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Abstract

Anomaly detection in graphs has attracted consid-
erable interests in both academia and industry due
to its wide applications in numerous domains rang-
ing from finance to biology. Meanwhile, graph neu-
ral networks (GNNs) is emerging as a powerful tool
for modeling graph data. A natural and fundamen-
tal question that arises here is: can abnormality be
detected by graph neural networks? In this paper,
we aim to answer this question, which is nontrivial.
As many existing works have explored, graph neu-
ral networks can be seen as filters for graph signals,
with the favor of low frequency in graphs. In other
words, GNN will smooth the signals of adjacent
nodes. However, abnormality in a graph intuitively
has the characteristic that it tends to be dissimilar to
its neighbors, which are mostly normal samples. It
thereby conflicts with the general assumption with
traditional GNNs. To solve this, we propose a novel
Adaptive Multi-frequency Graph Neural Network
(AMNet)', aiming to capture both low-frequency
and high-frequency signals, and adaptively com-
bine signals of different frequencies. Experimental
results on real-world datasets demonstrate that our
model achieves a significant improvement compar-
ing with several state-of-the-art baseline methods.

1 Introduction

Detecting anomalies has attracted great research interests,
with applications of great impact in numerous domains, such
as telecommunication fraud detection [Yang et al., 2021] and
theft behavior detection [Hu ef al., 2020]. The nature of
anomalies could exhibit themselves as inter-dependent, such
as mining fake reviews in user-rating-product relations, rec-
ognizing the fraudsters on telecommunications network, and
detecting money-laundering rings in trading networks. Graph
data becomes ubiquitous as a powerful machinery to repre-
sent the inter-dependencies by the edges between the related
instances. However, the unique characteristics of graph-based
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data bring additional challenges. The complex correlation
in real-world datasets makes it challenging to identify the
anomalies from graph objects. Detecting anomalies in graph
data is a substantially more complex problem than anomaly
detection in a non-relational feature space.

Recently, the advance of graph nerual networks (GNNs)
has prompted various attempts to adopt GNNs for graph-
based anomaly detection [Wang et al., 2019; Liu et al., 2019;
Dou et al., 2020; Liu et al., 2020]. The general intuition
of GNN-based anomaly detection is to leverage the expres-
sive power of GNNs to learn node representations, aiming
at distinguishing anomalous nodes from normal ones in the
embedding space. Some recent studies [Wu er al., 2019;
Balcilar er al., 2021], however, show that the expressive
power of most GNN models is limited to only low-pass filters,
which intensify low-frequency signals (more smooth signals)
and suppress high-frequency signals (more oscillating sig-
nals). The nature of GNNs as low-pass filters succeed as most
real-world networks in the real world follow the homophily
assumption, where nodes with similar features tend to con-
nect with each other [McPherson et al., 2001]. However,
this assumption may be weakened in networks containing
anomalies: normal nodes still tend to share common features
with their normal neighbors (low-frequency signals), whereas
anomalies tend to have different features from the neighbors
(high-frequency signals). Thus networks containing anoma-
lies tend to mix both high-frequency and low-frequency local
patterns (Figure 1).

We claim that for GNN-based anomaly detection, the di-
rect adoption of most GNNs might not be optimal, because
of the following reasons: 1) The low-pass property of GNNs
essentially misaligns with the nature of networks containing
anomalies. GNNs potentially smooth the difference between
the representations of normal nodes and anomalous nodes by
filtering out high frequency signals. As a result, the rep-
resentation of anomalous nodes learned by GNNs could be
indistinguishable and thus inevitably leading to sub-optimal
performance for graph anomaly detection problem. 2) Most
GNN-based methods apply GNNs with global filtering char-
acteristic (low-/high-/band-pass) for all nodes of the network.
However, the anomalous nodes and the normal ones could ex-
ploit signals of different frequency bands, respectively. The
lack of adaptivity for exploiting information of different fre-
quencies for normal/anomalous nodes, pose a major obstacle
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Figure 1: Left: An illustration of networks in graph anomaly detec-
tion. Anomalies tend to have different features from the neighbors
(high-frequency information). Normal nodes tend to share common
features with their normal neighbors (low-frequency information),
Right: The performance of GCN (grey), GCN with top 30% high-
frequency graph signals ( ) and our proposed AMNet (bluc)
on graph anomaly detection the Yelp dataset.

in obtaining a more distinguishable representation.

