large-scale linear program,
which is itself computationally expensive, let alone the minimization
of the Wasserstein distance. What’s worse, the computation and
minimization of the Wasserstein distance in the non-Euclidean space,
such as graph data, are even more difficult. We present our solutions
as follows.

First, the computational complexity of the Wasserstein distance
grows cubicly in the problem dimension [33], which is unacceptably
expensive in our case. To resolve this, a common alternative to the
Wasserstein distance is the MMD distance, which is computationally
cheaper and more efficient [3, 4].

However, replacing Wasserstein distance with the MMD distance
does not resolve the second issue caused by non-Euclidean structure
of graphs. To handle this issue, existing efforts often use graph kernels
that map graphs into (Euclidean) representation spaces [8, 31, 43].
Yet, such mapping process is typically non-differentiable, which
complicates the optimization process, and computing graph kernels
is still unacceptably costly in our case. In this work, we employ a

Can Modifying Data Address Graph Domain Adaptation? KDD ’24, August 25–29, 2024, Barcelona, Spain

surrogate GNN model to represent the mapping process. A good
example of the GNN model is GIN [52], owing to its discriminative
power akin to the Weisfeiler-Lehman test [47].

Consequently, we can update generated graph 𝐺 ′ by minimizing
the following objective derived from the alignment principle as

Lalignment = MMD
(
P̂(GNN(𝐴′, 𝑋 ′)), P̂(GNN(𝐴T , 𝑋 T))

)
, (3)

where P̂ is the empirical distribution computed via random sampling.
Details regarding the implementation details for MMD distance are
provided in Appendix A.1.
Incorporating sufficient information from source graph. The
generated graph𝐺 ′ should retain enough information from the source
graph, which can be guaranteed by the following two strategies.

First, if 𝐺 ′ is adequately informative as the source graph 𝐺S , a
GNN model trained on 𝐺 ′ would behave similarly to that trained
on 𝐺S . Inspired by [59], we aim to match the gradients of the
GNN parameters w.r.t. 𝐺 ′ and 𝐺S . This is crucial for preserving the
essential information from the source graph in 𝐺 ′. To achieve this,
we focus on minimizing the following objective function:

Lmimic = Cos
(
∇LCE (GNN(𝐴′, 𝑋 ′), 𝑌 ′) ,∇LCE (GNN(𝐴S, 𝑋 S), 𝑌 S)

)
,

where LCE denotes the cross entropy loss, GNN is the surrogate
GNN model and Cos is the cosine similarity function.

On the other hand, the generated graph𝐺 ′ needs to reflect generally
observed properties in real-world networks. A typical property of
real-world networks is feature smoothness, where connected nodes
often share similar features [1, 30]. Moreover, real-world graphs
are usually sparse [60]. Therefore, to ensure that 𝐺 ′ accurately
represents these real-world characteristics, we focus on minimizing
the following objective function:

Lprop = tr(𝑋 ′𝑇 𝐿𝑋 ′) + ∥𝐴′∥2𝐹 , (4)

where 𝐿 = 𝐼 −𝐷− 1
2𝐴′𝐷− 1

2 is the normalized Laplacian matrix and 𝐷

is the diagonal degree matrix for 𝐴′. The first term in Lprop captures
feature smoothness while the second one characterizes sparsity.
Optimization problem. We here outline the construction of the
generated new graph 𝐺 ′. Specifically, our goal is to build 𝐺 ′ =

(𝐴′, 𝑋 ′, 𝑌 ′) ∈ R𝑛′×𝑛′ × R𝑛′×𝑑 × R𝑛′ so that it aligns with the
target graph and retains enough information from the source graph.
Integrating the aforementioned objectives, the construction of 𝐺 ′

can be formulated as the following optimization problem

min
𝐴′, 𝑋 ′, 𝑌 ′

Lmimic + 𝛼1Lalignment + 𝛼2Lprop, (5)

where 𝛼1, 𝛼2 > 0 are hyper-parameters.

4.2 Modeling the Generated Graph
Note that the decision variables in (5) are𝐴′, 𝑋 ′, and 𝑌 ′. Optimizing
the three variables is extremely difficult due to their interdependence.
To this end, the node size 𝑛′ is pre-chosen and proportional to 𝑛S ,
i.e., 𝑛′ = 𝑟𝑛S for some prescribed 0 < 𝑟 ≪ 1. We also require that
the node labels 𝑌 ′ have the same distribution as 𝑌 S when randomly
choose 𝑛′ nodes from the source graph.

Even if 𝑛′ is pre-fixed and much smaller than 𝑛, the number of
parameters in 𝐴′ is still quadratic in 𝑛′ and prohibitively large to
optimize. To further reduce the number of parameters in 𝐴′, we

propose to model the graph structure 𝐴′ as a function of 𝑋 ′. This is
motivated by the observation in real-world networks that the graph
structure and the node features are implicitly correlated [34]. So, in
our implementation, 𝐴′ is modeled as

𝐴′ = 𝜌𝜙 (𝑋 ′),with 𝐴′
𝑖 𝑗

∼ Bernoulli
(
Sigmoid

(
MLP𝜙

(
𝑋 ′
𝑖
, 𝑋 ′

𝑗

)))
,

where 𝜌𝜙 , parameterized by 𝜙 , is the function that transforms node
features to graph structure, and MLP𝜙 is a multi-layer neural network.
As is common in the literature, the non-differentiability of Bernoulli
sampling can be handled by the Gumbel-Max reparametrization
technique [19].

In summary, the decision variables in (5) are effectively reduced
to 𝑋 ′ and 𝜙 , and then the original problem (5) can be rewritten as

min
𝑋 ′, 𝜙

Lmimic + 𝛼1Lalignment + 𝛼2Lprop . (6)

Initialization of the generated graph. As one may expect, the
initial value of 𝑋 ′ is crucial for solving (6). A good initialization not
only helps improve practical performance, but can also accelerate
the optimization process.

To further improve the performance of proposed method, we
propose an initialization strategy for 𝑋 ′. Intuitively, we hope to
select from the source graph those nodes and features that already
present transferability. This intuition can be further supported by the
following theorem, which builds theoretical connections between the
property of the newly generated 𝐺 ′ and the transferability of GNNs.

Theorem 2 (GNN transferability). Let 𝐺 ′ and 𝐺T be the newly
generated graph and the target graph. Given a GNN graph encoder 𝑓 ,
the transferability of the GNN 𝑓 satisfies

𝑓 (𝐺 ′) − 𝑓 (𝐺T)

2
≤ 𝜉1Δspectral

(
𝐺 ′,𝐺T

)
+ 𝜉2, (7)

where 𝜉1 and 𝜉2 are two positive constants, and Δspectral
(
𝐺 ′,𝐺T

)
=

1
𝑛′𝑛T

∑𝑛′
𝑖=1

∑𝑛T
𝑗=1 ∥𝐿𝐺 ′

𝑖
− 𝐿

𝐺T
𝑗
∥2 measures the spectral distance be-

tween 𝐺 ′ and 𝐺T . Here 𝐺 ′
𝑖

is the ego-graph of node 𝑖 in 𝐺 ′, and
𝐿𝐺 ′

𝑖
is its normalized graph Laplacian. The graph Laplacian 𝐿

𝐺T
𝑗

is
defined in a similar manner.

Theorem 2 suggests that a smaller spectral distance between 𝐺 ′

and 𝐺T indicates better transferability. Based on this interpretation,
we propose to select 𝑛′ nodes from 𝐺 ′ whose features are used as
the initial values of 𝑋 ′. Such selection guarantees that the graph 𝐺 ′

constructed by these nodes and features has a small spectral distance
Δspectral (𝐺 ′,𝐺T).

