
Measuring Task Similarity and Its Implication in
Fine-Tuning Graph Neural Networks

Renhong Huang1,2�†, Jiarong Xu2�‡, Xin Jiang3, Chenglu Pan1, Zhiming Yang2,
Chunping Wang4, Yang Yang1

1Zhejiang University, 2Fudan University, 3Lehigh University, 4FinVolution Group
{renh2,chenglupan,yangya}@zju.edu.cn, {jiarongxu,zmyang20}@fudan.edu.cn,

xjiang@lehigh.edu, wangchunping02@xinye.com

Abstract

The paradigm of pre-training and fine-tuning graph neural
networks has attracted wide research attention. In previous
studies, the pre-trained models are viewed as universally ver-
satile, and applied to a diverse range of downstream tasks. In
many situations, however, this practice results in limited or
even negative transfer. This paper, for the first time, studies
the specific application scope of graph pre-trained models, i.e.,
the extent to which downstream tasks can benefit from specific
pre-training tasks. We find that not all downstream tasks can
effectively benefit from a graph pre-trained model. In light of
this, we introduce the measure task consistency to quantify
the similarity between graph pre-training and downstream
tasks. This measure assesses the extent to which downstream
tasks can benefit from specific pre-training tasks. Moreover, a
novel fine-tuning strategy, Bridge-Tune, is proposed to further
diminish the impact of the difference between pre-training and
downstream tasks. The key innovation in Bridge-Tune is an
intermediate step that bridges pre-training and downstream
tasks. This step takes into account the task differences and
further refines the pre-trained model. The superiority of the
presented fine-tuning strategy is validated via numerous ex-
periments with different pre-trained models and downstream
tasks.

1 Introduction
The paradigm of pre-training and fine-tuning graph neural
networks (GNNs) has recently become an active research
area and is able to learn transferable knowledge from graph
data without costly labels (Hu et al. 2020b; Liu et al. 2022;
Rong et al. 2020; Qiu et al. 2020; Xu et al. 2023; Ma et al.
2023; Xu et al. 2022). This paradigm typically involves two
steps: (1) pre-train a GNN encoder on unlabeled graph data
via a pre-training task; (2) fine-tune the pre-trained GNN
on unseen data so as to benefit different downstream tasks.
Such a design hopes to build a one-fits-all model that always
benefits the downstream.

�These authors contributed equally.
†This work was done when the author was a visiting student at

Fudan University.
‡Corresponding author.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

task consistency

im
pr

ov
em

en
t (

%
)

downstream task
node classification
link prediction

dataset:

negative
transfer
(45%)

Brazil-Airport
Europe-Airport
US-Airport
H-index
Wisconsin
Texas
DD242
DD68
DD687
Cornell
Cora

Figure 1: Plot of performance improvement versus the proposed
task consistency measure. It shows a clear positive correlation: a
larger task consistency implies higher improvement, which in turn
suggests that the downstream task can benefit more from the pre-
training task. Different points represent improvement on different
downstream tasks and different datasets. The black solid line is fitted
via linear regression, and the gray shaded area indicates the 95%
confidence interval.

However, this ideal expectation is far from the truth in real-
world scenarios. As demonstrated in Figure 1, the fine-tuned
GCC model (Qiu et al. 2020) suffers from negative transfer in
45.5% of downstream tasks tested, and the given pre-trained
model excels in some downstream tasks while underperforms
in others. (The improvement result is computed as the relative
difference in downstream performance between fine-tuned
GCC and GCC learned from scratch.) This undesirable phe-
nomenon is largely attributed to the difference between the
pre-training task and the downstream task; as also observed
in (Hu et al. 2020b; Lu et al. 2021; Ju et al. 2023).

In view of this, it is then crucial to examine in which case
the downstream benefits from the pre-trained model, which
in turn asks for a measure to quantify the similarity between a
pre-training task and a downstream task. Task similarity has
been studied in the literature, but is typically defined based
on label distributions (Ganin et al. 2016; Geng 2016; Chen
et al. 2020). These approaches are not applicable in our case
because graph pre-training is conducted on unlabeled data.
What’s worse, the pre-training and downstream tasks are often
defined on different spaces or have distinct objectives, which
makes the comparison more difficult.