To address the two aforementioned issues on GNN-based
graph anomaly detection, one could expect a GNN model be-
yond a low-pass filter, which could exploit low-frequency in-
formation for normal nodes to retain the commonality, and fo-
cus on high-frequency information for anomalous ones to em-
phasize the difference. However, the correlation between in-
formation of different frequencies and anomaly detection task
is usually very complex and agnostic. Thus we reason that
for GNNs to achieve good performance on graph anomaly
detection, one has to provide sufficient inductive bias that
lets the model adaptively choose either low frequency, high
frequency or both for distinguishing anomalous nodes. To
achieve this goal, this paper proposes a novel Adaptive Multi-
frequency filtering graph neural network for graph anomaly
detection (AMNet). The core idea is that we fuse both low
and high-frequency information adaptively to learn the node
embedding for distinguishing the anomalous nodes. More
specifically, instead of applying a global low-pass filter, AM-
Net develops a novel learnable multi-frequency filter group to
effectively capture graph signals of both low frequency and
high frequency simultaneously. The output signals of the fil-
ter group then convey information of multiple frequencies. In
addition, we adopt a node-level attention mechanism to em-
power the model with ability of fusing information of differ-
ent frequencies for each node substantially.

Our main contributions are summarized as follows:

* To the best of our knowledge, we are the first to iden-
tify and integrate the valuable high-frequency information
from a spectral perspective in GNN-based anomaly detec-
tion. Leveraging signals beyond the low-frequency allevi-
ates the problem that GNNs could produce confused repre-
sentations as a low-pass filter for graph anomaly detection.

* We propose a novel adaptive multi-frequency GNN frame-
work, AMNet, for graph anomaly detection, which cap-
tures information of different frequencies by our designed
combinable graph filters. With the favor of the attention
mechanism, different information can be adequately fused.

* QOur extensive experiments on a series of datasets show that
AMNet outperforms the state-of-the-art graph anomaly de-

tection methods by an average improvement of 4.81% in
AUC-ROC and 10.2% in AUC-PR.

2 Related Work

Graph-based anomaly detection Graph structured data
has been ubiquitous due to its superior capacity to model a
wide range of real-world complex systems. Therefore, de-
tecting anomaly in graphs has drawn increased interests in the
community. Recently, with the advance that GNNs demon-
strate its superior modeling power for graphs, various meth-
ods using GNNs have been proposed to solve the attributed
network anomaly detection problem. For example, DOMI-
NANT [Ding et al., 2019] computes anomaly ranking scores
using a deep GCN-based auto-encoder. GAS [Li er al., 2019]
also applies a GCN-based model to spam detection problems.
Semi-GNN [Wang et al., 2019] is a semi-supervised GNN
model which leverages the hierarchical attention mechanism
for fraud detection. Geniepath [Liu er al., 2019] designs an
novel aggregate method of GNNs to filter graph signals from
neighbors of different hops away for detecting financial fraud.
However, none of the aforementioned methods are aware of
the limitations caused by adopting GNNSs as a low-pass filter
for graph anomaly detection. To the best of our knowledge,
we are the first to identify the problem from a spectral per-
spective and attempt to alleviate the problem by our novel
approach.