4.3 Complexity Analysis
The traditional domain adaptation methods typically involve GNN
training and domain-invariant learning, e.g., using MMD loss for
optimization. The time complexity of these methods is typically
𝑂 (𝑑2𝑛 + 𝑑𝑛2). In comparison, the time complexity of our model
primarily depends on the optimization process of 𝐺 ′. Assume the
dimension of the representations is denoted as 𝑑 and the number
of nodes in generated graph 𝐺 ′ is 𝑛′. Constructing 𝐺 ′ involves
calculating 𝑛′2 edges, which is equivalently 𝑂

(
𝑟2𝑑𝑛2

)
. Regarding

the GNN forward pass, it requires a time complexity of 𝑂
(
𝑑2𝑛

)
. For

the computation of Lalign, the time complexity is 𝑂
(
𝑟𝑑𝑛2

)
because

KDD ’24, August 25–29, 2024, Barcelona, Spain Huang, et al.

of the computation of kernel function between each two instances.
For the Lscale loss, we need to compute the GNN on both 𝐺S and
𝐺 ′, resulting in a time complexity of 𝑂

(
𝑑2𝑛 + 𝑟𝑑2𝑛

)
. Besides, the

time complexity of computing the regularization Lreg primarily
focuses on the calculations of trace(𝑋 ′𝑇 𝐿𝑋 ′) and its complexity
is 𝑂

(
𝑟2𝑛2

)
, with the trace operation requires a time complexity of

𝑂 (𝑟𝑛). Overall, the time complexity of GraphAlign is determined by
𝑂
(
(𝑟2𝑑 + 𝑟𝑑 + 𝑟2)𝑛2 + (1 + 𝑟)𝑑2𝑛

)
. In our experiments, the hyper-

parameter 𝑟 is chosen as 𝑟 = 0.01, so the complexity of GraphAlign is
much cheaper compared with classic model-centric UGDA methods.

5 EXPERIMENTS
In this section, we evaluate the performance of GraphAlign under
various transfer scenarios. We first generate a new graph 𝐺 ′ using
the proposed method, and then train a GNN on𝐺 ′ with classic ERM.
The GNN is then tested on the target graph. The experiments span
a range of transfer scenarios, and we also include ablation studies,
hyper-parameter analysis, and runtime comparison to demonstrate
the effectiveness of GraphAlign. Our codes are available at https:
//github.com/zjunet/GraphAlign.

5.1 Experimental Setup

Datasets. We conducted experiments on node classification in the
transfer setting across six scenarios, including citation networks,
airport networks, and social networks. In each scenario, we train the
GNN on one graph and evaluate it on the others.

• ACMv9 (A), DBLPv7 (D), Citationv1 (C) [9]: These datasets are
citation networks from different sources, where each node repre-
sents a research article and an edge indicates citation relationship
between two articles. The data are collected from ACM (prior to
2008), DBLP (between 2004 and 2008), and Microsoft Academic
Graph (after 2010), respectively. We include five transfer settings:
A→D, D→C, A→C, D→A and C→A.

• ACMsmall (Â), DBLPsmall (D̂) [49]: These two are also citation
networks, with articles collected between the years 2000 and 2010,
and after year 2010. We include two transfer settings: Â → D̂,
D̂ → Â.

• Cora-degree, Cora-word [15]: They are two transfer settings
for citation networks provided by [5], derived from the full Cora
dataset [5]. The data pre-process involves partitioning the original
Cora dataset into two graphs based on node degrees and selected
word count in publications, respectively. Each setting evaluates
the transferability from one graph to the other.

• Arxiv-degree, Arxiv-time [15]: They are two transfer settings
for citation networks provided by [5], adapted from the Arxiv
dataset that comprises computer science arXiv papers [5]. The
partitioning of Arxiv into two graphs is based on node degrees
and time, respectively.

• USA, Brazil, Europe [37]: They are collected from transportation
statistics and consists of airline activity data, with each node
representing an airport.

• Blog1, Blog2 [40]: They are collected from the BlogCatalog
dataset, where node represents a blogger, and edges indicate

friendships between bloggers. The node attributes comprise key-
words extracted from bloggers’ self-descriptions, and the task is
to predict their corresponding group affiliations.

Baselines. We compare our method with the following baselines,
which can be categorized into three classes: (1) Vanilla ERM,
including GCN [22], GraphSAGE [16] and GIN [52]. They are
trained on the source graph with ERM and then directly evaluated
on the target graph. (2) Non-graph domain adaptation methods,
including MMD [26], CMD [56], DANN [14], CDAN [27] are con-
sidered. To adapt them to the UGDA setting, we replace the encoder
with GCN [22]. (3) UGDA methods, including UDAGCN [49],
AdaGCN [9], MIXUP [17], EERM [50], MFRReg [54], SSReg [54],
GRADE [48], JHGDA [42] and STRURW [25].
Implementation details. We evaluate our proposed method by
training a GCN [22] on the generated graph 𝐺 ′ with ERM and test
the GCN on 𝐺T . When computing Lmimic, we train a surrogate
GCN on 𝐺 ′ for the supervised node classification task, with a cross-
entropy loss. When computing Lalignment, we train GIN on 𝐺 ′

under the infomax principle following [44]. All the GNN models
adopt a two-layer structure with 256 hidden units, while the other
hyper-parameters are set to default. After training all the surrogate
models, we freeze all the parameters when optimizing 𝐺 ′. We set
the reduction rate 𝑟 = 0.25% for Arxiv (due to its large scale) and
𝑟 = 1% for the remaining datasets. The values of 𝛼1, 𝛼2 are set to 1
and 30. For the optimizer, we use Adam [21] with a learning rate of
1 × 10−3 and weight decay of 5 × 10−3. We use mini-batch training
with batch size 32. The total iterations of training is 300.

When evaluating the baselines, for Vanilla ERM and non-graph
domain adaptation baselines, we employ two-layer GCN with 256
hidden units and the remaining hyper-parameters are set to default
values. We follow the setting of [49] to perform a grid search on the
trade-off between classification loss and the loss function designed
to address domain adaptation, exploring values within [0.01, 0.1,
1.0, 10.0] and reporting the best performance. Adam is employed for
optimization with a learning rate of 1 × 10−3 and weight decay of
5× 10−3. We use mini-batches of size 32 over 300 training iterations.
For UGDA methods, we adopt their default hyper-parameters.

The reported numbers in all experiments are the mean and standard
deviation over 10 trials. More details can be found in Appendix A.1.

5.2 Experimental Results
Main results. Table 1 and Table 2 presents the experiment results
across various settings. For all the datasets, GraphAlign surpasses
all baselines and shows an average improvement of +2.16% over
the best baseline. Notably, this superior performance is attained
with our generated small graphs. In comparison, the suboptimal
performance of Vanilla ERM and non-graph domain adaptation
methods highlights the critical need for a carefully tailored UGDA
strategy to address domain discrepancy on graphs. Compared with
other UGDA methods, our superior performance emphasizes the
advantage of adopting a data-centric approach over a model-centric
approach in UGDA.
Ablation studies. To validate the effectiveness of each component of
GraphAlign, ablation studies are conducted on: (1) GraphAlign-init,
employing random initialization instead of our proposed initialization;

https://github.com/zjunet/GraphAlign
https://github.com/zjunet/GraphAlign

Can Modifying Data Address Graph Domain Adaptation? KDD ’24, August 25–29, 2024, Barcelona, Spain

Table 1: Micro F1 scores across various transfer settings on citation networks. The bold numbers denote the best result. “OOM” denotes
the instances where the method ran out of memory.

ACMv9 (A), DBLPv7 (D), Citationv1 (C) ACMsmall (Â), DBLPsmall (D̂) Cora Arxiv

Methods C→D A→D D→C A→C D→A C→A Â → D̂ D̂ → Â Cora-word Cora-degree Arxiv-degree Arxiv-time Avg.rank
ERM (GIN) 43.32(2.40) 39.32(2.10) 38.86(1.57) 37.27(2.92) 37.14(1.36) 35.40(2.71) 50.12(3.06) 63.24(1.53) 30.64(1.63) 19.91(1.76) 22.69(1.51) 32.25(2.42) 14.9

ERM (SAGE) 64.22(0.89) 61.73(0.88) 60.92(1.25) 61.90(1.19) 55.66(0.92) 57.66(1.04) 77.51(3.17) 36.59(4.05) 61.63(0.18) 53.56(0.30) 47.84(0.52) 44.84(0.56) 8.3
ERM (GCN) 67.80(3.49) 61.05(0.37) 62.36(5.01) 61.78(4.33) 53.78(4.13) 62.93(5.32) 63.28(2.05) 68.48(0.89) 63.26(0.35) 54.42(0.51) 43.86(1.12) 12.86(5.16) 7.8

DANN 66.02(1.89) 61.44(2.89) 54.68(3.66) 59.61(4.88) 49.01(3.59) 55.02(2.45) 63.38(2.21) 68.53(0.90) 63.24(0.41) 54.44(0.54) 43.86(1.12) 12.87(5.17) 9.8
CDAN 53.69(3.90) 61.53(1.64) 61.13(2.78) 60.48(2.61) 53.69(3.90) 58.22(0.95) 63.53(2.09) 70.73(0.86) 63.42(0.27) 54.48(0.42) 43.91(1.00) 12.86(5.18) 8.2
MMD 63.06(0.61) 59.72(0.35) 59.46(0.49) 62.98(0.50) 53.57(0.33) 59.34(0.47) 61.20(0.69) 69.22(0.87) 63.27(0.38) 54.21(0.60) OOM OOM 10.25
CMD 47.89(12.49) 46.67(11.03) 48.49(5.13) 53.02(10.79) 44.8(2.83) 49.31(8.70) 50.56(6.17) 64.86(3.73) 54.95(0.64) 49.61(0.48) 39.13(1.40) 13.58(0.85) 13.3