Considering the above practical needs and challenges,
this paper proposes a novel measure of task consistency to

quantify the similarity between various graph pre-training
and downstream tasks within a unified space. Specifically, we
introduce a pair-wise label space that is able to encompass
different pre-training and downstream tasks even if they are
originally defined in different ways. With this novel pair-wise
label space, the task consistency measure is then proposed
to identify those downstream tasks that might benefit from a
given graph pre-trained model, as demonstrated in Figure 1.

For those downstream tasks that can potentially make
good use of a given pre-trained model, the next question
is how to diminish the impact of task inconsistency so as
to better leverage the knowledge in the pre-trained model.
In this case, the proposed task consistency measure is not
helpful: The difference between two tasks is intrinsic and is
not altered in any learning process. To resolve this difficulty,
we introduce the concept of representation consistency and a
novel fine-tuning strategy Bridge-Tune.

The first step is to modify the task consistency measure to
take into account the representations learned by the pre-trained
model. Such a measure is called representation consistency,
and can be viewed as a soft version of the task consistency
measure. It is able to quantify the contribution of the learned
representations to downstream tasks, and is used to guide the
refinement of the pre-trained model.

Second, with the proposed representation consistency, we
develop a novel fine-tuning strategy, Bridge-Tune. The key
innovation in Bridge-Tune is an intermediate step between pre-
training and downstream. This process is called pre-trained
model refinement, and aims to maximize the proposed rep-
resentation consistency. The effectiveness of Bridge-Tune is
illustrated in Figure 2. The traditional fine-tuning easily falls
into a suboptimal point in the downstream task. In compari-
son, the pre-trained model refinement step helps find a better
starting point for fine-tuning and so Bridge-Tune potentially
builds a better model for the downstream task.

Our contributions are summarized as follows.

• New measure. We propose a task consistency measure to
quantify the potential benefits gained by the downstream
task from a graph pre-trained model.

• New method. We introduce Bridge-Tune, a novel fine-
tuning strategy. Instead of directly fine-tuning a pre-trained
model, Bridge-Tune takes an intermediate step that bridges
the pre-training and downstream tasks and refines the model
representations.

• Theoretical guarantees and numerical results. The effec-
tiveness of Bridge-Tune is verified via theoretical analysis
and demonstrated by numerical experiments. In particular,
the superiority of Bridge-Tune is justified with different
choices of pre-trained models and downstream tasks.

The rest of the paper is organized as follows. The classical
paradigm of GNN pre-training and fine-tuning is reviewed
in §2. In §3 we introduce the measure of task consistency to
quantify the similarity between pre-training and downstream
tasks. Then §4 unveils the proposed novel fine-tuning strategy,
Bridge-Tune. Numerical experiments in §5 demonstrate the
superiority of our approach across various settings.

lo
ss

model
params

pre-training
task

pre-trained fine-tuned
 (traditional)

fine-tuned
(ours)

downstream task

optimization process:
traditional fine-tuning
Bridge-Tune

after
refinement

pre-trained model
refinement

Figure 2: Illustration of the optimization process in traditional
fine-tuning (blue) and our fine-tuning strategy (red). The arrow from
one (solid) curve to another indicates a change in tasks, and the
arrow along one curve represents the optimization process.

2 Preliminaries
In this section, we introduce the basic paradigm of graph
pre-training. It typically consists of two steps: pre-training
and fine-tuning. First, given a collection of unlabeled graphs
⌧pre, we pre-train a generic GNN encoder 5\ by optimizing
the self-supervised learning objective Lpre:

\pre-train = argmin
\

Lpre
�
5\ ;⌧pre

�
.

The learned parameter \pre-train is expected to capture unified
and transferable structural patterns in the training graphs. The
choice of Lpre relies on the pre-training task, and this paper
focuses on the following three: graph contrastive learning,
graph reconstruction and graph context prediction.

Graph Contrastive Learning. The goal of contrastive pre-
training task is to capture the similarities (and dissimilarities)
between subgraph instances (You et al. 2020; Qiu et al. 2020;
Zheng et al. 2022). Specifically, given a subgraph instance b8
from an ego network �8 centered at the node E8 , we could get
its representation G8 = 5 (b8) via the graph encoder 5 . The
encoder 5 aims to encourage high similarity between G8 and
the representations of another subgraph instance b+8 which is
sampled from the same ego network. This work could be done
through optimizing the InfoNCE loss (Oord, Li, and Vinyals

2018): Lpre = � log 4
x>8 5 (b+8)/g

4
x>8 5 (b+8)/g+

Õ
b 08 2⌦

�
8
4
x>8 5 (b 08)/g

, where ⌦�

8

denotes the collection of subgraph instances that sampled
from different ego networks � 9 (9 < 8) and g denotes a pre-
defined hyper-parameter. The inner product here denotes the
similarity measure between the two subgraph instances.