Graph neural networks Graph neural network (GNN)
models have achieved enormous success. Originally inspired
by graph spectral theory, [Bruna et al., 2013] first design
learnable graph convolution operation in Fourier domain.
[Defferrard et al., 2016] further improve the efficiency by
leveraging the Chebyshev approximation. The model pro-
posed by [Kipf and Welling, 20171 simplifies the convolution
operation by using a linear filter and becomes the most pre-
vailing one. In addition, previous studies have shown that
graph neural networks are vulnerable to abnormality [Xu er
al., 2022a; Xu et al., 2022b]. Recently, spectral analysis
on GNNs has attracted wide interests due to its valuable in-
sight into the interpretablity and expressive power of GNNs.
[Balcilar et al., 2021] have attempted to show the majority
of GNNs are limited only low-pass filter and argue the ne-
cessity of high and/or band-pass filters. However, the afore-
mentioned methods do not take the unique nature of anomaly
network mentioned in the introduction into consideration and
we are the first to study how to adaptively integrate different
signals in anomaly network with mixed frequency pattern.

3 Ouwur Approach

3.1 Preliminaries

Problem definition We focus on the semi-supervised graph
anomaly detection on attributed graphs. Let G = (V, A, X)
be an undirected graph, where V is the set of nodes. Each
node v; € V has a corresponding feature vector 2; € R,
X = [x1,....,x,]" € RV*? denotes the feature matrix, and
A € RV*N represents the adjacency matrix, where A;; = 1
denotes there is an edge between v; and v; else A;; = 0.
Y € RY is an indicator vector representing whether node v;



is anomalous or not. Given G and partial node labels, our goal
is to learn a estimator to determine whether a given node is
anomalous or normal.

Graph spectral filtering According to theory of graph sig-
nal processing [Shuman et al., 2013], one can define the
graph filtering operation based on graph Fourier transfor-
mation. More specifically, let L be the symmetrically nor-
malized Laplacian, with eigendecomposition L = UAU7,
where A = diag[A1, - - , Ay] is the diagonal matrix of eigen-
values, a signal € R" is filtered by a filter g as

gxx=Ug(A)U"z (1)

Generally, a graph filter g is expressed by some spatial-
localization parametrization methods such as cubic B-spline
[Bruna et al., 2013] and Chebyshev polynomial [Defferrard et
al., 20161, enjoying the advantanges of localization and linear
complexity in the number of edges. Meanwhile, most existing
GNNs adopt graph filters with a single frequency band.

3.2 Model Description

To empower GNNs with the capability of identifying ab-
normalities, we propose a novel framework Adaptive Multi-
frequency Graph Neural Networks (AMNet). The general
idea is to adaptively leverage both low- and high-frequency
information.

To this end, we first design a group of K graph filters,
each of which captures graph signals with different frequen-
cies. Every node in the graph then obtains K signals, whose
frequencies are controlled by learnable parameters of graph
filters. As we have mentioned before, different nodes favor
different frequency signals: normal nodes are more likely to
be correlated with low frequency information, while high fre-
quency signals manifest in anomalies who behave differently
from the rest. To model the difference among signal prefer-
ences, we further propose to use a node-level attention mech-
anism for fusing the signals adaptively. Finally, the fused em-
beddings are taken for the classification task. Figure 2 illus-
trates how AMNet works. We next introduce the details of
two major components of our model: multi-frequency filter
group and adaptive combination module.

Capturing multiple frequency signals We design the
multi-frequency filter group in order to capture graph signals
of different frequencies simultaneously. More specifically,
the group consists of multiple trainable graph filters run in
parallel, each of which is trained independently in an end-
to-end manner. Formally, the multi-frequency filter group of
K filters is denoted as {g;},_; ... x- The graph signal Zj
filtered by the k-th filter can be generally defined as

Z, = Ugr(A)U"X = Udiag [gx (M), -+, 9 ()] UTX
2
The graph filters can be implemented in several different
ways. We will give one particular method based on the Bern-
stein polynomial parametrization in Section 3.3 and provide a
theoretical analysis to explain why we choose it. Before that,
we introduce how to fuse K signals produced by the multi-

frequency filter group.