UDAGCN 70.70(2.64) 64.64(3.12) 56.34(8.55) 62.40(5.81) 49.57(4.95) 55.92(5.85) 69.97(4.10) 70.43(1.36) 63.40(0.21) 53.98(0.41) 37.82(6.70) 47.44(0.77) 7.3
AdaGCN 69.72(2.05) 67.67(0.92) 66.38(2.86) 69.34(1.44) 56.78(2.53) 63.34(1.24) 69.28(2.34) 69.33(1.57) 62.91(0.49) 53.24(0.47) 38.93(1.62) 12.38(5.50) 5.8
MIXUP 67.60(1.88) 63.08(2.68) 60.75(5.95) 66.04(3.36) 54.01(5.00) 62.06(2.35) 51.10(1.40) 68.43(1.46) 65.44(5.95) 62.79(4.01) 52.13(0.40) 23.63(0.24) 6.3
EERM 43.60(1.59) 46.27(5.36) 43.97(2.74) 46.37(3.25) 38.39(1.89) 43.87(2.10) 67.05(1.33) 47.11(4.82) 13.10(0.77) 7.42(0.86) OOM OOM 14.9

GRADE 64.68(1.30) 54.46(1.13) 59.61(0.09) 66.05(0.35) 57.30(0.18) 61.19(0.46) 64.92(0.09) 55.47(0.21) 48.37(2.45) 42.84(1.87) 41.36(1.64) 11.32(0.78) 9.8
JHGDA 65.09(4.98) 58.20(1.33) 51.31(3.56) 64.51(2.65) 46.46(4.72) 59.25(3.44) 71.51(2.40) 62.26(3.28) OOM OOM OOM OOM 12.3
MFRReg 66.99(7.77) 61.39(8.45) 65.71(6.33) 70.72(8.71) 56.65(7.21) 59.81(8.53) 65.80(10.42) 71.13(0.95) 59.23(1.81) 53.04(1.28) OOM OOM 8.3
SSReg 63.36(17.73) 61.78(9.98) 66.53(4.47) 61.91(11.87) 56.05(9.41) 60.41(6.75) 71.10(8.31) 70.00(1.41) 59.61(2.26) 52.19(1.29) OOM OOM 9.1

STRURW 64.10(0.35) 59.45(0.60) 58.91(1.02) 63.42(0.38) 55.83(1.11) 62.41(1.27) 77.47(1.01) 72.11(2.21) 62.41(0.72) 67.76(0.39) 57.45(0.15) 49.98(0.12) 5.9
GraphAlign 72.56(0.61) 69.65(0.26) 68.08(0.32) 75.61(0.24) 62.06(0.68) 67.36(0.40) 79.51(3.75) 72.63(2.21) 66.37(1.46) 69.83(1.53) 57.51(1.42) 51.17(1.37) 1.0

Table 2: Micro F1 scores across various transfer settings on airport networks and social networks. The bold numbers denote the best
result.

Airport Social

Methods USA→Brazil USA→Europe Brazil→USA Brazil→Europe Europe→USA Europe→Brazil Blog1→Blog2 Blog2→Blog1 Avg.rank
ERM (GIN) 35.88(4.71) 32.33(1.78) 41.43(9.32) 33.18(5.72) 44.52(5.72) 42.90(7.39) 18.36(0.25) 19.47(1.14) 15.5

ERM (SAGE) 49.62(1.37) 43.96(0.61) 53.29(0.40) 53.78(1.01) 52.79(0.68) 67.63(1.04) 45.40(0.61) 47.00(1.05) 6.9
ERM (GCN) 43.36(4.81) 37.99(4.39) 49.95(0.82) 42.21(1.87) 56.82(0.34) 71.76(0.84) 44.57(1.24) 41.25(2.34) 8.9

DANN 59.85(8.34) 52.48(2.09) 53.38(0.33) 57.74(1.61) 57.48(0.48) 70.99(0.68) 42.30(1.23) 41.30(2.67) 4.8
CDAN 46.87(3.82) 42.61(1.79) 52.29(0.99) 45.01(1.51) 56.76(0.39) 72.06(1.57) 42.56(1.68) 41.21(3.32) 8.0
MMD 52.90(0.78) 55.64(0.69) 52.49(0.33) 56.41(0.31) 56.77(0.14) 72.98(0.37) 43.98(1.83) 40.98(2.26) 4.6
CMD 60.84(0.57) 54.99(0.88) 48.99(0.70) 58.50(0.75) 55.21(0.68) 72.98(1.50) 28.65(5.31) 26.55(6.42) 7.3

UDAGCN 34.42(3.14) 51.78(1.06) 24.96(6.12) 44.81(1.93) 55.45(0.44) 44.43(2.60) 36.47(7.45) 36.89(5.48) 12.8
AdaGCN 52.37(3.79) 48.67(0.58) 45.63(4.44) 51.48(2.61) 48.97(4.23) 66.11(3.82) 38.25(1.86) 36.82(3.65) 11.5
MIXUP 43.18(4.13) 41.63(0.66) 50.34(4.73) 42.74(0.98) 49.32(1.62) 68.76(1.48) 40.31(1.84) 39.63(2.82) 11.6
EERM 39.12(5.87) 43.42(0.90) 42.98(6.40) 55.72(1.91) 48.92(2.20) 48.92(6.37) 41.89(2.67) 40.21(1.96) 11.5

GRADE 24.43(2.44) 24.81(4.33) 34.29(1.42) 27.32(1.90) 34.03(2.35) 29.77(3.53) 17.33(1.17) 16.39(1.42) 16.9
JHGDA 61.41(4.73) 52.09(3.73) 51.42(5.71) 58.04(9.05) 51.88(2.94) 72.77(7.43) 17.86(2.56) 17.93(2.60) 8.4
MFRReg 56.99(6.16) 53.19(6.45) 50.71(5.07) 50.72(8.71) 56.65(7.21) 69.18(8.53) 40.84(3.12) 46.34(6.72) 7.1
SSReg 53.36(7.73) 53.78(1.72) 49.34(4.88) 52.43(6.23) 54.28(6.22) 55.71(6.25) 40.93(4.29) 45.37(8.11) 8.3

STRURW 60.73(0.34) 53.77(0.98) 52.19(2.01) 53.48(0.23) 49.67(2.88) 63.40(1.27) 46.02(0.95) 38.64(1.76) 7.5
GraphAlign 62.90(0.78) 54.32(0.94) 54.38(0.10) 58.80(0.86) 57.34(2.02) 73.12(0.90) 47.14(1.72) 45.83(5.01) 1.6

(2) GraphAlign-Lprop, removing the loss Lprop. (3) GraphAlign-
Lalignment, removing the loss Lalignment. (4) GraphAlign-Lmimic,
removing the loss Lmimic. The results, depicted in Figure 3, clearly
demonstrate the contribution of each component to enhancing perfor-
mance of GraphAlign. Particularly, the superiority of GraphAlign over
GraphAlign-Lalignment, GraphAlign-Lprop and GraphAlign-Lmimic
highlights indispensable roles of the alignment principle, the gradient
matching strategy, and the preservation of graph properties when
generating the new graph, respectively. The notable performance

drop with GraphAlign-Lmimic underscores the critical importance of
the loss Lmimic. In addition, the observed decrease in performance
with GraphAlign-init validates the effectiveness of our initialization
strategy in improving graph transferability.
Hyper-parameters analysis. Figure 4 shows the effects of the
reduction rate 𝑟 , the coefficients 𝛼1 for Lalignment and 𝛼2 for Lprop,
respectively. Regarding the reduction rate 𝑟 , we observe that our
model consistently outperforms the most competitive baseline model.
This indicates our model’s ability to scale down the graph while

KDD ’24, August 25–29, 2024, Barcelona, Spain Huang, et al.
m

ic
ro

 F
1

20

40

60

80

A→D C→A

GraphAlign

GraphAlign-init

GraphAlign-

GraphAlign-

GraphAlign-

Figure 3: Ablation studies on A→D and C→A tasks.

m
ic

ro
 F

1

best baseline best baseline best baseline

(%)

Figure 4: Our results on D→A task w.r.t varying 𝑟 , 𝛼1 and 𝛼2.
The dashed line represents the performance of the best baseline.