Graph Reconstruction. Graph autoencoder is another pop-
ular approach for GNN pre-training, and utilizes graph re-
construction as self-supervised tasks (Hamilton, Ying, and
Leskovec 2017). The main objective of the graph encoder 5 in
graph reconstruction is to encourage high similarity between
connected node pairs and low similarity between unconnected
node pairs: Lpre = � logf

�
⌘
>
D ⌘E

�
� log

�
1 � f(⌘

>
D ⌘E0)

�
,

where E is connected to D but disconnected to E0, ⌘D denotes
the representation of node D, and f(·) is the sigmoid function.

Graph Context Prediction. Graph context prediction aims
to leverage subgraphs to make predictions about the sur-
rounding graph structures (namely, context graph) (Hu et al.
2020b), by classifying whether a particular neighborhood

and a context graph belong to the same node within a
 -hop neighborhood. The objective can be formulated as
Lpre = � logf(⌘>E 2E) �

Õ
E0⇠⌦�

E
log

�
1 � f(⌘

>
E 2E0)

�
, where

⌦�
E is the set of nodes excluding node E, and ⌘

()

E and
2E are representations of -hop neighborhood and context
graph of node E.

Second, in the fine-tuning stage, the GNN model (initialized
with the pre-trained parameters \pre-train) is trained on the
loss of downstream task Ldown end-to-end together with the
classifier on the downstream task. Recent works focus on how
to make the most use of the knowledge in pre-trained models
during the fine-tuning phase, they can be categorized into
parameter regularization (Xuhong, Grandvalet, and Davoine
2018) and representation regularization (Li et al. 2019; Chen
et al. 2019; Kou et al. 2020; Flamary et al. 2016; Xu et al.
2020). In the graph domain, some efforts have been also made
to develop better fine-tuning strategies. (Zhang et al. 2022)
adapts the optimal transport to constrain the fine-tuned model
behaviors, which is a kind of representation regularization.
(Xia et al. 2022) uses a regularization built on dropout to
control the complexity of pre-trained models. Although there
are various forms of fine-tuning, it is evident that a gap exists
between the learning objectives of the pre-training task and
the downstream task.

3 Measure Task Similarity
This section presents a measure to quantify the similarity
between pre-training and downstream tasks. We begin to
introduce a pair-wise label space to relocate these two tasks
in a common space in §3.1, and then our proposed measure
of task consistency is presented in §3.2.

3.1 Pair-Wise Label Space
Graph pre-trained models cannot retain competitive perfor-
mance across all downstream tasks, as significant difference
exists between pre-training and downstream tasks. Specifi-
cally, the pre-training task typically works on the representa-
tion space: By mapping the input data to representations, it
attempts to optimize the (dis)agreement of node representa-
tions. In comparison, the downstream task is often defined
on the label space, aiming to classify the downstream data.

To facilitate the comparison of these tasks, we introduce
a new label in both pre-training and downstream tasks. The
presented new label is applied to a pair of nodes, and with this
definition, the tasks in graph pre-training and downstream
can be converted into the same pair-wise label space.
Definition 1 (Pair-wise label space). Given two samples E8 , E 9
and their respective labels H(E8), H(E 9), the label of the node
pair (E8 , E 9) is defined as

H
⇤
(E8 , E 9) = 1(H(E8) = H(E 9)), (1)

where 1(·) is the indicator function. The pair-wise label
space Y⇤ consists of all the labels H⇤ (E8 , E 9).