Combing signals adaptively Through the graph filter-
ing, now we have K specific signals {Z;} with diverse
frequency properties. Considering each node can focus
on distinct frequency bands, we use the attention mecha-
nism att(Zy, ..., Zi) to learn the corresponding importance
(e, ..., ) as follows:

(a1 -y ) = att(Zy, ..., Zy) 3)

where a1, ..., a, € R™*! are the attention values of n nodes
with Z1, ..., Zy, respectively. More specifically, considering
the node v; with filtered signals zi € R1*"(i.e., the i-th row
of Zy), we have its attention scores as

wi = q" - tanh (WZZZT + WXX»;) 4

where WZ € R? ** and WX € R" %4 indicate the weight

matrices and g € R" *1 is the shared attention vector. The
final attention weights of node v; are obtained by normalizing
the attention values wj, with softmax function as
al = softmax (wz) = M 5)
>k exp (wy)
Larger o} implies that the node v; favors the k-th filter’s
frequency band. Defining oy, = diag ([o}]), we have the
final embedding Z by combining the filtered signals:

Z= Zakzk (6)
&

From another aspect, we find that AMNet actually applies
a personalized graph filter g* for each node v;. In particular,
the final embedding z* of v; can be equivalently expressed as

7zl = Zaizi =U Z aigk(A)UTxi
k k

= (Z Oé}igk) * X;
k

where ' = & al gy, is the linear combination of filter group
with attention weights. Thus AMNet provides the adaptivity
for each node to learn its own graph filter.

3.3 The Choice of Graph Filter

Combinable graph filter parametrization In this section
we discuss the implementation of graph filters in the multi-
frequency filter group of AMNet. From Equation 7, we see
that AMNet adaptively learns a filter for each node by com-
bining the filters in the multi-frequency filter group. However,
designing a graph filter suitable for combining is non-trivial
because most existing graph filters, such as cubic B-spline
or Chebyshev polynomial, face following two challenges: 1)
Most existing graph filters may derive negative spectral func-
tions, which leads to complex combination result according
to graph signal processing theory. 2) The frequency charac-
teristic of a filter is scale-invariant. It means that the filters
with larger scale will be dominant over the ones with smaller
scale, which diminishes the adaptivity to learning filter focus-
ing on different frequencies.

N
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Figure 2: Illustration of AMNet with multi-frequency filter group of two filters. The raw node features are filtered by a learned high-pass
filter gz and a learned low-pass filter gz, in which a node aggregates its neighborhood information to capture the high-frequency signal Z?;
and low-frequency signal Z% respectively. Then the attention layer adaptively combines Z% and Z} to obtain the final representation Z*,
which is passed to a feedforward network to get the prediction result in anomaly detection task.

To address aforementioned issues, we introduce the re-
stricted Bernstein polynomial parametrization to approxi-
mate filters in our multi-frequency group.

Definition 3.1 (Restricted Bernstein polynomial parametriza-
tion). Define the graph filter to be parametrized by Berstein
polynomials with coefficients 6,,, that are restricted in the in-
terval [0, 1]:

M M M
M m M—-m
ho (\) = m§=o: 0mb™ (\) = m§=j Oum <m> AT (L= \) @)

0

Here b,,, () = (%) A™(1 — \)M=m is the m-th Bernstein

basis of order M, and 6 € [0,1]" is a learnable vector of
polynomial coefficients. Note that b (\) > 0 for A € [0, 1],
thus avoiding phase shift. Besides, due to Y M ()\) = 1
and coefficients 6 are restricted in [0, 1], h(\) ranges in [0, 1].
Then all filters of the filter group share uniform scales. There-
fore our method avoid the aforementioned limitations for be-
ing combined, while enjoying the same advantages of exist-
ing methods such as spatial localization and linear learning
complexity. Note that [He er al., 2021] also attempts to show
the advantages of Bernstein polynominal parametrization on
general graph filter modeling, while this paper focuses on de-
veloping unified and combinable graph filters.