enhancing the transferability to the target graph. We also note that
an excessively low reduction rate could hamper performance due
to the difficulty in obtaining an informative yet overly small graph.
Regarding 𝛼1 and 𝛼2, we find that both too small and large values
could deteriorate performance, as a value too small would weaken
the influence of Lalignment and 𝛼2 for Lprop, while a value too large
would negatively affect the balance with other loss components in
(5). Despite variations, our model consistently surpasses the best
baseline, demonstrating that GraphAlign exhibits low sensitivity to
hyper-parameter changes.
Transferability under different levels of domain shifts. We
further evaluate the transferability of our approach and baselines
across different levels of domain shifts. We here focus on structural
shifts and feature shifts between graphs. Specifically, we conducted
experiments on a series of synthetic graphs constructed based on
CSBM. The source graph is constructed as CSBM(𝑛 = 128,𝐶S =

[[0.6, 0.3], [0.3, 0.6]], 𝜇 = 1, 𝜈 = −1) and remains fixed. For structural
shift, the target graphs are defined by a sequence of CSBMs with
parameters 𝑛 = 128, 𝜇 = 1, 𝜈 = −1, and 𝐶T randomly generated.
The level of structural shift is quantified as ∥𝐶T −𝐶S ∥𝐹 and ranges
from 0.05 to 0.45. As for feature shift, the target graphs are defined
by a sequence of CSBM(𝑛 = 128,𝐶T = [[0.6, 0.3], [0.3, 0.6]], 𝜇 =

1 + Δ, 𝜈 = −1 + Δ), where Δ varies in [0.1, 0.9] and quantifies the
level of feature shift.

The results of our model and the most competitive methods in
the three categories (vanilla ERM, non-graph domain adaptation
methods, and UGDA methods) are shown in Table 3. We observe a
decrease in the performance of all methods as domain shift increases,

while GraphAlign performs the best under various levels of domain
shifts in most cases. Besides, we find that GraphAlign is more
effective under large domain shift, achieving more substantial gains.
When there is a small domain divergence, the effectiveness of our
method may not be as significant, and existing domain adaptation
methods may achieve comparable performance.

Table 3: Micro F1 scores under different levels of domain shift
(structural shift and feature shift).

Structural shift 0.05 0.15 0.25 0.35 0.45
ERM (GCN) 77.31(7.54) 68.72(5.83) 65.47(6.67) 65.50(6.97) 56.38(5.10)

CDAN 77.31(7.66) 67.27(5.68) 67.56(8.00) 68.68(7.08) 55.50(6.92)
AdaGCN 82.21(6.37) 77.62(7.18) 72.58(7.63) 70.73(7.87) 55.78(0.62)

GraphAlign 83.34(4.26) 78.32(9.45) 73.25(6.63) 72.54(8.86) 58.64(5.10)
Gain (%) +1.37 +0.90 +0.92 +2.56 +4.01

Feature shift 0.1 0.3 0.5 0.7 0.9
ERM (GCN) 80.61(6.32) 73.94(6.63) 70.07(6.60) 66.02(5.44) 65.38(6.71)

CDAN 73.08(13.87) 75.35(7.05) 73.56(7.08) 63.83(11.03) 66.72(6.97)
AdaGCN 82.68(5.50) 77.73(6.40) 76.67(8.05) 66.33(7.35) 67.52(8.66)

GraphAlign 82.47(6.22) 78.21(6.28) 77.34(3.75) 66.98(7.70) 68.46(5.90)
Gain (%) -0.25 +0.61 +0.87 +0.98 +1.39

Adopting GraphAlign with different GNNs with ERM and model-
centric UGDAs. After obtaining the generated graph 𝐺 ′, it can be
utilized to train diverse GNN architectures with ERM or fed into
model-centric UGDA methods. The results are shown in Table 4. We
find that (1) using the generated graph𝐺 ′ to train different GNNs with
ERM still exhibits superior performance compared to existing UGDA
methods. This underscores the versatility and superior efficacy of our
approach in bridging the gap between graphs from different domains;
(2) by combining our method with established model-centric UGDA
methods, further enhancements in performance are observed in some
cases, notably in cross-domain scenarios like D → C and C → A.
Runtime comparison. Table 5 presents the runtime comparisons
between GraphAlign and the most competitive baselines of three
categories: vanilla ERM, Non-graph domain adaptation methods, and
UGDA methods. We observe that the runtime of GraphAlign is com-
parable to vanilla ERM methods, yet it delivers superior performance.
This efficiency stems from the rescaled graph, which significantly
reduces the time required for GNN training with ERM. We also
note that the efficiency of our method facilitates the possibility of
further applications, such as neural architecture search of GNNs and
hyper-parameter optimization.

6 RELATED WORK
Unsupervised domain adaptation. Unsupervised domain adap-
tation (UDA) aims to transfer knowledge from a labeled source
domain to an unlabeled target domain and has demonstrated success
in computer vision and natural language processing [2, 45]. Most
existing work on UDA attempts to learn invariant representations
across different domains [14, 26, 55].

Recently, domain adaptation has been adapted to graph, and
numerous studies have been conducted to address UGDA. These
studies can be generally divided into two categories: one focuses
on minimizing domain discrepancy metrics, while the other utilizes

Can Modifying Data Address Graph Domain Adaptation? KDD ’24, August 25–29, 2024, Barcelona, Spain

Table 4: Micro F1 scores when adopting GraphAlign with different GNNs with ERM and model-centric UGDAs. The bold numbers
denote the best result. The asterisk (∗) indicates that the result surpasses the most competitive baseline in Table 1.

Methods C→D A→D D→C A→C D→A C→A
GraphAlign+ERM (GCN) 72.56(0.61)* 69.65(0.26)* 68.08(0.32)* 75.61(0.24)* 62.06(0.68)* 67.36(0.40)*

GraphAlign+ERM (GraphSAGE) 70.73(0.41)* 68.97(1.28)* 67.70(0.48)* 73.21(0.50)* 61.08(0.52)* 66.79(0.22)*
GraphAlign+ERM (SGC) 69.93(0.02) 66.23(0.21) 64.12(0.01) 70.56(0.28) 58.65(0.01)* 65.42(0.03)*

GraphAlign+ERM (APPNP) 68.22(0.05) 65.59(0.01) 61.89(1.70) 67.89(0.73) 56.84(0.02)* 63.49(0.04)*
GraphAlign+MMD 71.13(0.32)* 67.01(0.35) 68.05(0.42)* 73.69(0.46)* 60.57(0.61)* 66.53(0.32)*

GraphAlign+UDAGCN 70.83(0.17)* 69.35(0.23)* 68.31(0.32)* 75.61(0.24)* 60.23(0.80)* 67.40(0.47)*

Table 5: Runtime (sec) and Memory (Mb) comparison on Arxiv-
degree. All the models are trained within 300 iterations and the
reduction rate for GraphAlign is 0.25%.

Runtime Memory
generate 𝐺 ′ GNN training total total

ERM (GCN) - 110.49 110.49 2868
CDAN - 148.57 148.57 2868

AdaGCN - 577.91 577.91 2956
GraphAlign 257.53 18.57 276.10 2050

adversarial training techniques. The first class of methods aims to
learn domain-invariant representations by minimizing pre-defined
domain discrepancy metrics, such as class-conditional MMD [41],
central moment discrepancy [56], spectral regularization [54], graph
subtree discrepancy [48], tree mover’s distance [8]. In comparison,
the adversarial training-based methods typically incorporate a domain
classifier that adversarially predicts the domain of the representation.
For instance, Dai et al. [9] and Wu et al. [49] utilize GNN models as
feature extractors and train them in an adversarial manner to align
the cross-domain distributions. Qiao et al. [35] further introduces
shift parameters to enhance transferability to target graph during
adversarial training. However, these methods consider UGDA from
the model-centric perspective. Different from aforementioned works
on UGDA, this paper addresses UGDA from a novel data-centric
perspective that is allowed to modify the source graph.

To the best of our knowledge, the only UGDA method that modifies
the source graph is a recent one [25]. But, their modification relies
on the accurate estimation of the target labels, and the process of
estimating target labels is highly dependent on model-centric UGDA
methods. In addition, their modification to the source graph is limited
to the edge weights. In contrast, our method is purely data-centric and
allows the modified graph to be directly utilized for training a GNN
using ERM, achieving competitive performance without the need
for sophisticated model design. Besides, we enable modifications
to the graph structure, node features and node labels. We further
investigate the impact of graph scale on the generalization bound
and suggest that a smaller-scale modified graph can be effective.