With Definition 1, a variety of pre-training and downstream
tasks can be represented in the pair-wise label space. As an
example, node classification in the pair-wise label space
sets H⇤ (E8 , E 9) = 1 if E8 and E 9 have the same label. The
conversion of link prediction into the pair-wise label space is

()=1y
<latexit sha1_base64="zdJJVTwCjviaFqxzSuZIjTrcUco=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2FZpQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqPqAaBZfYMtwIvE8U0igQ2AnGNzO/84RK81jemUmCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWl/pDHUYQTOIVz8OAK6nALDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f7/aNGA==</latexit>

y
<latexit sha1_base64="zdJJVTwCjviaFqxzSuZIjTrcUco=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2FZpQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqPqAaBZfYMtwIvE8U0igQ2AnGNzO/84RK81jemUmCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWl/pDHUYQTOIVz8OAK6nALDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f7/aNGA==</latexit>

()=1y
<latexit sha1_base64="zdJJVTwCjviaFqxzSuZIjTrcUco=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2FZpQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqPqAaBZfYMtwIvE8U0igQ2AnGNzO/84RK81jemUmCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWl/pDHUYQTOIVz8OAK6nALDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f7/aNGA==</latexit>

v0
<latexit sha1_base64="ov+PHWw9w3vXiHHmgfnfiLqwOOg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKezGgB4DXjxGNA9IljA76U2GzM4uM7OBsAT8AS8eFPHqF3nzb5w8DppY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6fNHWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsY9t1csuWV3DrJOvCUpwRL1XvGr249ZGqE0TFCtO56bGD+jynAmcFrophoTykZ0gB1LJY1Q+9n81Cm5sEqfhLGyJQ2Zq78nMhppPYkC2xlRM9Sr3kz8z+ukJrzxMy6T1KBki0VhKoiJyexv0ucKmRETSyhT3N5K2JAqyoxNp2BD8FZfXifNStm7Klfuq6Va82kRRx7O4BwuwYNrqMEd1KEBDAbwDK/w5gjnxXl3PhatOWcZ4Sn8gfP5AzRyjjU=</latexit>

v1<latexit sha1_base64="lzak3uTg6UVsLVYD0loYKtThdXk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKezGgB4DXjxGNA9IljA7mU2GzM4uM72BsAT8AS8eFPHqF3nzb5w8DppY0FBUddPdFSRSGHTdbye3sbm1vZPfLeztHxweFY9PmiZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0e3Mb425NiJWjzhJuB/RgRKhYBSt9DDueb1iyS27c5B14i1JCZao94pf3X7M0ogrZJIa0/HcBP2MahRM8mmhmxqeUDaiA96xVNGIGz+bnzolF1bpkzDWthSSufp7IqORMZMosJ0RxaFZ9Wbif14nxfDGz4RKUuSKLRaFqSQYk9nfpC80ZygnllCmhb2VsCHVlKFNp2BD8FZfXifNStm7Klfuq6Va82kRRx7O4BwuwYNrqMEd1KEBDAbwDK/w5kjnxXl3PhatOWcZ4Sn8gfP5AzX2jjY=</latexit>

v2<latexit sha1_base64="y0e2T5Cw+yC8b2a0aKlLpAaRyKs=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKezGgB4DXjxGNA9IljA76U2GzM4uM7OBsAT8AS8eFPHqF3nzb5w8DppY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6fNHWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsa9Sq9YcsvuHGSdeEtSgiXqveJXtx+zNEJpmKBadzw3MX5GleFM4LTQTTUmlI3oADuWShqh9rP5qVNyYZU+CWNlSxoyV39PZDTSehIFtjOiZqhXvZn4n9dJTXjjZ1wmqUHJFovCVBATk9nfpM8VMiMmllCmuL2VsCFVlBmbTsGG4K2+vE6albJ3Va7cV0u15tMijjycwTlcggfXUIM7qEMDGAzgGV7hzRHOi/PufCxac84ywlP4A+fzBzd6jjc=</latexit>

(,)=0 (,)=0

(,)=1(,)=0y�
<latexit sha1_base64="D1x7VTtp9oajILvlwsuOP64T8FI=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBPJTdKuix4MVjRfsh7VqyabYNzSZLkhWWpT/BiwdFvPqLvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewsrq2vlHcLG1t7+zulfcPWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB+Hrqt5+o0kyKe5PG1I/wULCQEWysdJc+nvXLFbfqzoCWiZeTCuRo9MtfvYEkSUSFIRxr3fXc2PgZVoYRTielXqJpjMkYD2nXUoEjqv1sduoEnVhlgEKpbAmDZurviQxHWqdRYDsjbEZ60ZuK/3ndxIRXfsZEnBgqyHxRmHBkJJr+jQZMUWJ4agkmitlbERlhhYmx6ZRsCN7iy8ukVat659Xa7UWl/pDHUYQjOIZT8OAS6nADDWgCgSE8wyu8Odx5cd6dj3lrwclnDuEPnM8fCU6NtA==</latexit>