Expressive power analysis We next provide a theoretical
analysis to demonstrate that our parametrization enables the
filter group to capture multiple frequency graph signals.

Theorem 1. The restricted Bernstein polynomial
parametrization can equivalently express arbitrary graph
filter with continuous frequency response function.

Proof: Let us define U to be the set of restricted Bernstein
polynomial that are all in [0, 1]. We further define V' to be the
set of polynomials which map the interval [0, 1] into (0, 1).
According to [Qian ef al., 2011], we have V' C U. Because
the frequency profile of a filter is only determined by the rela-
tive absolute value of amplitude, arbitrary frequency response
function can be transformed into an equivalent one that map
[0,1] to (0,1). According to the Weierstrass Approximation
Theorem [Jeffreys and Jeffreys, 19991, let f be a continuous

function that map [0, 1] to (0, 1), for any e > 0, there exists
a polynomial function p € V such that for all z in [0, 1], we
have | f(x) — p(x)| < e

Thus, our restricted Bernstein polynomial parametrization
could express filters with diverse frequency properties, e.g.,
low/band/high-pass filters.

3.4 Objective Function
Here we describe the general training objective of AMNet.

Margin-based constraint on attention Intuitively, to en-
hance the difference, anomalous nodes need to exploit more
high-frequency information. Here we apply a constraint on
attention training to capture the intuition which encourages
that anomalous nodes and normal nodes focus on differ-
ent filters, respectively. For example, assuming two filters
{9, gr } namely with attention value {«,, o }, the margin-
based constraint on attention £, can be defined as

Lo = Zmax (07 i (aiL — afH) + C) ©)

where ( is slack variable which controls the margin between
attention values, and r;, = 1 when Y, = 1, else r; = —1.

Optimization objective We use the output embedding Z
in Eq. (6) for semi-supervised classification. Suppose the

Y € RV*2 denotes the probability of nodes belonging to the

anomalous and the normal. Then Y can be calculated with a
linear transformation and a softmax function:

Y = softmax(ZW + b) (10)

Then we have the overall objective function by combining
the classification task and constraint on attention:

L=L+BLa )

where L. represents the loss derived from node classification
(e.g, cross entropy) and S > 0 is the parameter that weights
the constraint item L.



Table 1: Performance of anomaly detection(%).

Dataset || Yelp Elliptic FinV TeleCom
Methods AUCROC AUC-PR | AUCROC AUCPR | AUCROC AUC-PR | AUCROC  AUC-PR

Graph Neural Networks

GCN 7097 +0.8 2993+0.6 | 84.57+0.4
GAT 74.68 +13 3544+1.1 | 86.03+1.5
GraphSAGE 73.65+0.8 36.11+0.7 | 8528 £2.1
GIN 68.50+13 31.22+13 | 851113

33.17+03 | 64.64+£1.1 9.04+03 | 76.69+12 59.85+1.2
56.81+09 | 659715 944+02 | 79.15+£1.8 6443+0.5
5529+13 | 72.13£19 1654+09 | 76.02+1.2 64.07+0.7
3734+13 | 6744+13 2002+13 | 765113 5948+13

GNN-based Graph Anomaly Detection Models

DOMINANT 4932+£0.8 1558+0.3 | 162103 548+0.1 | 6459+1.1 828+0.3 | 5543+0.7 1568+03
GeniePath 75.89+18 3586+05 | 83.14+13 4437+x08 | 7227+1.2 1843+0.7 | 83.73+0.7 64.25+0.3
GraphConsis 7040+13 27.02+08 | 86.14+1.1 62.04+12 | 72.82+12 27.07+1.0 | 779115 61.82+0.5
CARE-GNN 7841+15 3890+1.1|8584+12 4981+12 | 7031+1.8 23.61+x03 | 81.02+0.7 68.06+1.6
AMNet || 85.85+1.1 57.77+0.9 | 88.52+1.0 74.62+14 | 78.38+1.8 29.31+0.8 | 87.62+1.3 75.18+0.9

4 Experiments

In this section, we perform evaluations on the effectiveness of
(AMNet) under four real-world datasets. More specifically,
we aim to answer the following research questions:

* RQ1: How does AMNet perform against state-of-the-art
baselines on real-world graph anomaly detection tasks?