Another line of research assume that source graph is not accessible
during the adaptation process [20, 29]. Specifically, [29] focuses on
enhancing the discriminative capability of the source model through
structure consistency and information maximization. [20] explores
modifying graph data during testing to improve model generalization

and robustness. However, this setting is different from ours, and the
absence of source graph poses difficulties in addressing shifts caused
by differences in data distributions.
Data-centric AI. This recently introduced concept emphasizes the
potential of data modification over model design [53, 57]. Subsequent
works leverage the data-centric approach to address various research
questions in machine learning. Some works [20, 51] take into account
the impact of graph data on model generalization. Xu et al. [51]
considers the co-evolution of data and model to enhance data quality
for pre-training without considering information in a downstream
graph. Jin et al. [20] modifies test graph to address distribution
shift at test time and then, the pretrained model is provided to make
inferences on the modified test graph. However, both of them overlook
the rich information inherent in either the target graph or the source
graph itself and, and thus fail to address UGDA.

Another line of research focuses on reducing graph scale. Several
works have proposed methods for graph condensation or sparsifica-
tion while preserving the information of the original graph [6, 18].
However, these methods do not take into account the transferability
of the generated graphs, making them unsuitable for direct adoption
in UGDA. In contrast, our method focuses on generating a new graph
that can transfer more effectively to the target domain,rather than
merely retaining information from the original graph. Additionally,
the process of reducing the graph scale is often sensitive to initial-
ization, but there is currently no existing work that discusses this
aspect.

7 CONCLUSION
This work investigates UGDA through a data-centric lens. Our analy-
sis pinpoints the limitations in model-centric UGDA methods and
shows the potential of data-centric methods for UGDA. We therefore
introduce two data-centric principles for UGDA: the alignment prin-
ciple and the rescaling principle, rooted in the generalization bound
for UGDA. Guided by these principles, we propose GraphAlign, a
novel data-centric UGDA method. GraphAlign first generates a small
yet transferable graph in replacement of the original training graph
and trains a GNN on the newly generated graph with classic ERM set-
ting. Numerical experiments demonstrate that GraphAlign achieves
remarkable transferability to the target graph.

ACKNOWLEDGEMENTS
This work is supported by NSFC (62206056, 92270121), Zhejiang
NSF (LR22F020005) and SMP-IDATA Open Youth Fund.

KDD ’24, August 25–29, 2024, Barcelona, Spain Huang, et al.

REFERENCES
[1] Mikhail Belkin and Partha Niyogi. 2001. Laplacian eigenmaps and spectral

techniques for embedding and clustering. NeurIPS 14 (2001).
[2] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira,

and Jennifer Wortman Vaughan. 2010. A theory of learning from different domains.
Machine learning 79 (2010), 151–175.

[3] Tolga Birdal, Michael Arbel, Umut Simsekli, and Leonidas J Guibas. 2020.
Synchronizing probability measures on rotations via optimal transport. In CVPR.
1569–1579.

[4] Mikołaj Bińkowski, Dougal J. Sutherland, Michael Arbel, and Arthur Gretton.
2018. Demystifying MMD GANs. In ICLR.

[5] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embedding
of Graphs: Unsupervised Inductive Learning via Ranking.

[6] Chen Cai, Dingkang Wang, and Yusu Wang. 2021. Graph coarsening with neural
networks. ICLR (2021).

[7] Hyunghoon Cho, Bonnie Berger, and Jian Peng. 2016. Compact integration of
multi-network topology for functional analysis of genes. Cell systems 3, 6 (2016),
540–548.

[8] Ching-Yao Chuang and Stefanie Jegelka. 2022. Tree Mover’s Distance: Bridging
Graph Metrics and Stability of Graph Neural Networks. NeurIPS 35 (2022),
2944–2957.

[9] Quanyu Dai, Xiao-Ming Wu, Jiaren Xiao, Xiao Shen, and Dan Wang. 2022. Graph
Transfer Learning via Adversarial Domain Adaptation with Graph Convolution.
TKDE (2022), 1–1.

[10] Alex Davies and Nirav Ajmeri. 2022. Realistic Synthetic Social Networks with
Graph Neural Networks. arXiv:2212.07843 [cs.SI]

[11] Yash Deshpande, Subhabrata Sen, Andrea Montanari, and Elchanan Mossel. 2018.
Contextual stochastic block models. NeurIPS 31 (2018).

[12] Luc Devroye, László Györfi, Gábor Lugosi, Luc Devroye, László Györfi, and
Gábor Lugosi. 1996. Vapnik-Chervonenkis Theory. A probabilistic theory of
pattern recognition (1996), 187–213.

[13] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph Neural Networks for Social Recommendation.

[14] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario March, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks. JMLR 17, 59 (2016), 1–35.

[15] Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. 2022. GOOD: A Graph
Out-of-Distribution Benchmark. In NeurIPS.

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS.

[17] Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. 2022. G-Mixup: Graph
Data Augmentation for Graph Classification.

[18] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. 2021.
Scaling up graph neural networks via graph coarsening. In SIGKDD. 675–684.

[19] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparameterization
with Gumbel-Softmax.

[20] Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. 2022.
Empowering graph representation learning with test-time graph transformation.
ICLR (2022).

[21] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic
Optimization. arXiv:1412.6980 [cs.LG]

[22] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks.

[23] Jon M Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and
Andrew S Tomkins. 1999. The web as a graph: Measurements, models, and
methods. In COCOON. 1–17.

[24] Hong Liu, Mingsheng Long, Jianmin Wang, and Michael Jordan. 2019. Transferable
adversarial training: A general approach to adapting deep classifiers. In ICML.
4013–4022.

[25] Shikun Liu, Tianchun Li, Yongbin Feng, Nhan Tran, Han Zhao, Qiang Qiu, and
Pan Li. 2023. Structural Re-weighting Improves Graph Domain Adaptation. In
ICML. 21778–21793.

[26] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. 2015. Learning
Transferable Features with Deep Adaptation Networks.

[27] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. 2018.
Conditional adversarial domain adaptation. In NeurIPS. 1645–1655.

[28] Hehuan Ma, Yatao Bian, Yu Rong, Wenbing Huang, Tingyang Xu, Weiyang Xie,
Geyan Ye, and Junzhou Huang. 2020. Multi-View Graph Neural Networks for
Molecular Property Prediction.

[29] Haitao Mao, Lun Du, Yujia Zheng, Qiang Fu, Zelin Li, Xu Chen, Shi Han, and
Dongmei Zhang. 2024. Source Free Graph Unsupervised Domain Adaptation. In
WSDM. 520–528.

[30] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a
feather: Homophily in social networks. Annu. Rev. Sociol. 27, 1 (2001), 415–444.

[31] Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis. 2017.
Matching node embeddings for graph similarity. In AAAI, Vol. 31.

[32] Sinno Jialin Pan, James T Kwok, Qiang Yang, et al. 2008. Transfer learning via
dimensionality reduction.. In AAAI, Vol. 8. 677–682.

[33] Ofir Pele and Michael Werman. 2009. Fast and robust earth mover’s distances. In
ICCV. 460–467.

[34] Joseph J Pfeiffer III, Sebastian Moreno, Timothy La Fond, Jennifer Neville, and
Brian Gallagher. 2014. Attributed graph models: Modeling network structure with
correlated attributes. In WWW. 831–842.

[35] Ziyue Qiao, Xiao Luo, Meng Xiao, Hao Dong, Yuanchun Zhou, and Hui Xiong.
2023. Semi-supervised Domain Adaptation in Graph Transfer Learning. ĲCAI
(2023).

[36] Ievgen Redko, Amaury Habrard, and Marc Sebban. 2017. Theoretical analysis of
domain adaptation with optimal transport. In ECML. 737–753.

[37] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017.
struc2vec: Learning node representations from structural identity. In SIGKDD.
385–394.

[38] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61–80.

[39] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. 2018. Wasserstein distance
guided representation learning for domain adaptation. In AAAI, Vol. 32.

[40] Xiao Shen, Quanyu Dai, Fu-lai Chung, Wei Lu, and Kup-Sze Choi. 2020. Adver-
sarial deep network embedding for cross-network node classification. In AAAI,
Vol. 34. 2991–2999.

[41] Xiao Shen, Quanyu Dai, Sitong Mao, Fu-Lai Chung, and Kup-Sze Choi. 2021. Net-
work Together: Node Classification via Cross-Network Deep Network Embedding.
TNNLS 32, 5 (2021), 1935–1948.