y�
<latexit sha1_base64="D1x7VTtp9oajILvlwsuOP64T8FI=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBPJTdKuix4MVjRfsh7VqyabYNzSZLkhWWpT/BiwdFvPqLvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewsrq2vlHcLG1t7+zulfcPWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB+Hrqt5+o0kyKe5PG1I/wULCQEWysdJc+nvXLFbfqzoCWiZeTCuRo9MtfvYEkSUSFIRxr3fXc2PgZVoYRTielXqJpjMkYD2nXUoEjqv1sduoEnVhlgEKpbAmDZurviQxHWqdRYDsjbEZ60ZuK/3ndxIRXfsZEnBgqyHxRmHBkJJr+jQZMUWJ4agkmitlbERlhhYmx6ZRsCN7iy8ukVat659Xa7UWl/pDHUYQjOIZT8OAS6nADDWgCgSE8wyu8Odx5cd6dj3lrwclnDuEPnM8fCU6NtA==</latexit>

(,)=0y�
<latexit sha1_base64="D1x7VTtp9oajILvlwsuOP64T8FI=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBPJTdKuix4MVjRfsh7VqyabYNzSZLkhWWpT/BiwdFvPqLvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewsrq2vlHcLG1t7+zulfcPWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB+Hrqt5+o0kyKe5PG1I/wULCQEWysdJc+nvXLFbfqzoCWiZeTCuRo9MtfvYEkSUSFIRxr3fXc2PgZVoYRTielXqJpjMkYD2nXUoEjqv1sduoEnVhlgEKpbAmDZurviQxHWqdRYDsjbEZ60ZuK/3ndxIRXfsZEnBgqyHxRmHBkJJr+jQZMUWJ4agkmitlbERlhhYmx6ZRsCN7iy8ukVat659Xa7UWl/pDHUYQjOIZT8OAS6nADDWgCgSE8wyu8Odx5cd6dj3lrwclnDuEPnM8fCU6NtA==</latexit>

(,)=0y�
<latexit sha1_base64="D1x7VTtp9oajILvlwsuOP64T8FI=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBPJTdKuix4MVjRfsh7VqyabYNzSZLkhWWpT/BiwdFvPqLvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewsrq2vlHcLG1t7+zulfcPWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB+Hrqt5+o0kyKe5PG1I/wULCQEWysdJc+nvXLFbfqzoCWiZeTCuRo9MtfvYEkSUSFIRxr3fXc2PgZVoYRTielXqJpjMkYD2nXUoEjqv1sduoEnVhlgEKpbAmDZurviQxHWqdRYDsjbEZ60ZuK/3ndxIRXfsZEnBgqyHxRmHBkJJr+jQZMUWJ4agkmitlbERlhhYmx6ZRsCN7iy8ukVat659Xa7UWl/pDHUYQjOIZT8OAS6nADDWgCgSE8wyu8Odx5cd6dj3lrwclnDuEPnM8fCU6NtA==</latexit>

y�
<latexit sha1_base64="D1x7VTtp9oajILvlwsuOP64T8FI=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBPJTdKuix4MVjRfsh7VqyabYNzSZLkhWWpT/BiwdFvPqLvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewsrq2vlHcLG1t7+zulfcPWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB+Hrqt5+o0kyKe5PG1I/wULCQEWysdJc+nvXLFbfqzoCWiZeTCuRo9MtfvYEkSUSFIRxr3fXc2PgZVoYRTielXqJpjMkYD2nXUoEjqv1sduoEnVhlgEKpbAmDZurviQxHWqdRYDsjbEZ60ZuK/3ndxIRXfsZEnBgqyHxRmHBkJJr+jQZMUWJ4agkmitlbERlhhYmx6ZRsCN7iy8ukVat659Xa7UWl/pDHUYQjOIZT8OAS6nADDWgCgSE8wyu8Odx5cd6dj3lrwclnDuEPnM8fCU6NtA==</latexit>