* RQ2: Can AMNet effectively capture both low-frequency
and high-frequency information, and fuse both adpatively?

* RQ3: Do the components of the AMNet framework work
as designed? And how do different modules contribute to
the performance of AMNet.

4.1 Experimental Setup

We adopt four real-world datasets that have been used in the
previous research to evaluate AMNet. Characteristics of these
datasets are summarized in Table 2.

¢ Yelp [Rayana and Akoglu, 2015]: It contains reviews for
restaurants in several states of the U.S.. The links are cre-
ated between two reviews if they are posted by the same
user. Our goal is to detect fake reviews here.

« Elliptic [Weber ez al., 2019]: It is a bitcoin transaction net-
work, where nodes are transactions and edges are the flows
of Bitcoin currency. We train and apply our model to pre-
dict illicit transcations.

* FinV [Yang et al., 2019]: It is a social network provided by
FinVolution group, one of the leading fintech platforms in
China. Based on the social relationships between users, we
aim to predict financial frauds.

* Telecom [Yang et al., 2021]: It is a mobile communication
network anonymized and provided by China Telecom, the
major mobile service providers in China. Our task is to
predict telemarketing frauds.

Comparison methods We compare AMNet with two cat-
egories of baselines: 1) general GNNs model, including
GCN [Kipf and Welling, 20171, GraphSAGE [Hamilton et
al., 20171, GAT [Velickovié¢ et al., 2018] and GIN [Xu et

Table 2: The characteristics of the real-world datasets.

Dataset Yelp Elliptic ~ FinV Telecom
# nodes 45,954 46,564 11,053 340,751
# edges 3,846,979 73,248 25944 3,150,996
# features 32 93 8 261
Abnormal(%) 14.53 9.76 4.46 4.62

al., 2018]. 2) GNN-based anomaly detection model, includ-
ing DOMINANT [Ding et al., 2019], GeniePath [Liu et al.,
20191, GraphConsis [Liu et al., 2020] and CARE-GNN [Dou
et al., 2020], which are introduced in Sec 2. Some other rele-
vant GNN-based models like GAS [Li et al., 2019] and Semi-
GNN [Wang et al., 2019] are not included in our experiment
considering their less effectiveness and efficiency.

Evaluation metrics We adopt two widely-used and com-
plementary metrics: the Area Under Receiver Operating
Characteristic (AUC-ROC) and AUC-PR [Dou et al., 2020;
Ding et al., 2021]. The latter pays more attention to the rank-
ing of anomalies than that of normal samples.

Implementation details All baseline methods are initial-
ized with the same parameters suggested by their official
codes and have been carefully fine-tuned. In addition, for
baselines that are able to handle heterogeneous graphs, we
leverage the possible multi-relation information of the input
graph. The filter number K of AMNet is set to 2. For all
methods, we report the average results of 10 independent
runs.

4.2 Effectiveness Results (RQ1)

Table 1 presents the experimental results. Overall, we see
that the proposed AMNet outperforms all other baselines in
all the datasets. More specifically, it achieves an improvement
of 4.81% on AUC-ROC, and 10.2% on AUC-PR. Among all
the baselines, DOMINANT, as the state-of-the-art unsuper-
vised gnn-based method, performs the worst due to the lack
of supervision. The highlighted results in the table are from
AMNet, which is able to exploit both low and high-frequency
information, keeping advantage over all the general GNNs
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Figure 3: Filters g;, and gy learned from Elliptic by AMNet.
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Figure 4: Analysis of attention distribution.

and GNN-based graph anomaly detection comparison meth-
ods consistently.