[42] Boshen Shi, Yongqing Wang, Fangda Guo, Jiangli Shao, Huawei Shen, and Xueqi
Cheng. 2023. Improving graph domain adaptation with network hierarchy. In
CIKM. 2249–2258.

[43] Vayer Titouan, Nicolas Courty, Romain Tavenard, and Rémi Flamary. 2019.
Optimal transport for structured data with application on graphs. In ICML. 6275–
6284.

[44] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2018. Deep graph infomax. ICLR (2018).

[45] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman
Panchanathan. 2017. Deep hashing network for unsupervised domain adaptation.
In CVPR. 5018–5027.

[46] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021.
Inductive representation learning in temporal networks via causal anonymous
walks. ICLR (2021).

[47] Boris Weisfeiler and Andrei Leman. 1968. The reduction of a graph to canonical
form and the algebra which appears therein. nti, Series 2, 9 (1968), 12–16.

[48] Jun Wu, Jingrui He, and Elizabeth Ainsworth. 2023. Non-iid transfer learning on
graphs. In AAAI, Vol. 37. 10342–10350.

[49] Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. 2020.
Unsupervised Domain Adaptive Graph Convolutional Networks. In WWW.

[50] Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. 2022. Handling
Distribution Shifts on Graphs: An Invariance Perspective. In ICLR.

[51] Jiarong Xu, Renhong Huang, Xin Jiang, Yuxuan Cao, Carl Yang, Chunping Wang,
and Yang Yang. 2023. Better with Less: A Data-Active Perspective on Pre-Training
Graph Neural Networks. NeurIPS (2023).

[52] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In ICLR.

[53] Cheng Yang, Deyu Bo, Jixi Liu, Yufei Peng, Boyu Chen, Haoran Dai, Ao Sun, Yue
Yu, Yixin Xiao, Qi Zhang, et al. 2023. Data-centric Graph Learning: A Survey.
arXiv preprint arXiv:2310.04987 (2023).

[54] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. 2023. Graph
Domain Adaptation via Theory-Grounded Spectral Regularization. In ICML.

[55] Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger, and
Susanne Saminger-Platz. 2017. Central moment discrepancy (cmd) for domain-
invariant representation learning. ICLR (2017).

[56] Werner Zellinger, Bernhard A. Moser, Thomas Grubinger, Edwin Lughofer,
Thomas Natschläger, and Susanne Saminger-Platz. 2019. Robust unsupervised
domain adaptation for neural networks via moment alignment. Information
Sciences 483 (2019), 174–191.

[57] Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang,
Shaochen Zhong, and Xia Hu. 2023. Data-centric artificial intelligence: A survey.
arXiv preprint arXiv:2303.10158 (2023).

[58] Shuke Zhang, Yanzhao Jin, Tianmeng Liu, Qi Wang, Zhaohui Zhang, Shuliang
Zhao, and Bo Shan. 2023. SS-GNN: a simple-structured graph neural network for
affinity prediction. ACS omega 8, 25 (2023), 22496–22507.

[59] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2020. Dataset condensation
with gradient matching. ICLR (2020).

[60] Ke Zhou, Hongyuan Zha, and Le Song. 2013. Learning social infectivity in
sparse low-rank networks using multi-dimensional hawkes processes. In AISTATS.
641–649.

[61] Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. 2021. Shift-robust
gnns: Overcoming the limitations of localized graph training data. NeurIPS 34
(2021).

https://arxiv.org/abs/2212.07843
https://arxiv.org/abs/1412.6980

Can Modifying Data Address Graph Domain Adaptation? KDD ’24, August 25–29, 2024, Barcelona, Spain

A APPENDIX
A.1 Addition Experimental Setup
Additional implementation details. We further elaborate on the
hyper-parameters used and the running environment. In the imple-
mentation of GraphAlign, we set 𝜏 = 0.07, 𝜅 = 0.52. As for the
running environment, our model is implemented under the following
software setting: Pytorch version 1.12.0+cu113, CUDA version 11.3,
networkx version 2.3, torch-geometric version 2.3.0, sklearn version
1.0.2, numpy version 1.21.5, Python version 3.7.10. We conduct all
experiments on the Linux system with an Intel Xeon Gold 5118
(128G memory) and a GeForce GTX Tesla P4 (8GB memory).
Estimation of MMD distance. We follow the standard procedure
outlined by Pan et al. [32] to estimate MMD:

MMD2 (P(𝑓 (𝐺 ′)), P(𝑓 (𝐺T))) ≈ 1
𝑛′ (𝑛′ − 1)

𝑛′∑︁
𝑖

𝑛′∑︁
𝑗≠𝑖

𝑘
(
𝑥𝑖 , 𝑥 𝑗

)
+ 1
𝑛′ (𝑛′ − 1)

𝑛′∑︁
𝑖

𝑛′∑︁
𝑗≠𝑖

𝑘
(
𝑦𝑖 , 𝑦 𝑗

)
− 2
𝑛′𝑛′

𝑛′∑︁
𝑖

𝑛′∑︁
𝑗

𝑘
(
𝑥𝑖 , 𝑦 𝑗

)
,

where 𝑘 is the gaussian kernel defined by 𝑘 (x, x′) = e−
∥x−x′ ∥2

2𝜎2 , and
𝑥 and 𝑦 are node representation matrix on the 𝐺 ′ and 𝐺T , provided
by the surrogate model. In practice, we sample an equivalent number
of nodes 𝑛′ from the target graph to compute the MMD to enhance
the efficiency of estimation of the distribution of the target graph.

A.2 Proofs
Here, we begin by presenting the proof of Proposition 1&2. Further-
more, we provide the proof for Theorem 1 and Theorem 2.
Proof for Proposition 1. We start the proof as follows: Denote the
GNN encoder as 𝑓 and classifier 𝑔. Most of the previous methods
primarily focused on learning domain-invariant representation, that
is, the distribution of learnt representation P(𝑓 (𝐺S)) = P(𝑓 (𝐺T)).

Let’s recall that the CSBM models for the source and target graph
come with specific structures:

𝐶S =

[
𝑎 𝑎

𝑎 𝑎 − Δ

]
, 𝐶T =

[
𝑎 − Δ 𝑎

𝑎 𝑎

]
,

In this context, 𝑓 is the most basic single-layer GNN, which typically
employs message-passing mechanism for aggregation as follows:
ℎ
(𝑘)
𝑣 = COMBINE

(
ℎ𝑘−1𝑣 ,AGGREGATE

({
ℎ
(𝑘−1)
𝑢 | 𝑢 ∈ N (𝑣)

}))
where 𝑘 is the layer number. From the above equation, we are
aware that representations are impacted by neighbors as well as
the corresponding features (without loss of the generality, we let
𝝁 = 𝝁̃ = 𝝊 = 𝝊̃ in CSBM). Therefore, the representation ℎ is
dominated by 𝑐0 and 𝑐1, where 𝑐0 or 𝑐1 is the number of nodes
in label 0 or 1. For simplicity, we denote the representation space
for label 0 as 𝜁0 (𝑔, 𝑓) = {ℎ | 𝑔 ◦ 𝑓 (𝑐0, 𝑐1) = 0, ℎ = 𝑓 (𝑐0, 𝑐1)} and
𝜁1 (𝑔, 𝑓) = {ℎ | 𝑔 ◦ 𝑓 (𝑐0, 𝑐1) = 1, ℎ = 𝑓 (𝑐0, 𝑐1)} for label 1.

From the CSBM model, we can observe that the edge probability
among the node labeled with 𝑌 = 0 in source domain is equal to
node labelled with 𝑌 = 1 in the target domain, leading to the same
neighbourhood structure. Therefore, no matter what model 𝑓 , 𝑔 are
chosen, 𝑃

[
𝜁0 (𝑔, 𝑓) | 𝑌 S = 0

]
= 𝑃

[
𝜁1 (𝑔, 𝑓) | 𝑌 T = 1

]
. Therefore,

denote the classification error for graph encoder 𝑓 and classifier 𝑔 in

domain D as 𝜖D (𝑔, 𝑓) as [39]. We have:

1 =𝑃
[
𝜁0 (𝑔, 𝑓) | 𝑌 S = 0

]
+ 𝑃

[
𝜁1 (𝑔, 𝑓) | 𝑌 S = 0

]
=𝑃

[
𝜁0 (𝑔, 𝑓) | 𝑌 T = 1

]
+ 𝑃

[
𝜁1 (𝑔, 𝑓) | 𝑌 S = 0

]
≤ 2

(
𝜖T (𝑔, 𝑓) + 𝜖S (𝑔, 𝑓)

)
.