y�
<latexit sha1_base64="D1x7VTtp9oajILvlwsuOP64T8FI=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBPJTdKuix4MVjRfsh7VqyabYNzSZLkhWWpT/BiwdFvPqLvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewsrq2vlHcLG1t7+zulfcPWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB+Hrqt5+o0kyKe5PG1I/wULCQEWysdJc+nvXLFbfqzoCWiZeTCuRo9MtfvYEkSUSFIRxr3fXc2PgZVoYRTielXqJpjMkYD2nXUoEjqv1sduoEnVhlgEKpbAmDZurviQxHWqdRYDsjbEZ60ZuK/3ndxIRXfsZEnBgqyHxRmHBkJJr+jQZMUWJ4agkmitlbERlhhYmx6ZRsCN7iy8ukVat659Xa7UWl/pDHUYQjOIZT8OAS6nADDWgCgSE8wyu8Odx5cd6dj3lrwclnDuEPnM8fCU6NtA==</latexit>

v0
<latexit sha1_base64="ov+PHWw9w3vXiHHmgfnfiLqwOOg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKezGgB4DXjxGNA9IljA76U2GzM4uM7OBsAT8AS8eFPHqF3nzb5w8DppY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6fNHWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsY9t1csuWV3DrJOvCUpwRL1XvGr249ZGqE0TFCtO56bGD+jynAmcFrophoTykZ0gB1LJY1Q+9n81Cm5sEqfhLGyJQ2Zq78nMhppPYkC2xlRM9Sr3kz8z+ukJrzxMy6T1KBki0VhKoiJyexv0ucKmRETSyhT3N5K2JAqyoxNp2BD8FZfXifNStm7Klfuq6Va82kRRx7O4BwuwYNrqMEd1KEBDAbwDK/w5gjnxXl3PhatOWcZ4Sn8gfP5AzRyjjU=</latexit>

v1<latexit sha1_base64="lzak3uTg6UVsLVYD0loYKtThdXk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKezGgB4DXjxGNA9IljA7mU2GzM4uM72BsAT8AS8eFPHqF3nzb5w8DppY0FBUddPdFSRSGHTdbye3sbm1vZPfLeztHxweFY9PmiZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0e3Mb425NiJWjzhJuB/RgRKhYBSt9DDueb1iyS27c5B14i1JCZao94pf3X7M0ogrZJIa0/HcBP2MahRM8mmhmxqeUDaiA96xVNGIGz+bnzolF1bpkzDWthSSufp7IqORMZMosJ0RxaFZ9Wbif14nxfDGz4RKUuSKLRaFqSQYk9nfpC80ZygnllCmhb2VsCHVlKFNp2BD8FZfXifNStm7Klfuq6Va82kRRx7O4BwuwYNrqMEd1KEBDAbwDK/w5kjnxXl3PhatOWcZ4Sn8gfP5AzX2jjY=</latexit>

v1<latexit sha1_base64="lzak3uTg6UVsLVYD0loYKtThdXk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKezGgB4DXjxGNA9IljA7mU2GzM4uM72BsAT8AS8eFPHqF3nzb5w8DppY0FBUddPdFSRSGHTdbye3sbm1vZPfLeztHxweFY9PmiZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0e3Mb425NiJWjzhJuB/RgRKhYBSt9DDueb1iyS27c5B14i1JCZao94pf3X7M0ogrZJIa0/HcBP2MahRM8mmhmxqeUDaiA96xVNGIGz+bnzolF1bpkzDWthSSufp7IqORMZMosJ0RxaFZ9Wbif14nxfDGz4RKUuSKLRaFqSQYk9nfpC80ZygnllCmhb2VsCHVlKFNp2BD8FZfXifNStm7Klfuq6Va82kRRx7O4BwuwYNrqMEd1KEBDAbwDK/w5kjnxXl3PhatOWcZ4Sn8gfP5AzX2jjY=</latexit>

v2<latexit sha1_base64="y0e2T5Cw+yC8b2a0aKlLpAaRyKs=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKezGgB4DXjxGNA9IljA76U2GzM4uM7OBsAT8AS8eFPHqF3nzb5w8DppY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6fNHWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsa9Sq9YcsvuHGSdeEtSgiXqveJXtx+zNEJpmKBadzw3MX5GleFM4LTQTTUmlI3oADuWShqh9rP5qVNyYZU+CWNlSxoyV39PZDTSehIFtjOiZqhXvZn4n9dJTXjjZ1wmqUHJFovCVBATk9nfpM8VMiMmllCmuL2VsCFVlBmbTsGG4K2+vE6albJ3Va7cV0u15tMijjycwTlcggfXUIM7qEMDGAzgGV7hzRHOi/PufCxac84ywlP4A+fzBzd6jjc=</latexit>