4.3 Graph Filters and Adaptive Capability (RQ2)

Visualization of graph filters To gain a deeper insight into
our model, we plot the filter group in Figure 3. It illustrates
two filters gr, and gz learned from real-world dataset Elliptic.
We see that g, exhibits low-pass property while gy exhibits
high-pass property. This phenomena is consistent with the
key idea that both low frequency and high frequency infor-
mation contribute to anomaly detection. It further suggests
that AMNet can learn filters that capture multiple frequency
signals in an end-to-end manner.

Analysis of attention distribution We conduct the atten-
tion distribution analysis on public real-world dataset Ellip-
tic in Figure 4. We see that normal nodes tend to have
dominant attention value on low-pass filter g7, and therefore
preserve stronger low-frequency signals, whereas anomalous
nodes emphasize high-frequency signals. This difference ef-
fectively sharpens the contrast between normal nodes and
anomalous nodes, thus making it easier for the anomaly to be
captured by the model. In summary, the experiment demon-
strates that our proposed AMNet is able to adaptively adopt
graph signals with suitable frequencies for different nodes.

Anomalous Nodes Normal Nodes

1.0 10 4
o ER /_/—/N
= =
505 4 & o5 4
- E
g 8
b1 i =
< — 9L < 11— 9L
— 9H — 9H
0.0 —— T T 0.0 - T T
0 100 200 0 100 200
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Figure 5: The attention changing trends w.r.t epochs. Y-axis shows
attention value with standard deviation over 10 independent runs.

Analysis of attention trend We next further analyze the
changing trends of attention values during the training pro-
cess in Figure 5, where x-axis is the epoch and y-axis is the
average attention value of nodes. We can see that the attention
value for high-pass filter g7 of anomalous nodes gradually in-
creases, while the attention value for low-pass filter g7, keeps
decreasing. Meanwhile, the attention value of normal nodes
goes in the opposite way. This trend is consistent with the ob-
servation in Figure 4, and suggests that AMNet can learn the
contribution of different frequency components gradually.

4.4 Ablation Analysis (RQ3)

In this section, we compare AMNet with its two variants on
Elliptic and Yelp to validate the effectiveness of the designed
modules.

* AMNet-Cheb: it replaces the Bernstein polynomial by the
Chebyshev polynomial for graph filters in AMNet.

* AMNet-AC: it removes the margin-based constraint on at-
tention £, in AMNet.

From the results in Table 3, we see that AMNet notably
outperforms AMNet-Cheb by an average improvement of
14% on AUC-PR, which is consistent with the analysis in
Sec 3.3 on the advantages of our filter over general graph fil-
ters for combining different graph signals. And we also find
that introducing the attention constraint improves the perfor-
mance by guiding the anomalous nodes and normal nodes
paying more attention on signals of different frequencies, re-
spectively.

Table 3: The results(%) of ablation study on Elliptic and Yelp.

Dataset Elliptic Yelp
AUC-ROC AUC-PR AUC-ROC AUC-PR
AMNet-Cheb 86.11 60.44 81.70 44.80
AMNet-AC 87.92 72.27 85.03 56.78
AMNet 88.52 74.62 85.85 57.77

5 Conclusion

In this paper, we study the problem of can abnormality be
detected by graph neural networks. We answer this issue by
exploring the nature of GNNs, and analyzing the character-
istics of graph signals in anomaly detection scenarios. We
conclude that most existing GNNs only consider graph sig-
nals with single frequency, whereas abnormality and normal
nodes favors different frequency bands. Therefore, to fur-
ther enhance GNNs’ performance in anomaly detection, we
proposed AMNet, a novel Adaptive Multi-frequency Graph
Neural Network, aiming to adaptively combine multiple fre-
quency signals for each node. Experimental results demon-
strate that our model achieves a significant improvement com-
paring with several state-of-the-art baseline methods.
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