The last inequality is because

𝜖S (𝑔, 𝑓) =𝑃
[
𝜁0 (𝑔, 𝑓) | 𝑌 S = 1

]
𝑃 [𝑌 S = 1] + 𝑃

[
𝜁1 (𝑔, 𝑓) | 𝑌 S = 0

]
𝑃 [𝑌 S = 0]

≥ 1
2
max

{
𝑃

[
𝜁0 (𝑔, 𝑓) | 𝑌 S = 1

]
, 𝑃

[
𝜁1 (𝑔, 𝑓) | 𝑌 S = 0

]}
.

The above deduction is the same with T . In practical scenarios,
models trained on seen data tend to perform well on seen data but
poorly on unseen data. Therefore, based on practical considerations,
we assume 𝜖T (𝑔, 𝑓) ≥ 𝜖S (𝑔, 𝑓). Under this assumption, we can
prove 𝜖T (𝑔, 𝑓) ≥ 0.25.
Proof for Proposition 2. For simplicity but without losing generality,
let’s assume that the GNN encoder possesses the following charac-
teristics: (1) Linearity. This property has already been demonstrated
in some prior research [38]; (2) During message propagation, the
normalization step is applied. Based on these properties, we can
represent the encoder as follows: 𝑓 (𝑐0, 𝑐1) = (𝑐0 + 𝑐1) /𝑛.

Let’s explore the constraint P(𝐺 ′) = P(𝐺T) by the divergence of
node representations. Intuitively, when P(𝐺 ′) = P(𝐺T) is satisfied, it
implies that for nodes with the same label, their nodes representation
distributions have the same expectation. The expectation of the
representation distribution can be expressed as follows (let’s consider
nodes of category 0):

E(ℎ′) = 𝑎,E(ℎT) = 𝑎 − Δ

2
.

Therefore, the divergence of node representations can be calculated by
𝐿distance = dis(E(ℎ′),E(ℎT)), where dis(·, ·) is the distance metrics.
Here, we choose the most common Frobenius norm function as our
distance function, 𝐿distance = dis(E(ℎ′)−E(ℎT)) = ∥𝑎−(𝑎− Δ

2)∥𝐹 =
Δ
2 . It’s important to recall that we have two distinct cases as follows
(where B(·) and Bern(·) represent the binomial distribution and
Bernoulli distribution):

• If 𝑣 is from class 0 in the source domain, 𝑐0 ∼ B(𝑛/2, 𝑎), 𝑐1 ∼
B(𝑛/2, 𝑎).

• If 𝑣 is from class 0 in the target domain,𝑐0 ∼ B(𝑛/2, 𝑎−Δ), 𝑐1 ∼
B(𝑛/2, 𝑎).

As 𝑐1 and 𝑐0 are always independent, if 𝑣 is from class 0 in the target
domain, the node eℎ = 1

𝑛

(∑𝑛/2
𝑖=1 𝑍𝑖 −

∑𝑛/2
𝑖=1 𝑍

′
𝑖

)
, where𝑍𝑖 ∼ Bern(𝑎)

and 𝑍 ′
𝑖
∼ Bern(𝑎), and all 𝑍𝑖 ’s and 𝑍 ′

𝑖
’s are independent. Therefore,

using Hoeffding’s inequality, we have

𝑃 (ℎ − E [ℎ] > 𝑡) ≤ exp
(
−𝑛𝑡2

2

)
.

Defining the classifier as 𝑔(ℎ) = 0 when ℎ < 𝑥 or 𝑔(ℎ) = 1
when ℎ > 𝑥 . Here, 𝑥 is a constant. Under this classifier, we can
find that the classification error for node with label 0 in source
domain is exp

(
−𝑛𝑥2

2

)
. By setting 𝑡 = 𝑥 and E [ℎ] = 0 for node

with label 0 in source domain, 𝑃 (ℎ > 𝑥) ≤ exp
(
−𝑛𝑥2

2

)
. Similarly,

the classification error for node with label 1 in source domain is
exp

(
−𝑛 (𝑥− Δ

2)
2

2

)
. In the context of ERM, the error on the source

is minimized. Therefore, we optimize the optimal classifier based

on 1
2 (exp

(
−𝑛𝑥2

2

)
+ exp

(
−𝑛 (𝑥− Δ

2)
2

2

)
). By analyzing the extreme

KDD ’24, August 25–29, 2024, Barcelona, Spain Huang, et al.

points of the function, we can determine that the optimal classifier
is given by setting 𝑥 = Δ

4 . After using such a classifier in the target
domain, we can similarly achieve a classification error of 𝜖T (𝑔, 𝑓) ≤
1 − exp

(
−𝑛Δ2

32

)
. It shows that as Δ decreases, the classification error

𝜖T becomes smaller. And, the distance function loss can serve as an
upper bound to optimize and reduce the error

𝜖T (𝑔, 𝑓) ≤ 1 − exp
(
−𝑛Δ2

32

)
= 1 − exp

(
−𝑛𝐿2distance

8

)
.

Therefore, there exist cases such that the classification error in the
target domain can approach 0 by adopting a data-centric method.
Proof for Theorem 1. We first introduce the following inequality to
be used that:
𝜖T (𝑔, 𝑓) ≤ 𝜖T (𝑔∗, 𝑓 ∗) + 𝜖T (𝑔, 𝑓 |𝑔∗, 𝑓 ∗)

= 𝜖T (𝑔∗, 𝑓 ∗) + 𝜖S (𝑔, 𝑓 |𝑔∗, 𝑓 ∗) + 𝜖T (𝑔, 𝑓 |𝑔∗, 𝑓 ∗) − 𝜖S (𝑔, 𝑓 |𝑔∗, 𝑓 ∗) .

Here, we assume that the Lipschitz constant for the GNN model𝑔◦
𝑓 is denoted as 𝐿GNN. We denote 𝜖T (𝑔, 𝑓 |𝑔∗, 𝑓 ∗) as 𝜖T (𝑔, 𝑓 |𝑔∗, 𝑓 ∗) =
EP(𝐺T)

(
∥𝑔 ◦ 𝑓 (𝐺T) − 𝑔∗ ◦ 𝑓 ∗ (𝐺T)∥

)
and𝜖S (𝑔, 𝑓 |𝑔∗, 𝑓 ∗) = EP(𝐺S)(

∥𝑔 ◦ 𝑓 (𝐺S) − 𝑔∗ ◦ 𝑓 ∗ (𝐺S)∥
)
.

According to Lemma 1 from [39], we proof the following equation:
𝜖T (𝑔, 𝑓) ≤ 𝜖T (𝑔∗, 𝑓 ∗) + 𝜖S (𝑔, 𝑓 |𝑔∗, 𝑓 ∗) + 𝜖T (𝑔, 𝑓 |𝑔∗, 𝑓 ∗) − 𝜖S (𝑔, 𝑓 |𝑔∗, 𝑓 ∗)

≤ 𝜖T (𝑔∗, 𝑓 ∗) + 𝜖S (𝑔, 𝑓 |𝑔∗, 𝑓 ∗) + 2𝐿GNN𝑊1
(
P(𝐺S), P(𝐺T)

)
≤ 𝜖T (𝑔∗, 𝑓 ∗) + 𝜖S (𝑔, 𝑓) + 𝜖S (𝑔∗, 𝑓 ∗) + 2𝐿GNN𝑊1

(
P(𝐺S), P(𝐺T)

)
= 𝜖S (𝑔, 𝑓) + 2𝐿GNN𝑊1

(
P(𝐺S), P(𝐺T)

)
+ 𝜂.

We next link the bound with the empirical risk and labeled sample
size by showing, with probability at least 1 − 𝛿 that:
𝜖T (𝑔, 𝑓) ≤𝜖S (𝑔, 𝑓) + 2𝐿GNN𝑊1

(
P(𝐺S), P(𝐺T)

)
+ 𝜂

≤𝜖S (𝑔, 𝑓) + 2𝐿GNN𝑊1
(
P(𝐺S), P(𝐺T)

)
+
√
2

√︄
2𝑑
𝑛S

log
(
𝑒𝑛S

𝑑

)
+ 1
2𝑛S

log
(
1
𝛿

)
+ 𝜂

≤𝜖S (𝑔, 𝑓) + 2𝐿GNN𝑊1
(
P(𝐺S), P(𝐺T)

)
+

√︄
2𝑑
𝑛S

log
(
𝑒𝑛S

𝑑
) +

√︄
1

2𝑛S
log

(
1
𝛿

)
+ 𝜂.

With the assistance of the Cauchy-Schwarz inequality, we can fur-
ther derive the following inequality and provide the final conclusion.