v2<latexit sha1_base64="y0e2T5Cw+yC8b2a0aKlLpAaRyKs=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKezGgB4DXjxGNA9IljA76U2GzM4uM7OBsAT8AS8eFPHqF3nzb5w8DppY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6fNHWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsa9Sq9YcsvuHGSdeEtSgiXqveJXtx+zNEJpmKBadzw3MX5GleFM4LTQTTUmlI3oADuWShqh9rP5qVNyYZU+CWNlSxoyV39PZDTSehIFtjOiZqhXvZn4n9dJTXjjZ1wmqUHJFovCVBATk9nfpM8VMiMmllCmuL2VsCFVlBmbTsGG4K2+vE6albJ3Va7cV0u15tMijjycwTlcggfXUIM7qEMDGAzgGV7hzRHOi/PufCxac84ywlP4A+fzBzd6jjc=</latexit>

v0
<latexit sha1_base64="ov+PHWw9w3vXiHHmgfnfiLqwOOg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKezGgB4DXjxGNA9IljA76U2GzM4uM7OBsAT8AS8eFPHqF3nzb5w8DppY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6fNHWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsY9t1csuWV3DrJOvCUpwRL1XvGr249ZGqE0TFCtO56bGD+jynAmcFrophoTykZ0gB1LJY1Q+9n81Cm5sEqfhLGyJQ2Zq78nMhppPYkC2xlRM9Sr3kz8z+ukJrzxMy6T1KBki0VhKoiJyexv0ucKmRETSyhT3N5K2JAqyoxNp2BD8FZfXifNStm7Klfuq6Va82kRRx7O4BwuwYNrqMEd1KEBDAbwDK/w5gjnxXl3PhatOWcZ4Sn8gfP5AzRyjjU=</latexit>

downstream graph

label space

pair-wise label space

in pre-training task

in downstream task

consistent inconsistent consistent

()=0label space

Figure 3: Illustrating example of the pair-wise label space and
the measure of task consistency. Consider node classification as
a downstream task, originally defined in the label space, a node
pair comprising nodes with different labels are labeled as 0 in the
pair-wise label space. Take contrastive learning as the pre-training
task, a node pair comprising nodes distinct nodes are labeled as 0 in
the pair-wise label space. Based on the shared pair-wise label space,
the task consistency can be defined to measure the probability of
the labels of node pairs being the same in both tasks.

also straightforward: H⇤ (E8 , E 9) = 1 if a link exists between
node E8 and E 9 , and H⇤ (E8 , E 9) = 0 otherwise.

For pre-training tasks, we study three self-supervised learn-
ing approaches and convert them to the pair-wise label space.
• Graph Contrastive Learning. Contrastive learning can be

viewed as an instance discrimination task, where each
instance is treated as a distinct class of its own (Wu et al.
2018). Accordingly, the label of a node pair in contrastive
learning can be defined as H⇤ (E8 , E 9) = 0 if E8 < E 9 .

• Graph Reconstruction. Graph reconstruction aims to recon-
struct the existence of links between node pairs. Hence, the
labels of node pairs in this task can be naturally defined
as H⇤ (E8 , E 9) = 1 if a link exists between E8 and E 9 , and 0
otherwise.

• Graph Context Prediction. Graph context prediction is
originally a graph-level task, and aims to determine whether
a specific neighborhood and a context graph correspond
to the same node (Hu et al. 2020b). Roughly speaking,
if two nodes are located close enough within -hops of
each other, their neighborhoods and context graphs are
considered similar enough. Based on this relaxation, graph
context prediction can be converted to a node-level task:
H
⇤
(E8 , E 9) = 1 if (E8 , E 9) are within -hops of each other,

and H⇤ (E8 , E 9) = 0 otherwise.
Figure 3 presents an illustrating example of converting con-
trastive learning and node classification into the pair-wise
label space.