𝜖T (𝑔, 𝑓) ≤ 𝜖S (𝑔, 𝑓) + 2𝐿GNN𝑊1
(
P(𝐺S), P(𝐺T)

)
+

√︄
4𝑑
𝑛S

log
(
𝑒𝑛S

𝑑

)
+ 1
𝑛S

log
(
1
𝛿

)
+ 𝜂.

Proof of Theorem 2. Consider a graph encoder 𝑓 (usually instantiated
as a GNN) with 𝑘 layers and 1−hop graph filter Λ(𝐿). Our focus lies
on the central node’s representation, which is acquired through a
𝑘-layer GCN utilizing a 1-hop polynomial filter Λ(𝐿) = 𝐼𝑑 − 𝐿. This
particular GNN model is widely employed in various applications.
We denote the representations of nodes 𝑖 for all 𝑖 = 1, · · · , 𝑛 in
the final layer of the GCN, taking a node-wise perspective: 𝑍 (𝑘)

𝑖
=

𝜎

(∑
𝑗∈N(𝑖) 𝑎𝑖 𝑗𝑍

(𝑘−1)𝑇
𝑗

𝜃 (𝑘)
)
∈ R𝑑 , where 𝑎𝑖 𝑗 = [Λ(𝐿)]𝑖 𝑗 ∈ R the

weighted link between node 𝑖 and 𝑗 ; and 𝜃 (𝑘) ∈ R𝑑×𝑑 is the weight

for the 𝑘-th layer sharing across nodes. Then 𝜃 =

{
𝜃 (ℓ)

}𝑘
ℓ=1

. We may

denote𝑍 (ℓ)
𝑖

∈ R𝑑 similarly for ℓ = 1, · · · , 𝑘 −1, and 𝑍 0
𝑖
= 𝑋𝑖 ∈ R𝑑 as

the node feature of center node 𝑖. With the assumption of GCN in the
statement, we consider that only the 𝑘−hop ego-graph 𝐺 ′

𝑖
centered

at 𝑋𝑖 is needed to compute 𝑍 (𝑘)
𝑖

for any 𝑖 = 1, · · · , 𝑛.
Denote 𝐿𝐺 ′

𝑖
as the out-degree normalised graph Laplacian of 𝐺 ′

𝑖
,

which is defined with respect to the direction from leaves to the
centre node in 𝐺 ′

𝑖
. We write the ℓ-th layer representation as follows[

𝑍
(ℓ)
𝑖

]
𝑘−ℓ+1

= 𝜎

([
Λ
(
𝐿𝐺 ′

𝑖

)]
𝑘−ℓ+1

[
𝑍
(ℓ−1)
𝑖

]
𝑘−ℓ+1

𝜃 (ℓ)
)
.

Assume that ∀𝑖, maxℓ

𝑍 (ℓ)

𝑖

2
≤ 𝑐𝑧 , and maxℓ

𝜃 (ℓ)

2
≤ 𝑐𝜃 .

Suppose that the activation function 𝜎 is 𝜌𝜎 -Lipschitz function.
Then, for ℓ = 1, · · · , 𝑘 − 1, we have

[𝑍 (ℓ)

𝑖

]
𝑘−ℓ

−
[
𝑍
(ℓ)
𝑖′

]
𝑘−ℓ

2
≤ 𝜌𝜎𝑐𝜃

Λ (
𝐿𝐺 ′

𝑖

)

2

[𝑍 (ℓ−1)
𝑖

]
𝑘−ℓ+1

−
[
𝑍
(ℓ−1)
𝑖′

]
𝑘−ℓ+1

2

+ 𝜌𝜎𝑐𝜃𝑐𝑧

Λ (
𝐿𝐺 ′

𝑖

)
− Λ

(
𝐿
𝐺T

𝑗

)

2
.

Since
[
Λ
(
𝐿𝐺 ′

𝑖

)]
𝑘−ℓ+1

is the principle submatrix of Λ
(
𝐿𝐺 ′

𝑖

)
. We

equivalently write the above equation as 𝐴ℓ ≤ 𝑎𝐴ℓ−1 + 𝑏, where 𝑎
and 𝑏 are the coefficient. And we have

𝐴ℓ ≤ 𝑎𝐴ℓ−1 + 𝑏 ≤ 𝑎2𝐴ℓ−2 + 𝑏 (1 + 𝑎) ≤ . . .

≤ 𝑎ℓ𝐴0 +
𝑎ℓ − 1
𝑎 − 1

𝑏.

Therefore, for any ℓ = 1, · · · , 𝑘, we have an upper bound for the
hidden representation difference between 𝐺 ′

𝑖
and 𝐺T

𝑗
by substitute

coefficient 𝑎 and 𝑏,

[𝑍 (ℓ)
𝑖

]
𝑘−ℓ

−
[
𝑍
(ℓ)
𝑖′

]
𝑘−ℓ

2
≤ ∥[𝜎

([
Λ
(
𝐿𝐺 ′

𝑖

)]
𝑘−ℓ+1

[
𝑍
(ℓ−1)
𝑖

]
𝑘−ℓ+1

𝜃 (ℓ)
)

− 𝜎

([
Λ

(
𝐿
𝐺T

𝑗

)]
𝑘−ℓ+1

[
𝑍
(ℓ−1)
𝑖′

]
𝑘−ℓ+1

𝜃 (ℓ)
)
]𝑘−ℓ)∥2

≤ (𝜌𝜎𝑐𝜃)ℓ

Λ (

𝐿𝐺 ′
𝑖

)

ℓ
2
∥ [𝑋𝑖] − [𝑋𝑖′] ∥2

+
(𝜌𝜎𝑐𝜃)ℓ

Λ (
𝐿𝐺 ′

𝑖

)

ℓ
2
− 1

𝜌𝜎𝑐𝜃

Λ (
𝐿𝐺 ′

𝑖

)

2
− 1

𝜌𝜎𝑐𝜃𝑐𝑧

Λ (
𝐿𝐺 ′

𝑖

)
− Λ

(
𝐿
𝐺T

𝑗

)

2
.

Specifically, for ℓ = 𝑘, we obtain the upper bound for center node
representation

[𝑍 (𝑘)
𝑖

]
0
−
[
𝑍
(𝑘)
𝑖′

]
0

 ≡ ∥𝑍𝑖 − 𝑍𝑖′ ∥. Assuming that
the difference in features between any two nodes does not ex-
ceed a constant, namely, ∥ [𝑋𝑖] − [𝑋𝑖′] ∥2 ≤ 𝑐𝑥 . Suppose that ∀𝑖,

Λ (

𝐿𝐺 ′
𝑖

)

2
≤ 𝑐𝐿 because that graph Laplacians are normalised.

Since Λ is a linear function for 𝐿, We have

∥𝑍𝑖 − 𝑍𝑖′ ∥2 ≤ (𝜌𝜎𝑐𝜃𝑐𝐿)𝑘 𝑐𝑥 + (𝜌𝜎𝑐𝜃𝑐𝐿)𝑘 − 1
𝜌𝜎𝑐𝜃𝑐𝐿 − 1

𝑐𝜃𝑐𝑧

Λ (
𝐿𝐺 ′

𝑖

)
− Λ

(
𝐿
𝐺T

𝑗

)

2

≤ 𝜒1

𝐿𝐺 ′
𝑖
− 𝐿

𝐺T
𝑗

2
+ 𝜒2,

where 𝜒1 =
(𝜌𝜎𝑐𝜃𝑐𝐿)𝑘−1
𝜌𝜎𝑐𝜃𝑐𝐿−1 𝑐𝜃𝑐𝑧 and 𝜒2 = (𝜌𝜎𝑐𝜃𝑐𝐿)𝑘 𝑐𝑥 .

Therefore, let’s rephrase the following equation.

𝑓 (𝐺 ′) − 𝑓 (𝐺T)

2
≤ 𝜒1

𝑛′𝑛T

𝑛′∑︁
𝑖=1

𝑛T∑︁
𝑗 ′=1

𝐿𝐺 ′
𝑖
− 𝐿

𝐺T
𝑗

2
+ 𝜒2 .

Finally, let 𝜉1 = 𝜒1 and 𝜉2 = 𝜒2, concluding the proof.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Data-Centric Principles
	3.1 Motivating Example
	3.2 Data-Centric Principles for UGDA

	4 Proposed Method: GraphAlign
	4.1 Optimization Problem
	4.2 Modeling the Generated Graph
	4.3 Complexity Analysis

	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Work
	7 Conclusion
	References
	A Appendix
	A.1 Addition Experimental Setup
	A.2 Proofs