3.2 Task Consistency
After converting pre-training and downstream tasks to the
same pair-wise label space, we introduce the measure task
consistency to quantify the similarity between these tasks.
Definition 2 (Task consistency). Given a pre-training task P
and a downstream task D, denote by Y

⇤

D
its pair-wise label

space on the downstream task and by Y
⇤

P
its pair-wise label

space on the pre-training task. The task consistency of the
downstream task D with the pre-training task P is defined by

CT (D,P) = P[H⇤
D
(n) = H⇤

P
(n)], (2)

where VD is the space of nodes in the downstream graph,
and n 2 VD ⇥VD is a node pair taken from the downstream
graph.

Figure 3 presents an illustrating example of how task con-
sistency is computed when the pre-training task is contrastive
learning and the downstream task is node classification. To-
wards an empirical verification of task consistency, Figure 1
clearly presents a positive correlation between the task con-
sistency and the performance improvement on downstream
tasks brought by pre-trained model (see experiment details
in Appendix A.2). The larger the task consistency of a down-
stream task, the more benefit the task can benefit from the
pre-trained model. It is also significant that those downstream
tasks with low task consistency suffer from negative transfer.
This provides us with the rationality to leverage task consis-
tency to determine the extent to which downstream tasks can
benefit from specific graph pre-trained models.

The following theorem builds a theoretical connection
between the proposed task consistency and the generalization
ability from a pre-training task to a downstream task. Its proof
is postponed to Appendix A.5.
Theorem 1 (Connection between generalization error and
task consistency). Let P and D be the pre-training task and
the downstream task, defined on a shared pair-wise label
space. Let CT (D,P) be the task consistency between P and
D, let S be an infinite hypothesis set, and let '(B) be the
generalization error of a hypothesis B 2 S on D. Then, for
any X > 0, the following inequality holds with probability at
least 1 � X:

'(B)
log(|S|/X)

<CT (D,P)
.

4 Bridge-Tune Enhances Downstream
The proposed task consistency measure reveals which down-
stream tasks can benefit from specific graph pre-trained
models. Building upon this finding, this section introduces
a novel fine-tuning strategy that aims at maximizing the uti-
lization of pre-trained models to enhance downstream task
performance. This is achieved by mitigating the impact of the
difference between pre-training and downstream tasks.

Towards this purpose, in §4.1, drawing inspiration from task
consistency, we introduce a measure called representation
consistency to monitor the impacts of model representations
on the downstream tasks during the fine-tuning process.
Subsequently, we unveil our novel wisdom of fine-tuning
strategy, termed Bridge-Tune.

4.1 Representation Consistency
To diminish the impact of task inconsistency during fine-
tuning, further improvement on the graph pre-trained model
should be made. However, the proposed task consistency is an
intrinsic property of the two tasks, so cannot help to further the
pre-trained model. In view of this, representation consistency
is proposed to guide the refinement of the pre-train model. It is
a soft version of the task consistency measure, and quantifies
the contribution of model representations to the downstream.
Definition 3 (Representation consistency). Given the output
representation space H of the graph pre-training model,

the downstream task D, and the pre-training task P, the
representation consistency is defined as
CR (H ,D,P) = En [dSim(⌘(n)) |H⇤

D
(n) = H⇤

P
(n)], (3)

where n is a random node pair from VD ⇥VD , d is a binary
indicator (with d = 1 if H⇤

P
(n) = H

⇤

D
(n) = 1 and �1 if

H
⇤

P
(n) = H⇤

D
(n) = 0), ⌘ : VD ⇥VD ! H ⇥H is a mapping

from node pair to representation pair, and Sim(·) is the cosine
similarity.

The introduction of Sim(⌘(n)) in (3) is inspired by the
observation that for a downstream graph, if nodes with similar
(dissimilar) representations also exhibit the same (different) la-
bels, fine-tuning is more likely to maximize the potential of the
pre-trained model. Moreover, the representation consistency
CR can be viewed as a soft version of the task consistency CT:
If H⇤

D
(n) = H

⇤

P
(n), then CR = E[dSim(⌘(n))] 1 = CT.

Further discussion on representation consistency, especially
its theoretical connection with some other existing measures
(e.g., inter-class distance), can be found in Appendix A.5.

4.2 Our Fine-Tuning Strategy
Motivated by the intuition that a larger representation con-
sistency is more desirable for the downstream, we present in
this section a novel fine-tuning strategy, Bridge-Tune, which
introduces an intermediate task between pre-training and
traditional fine-tuning and further improve downstream per-
formance.

Given a graph pre-trained model, Bridge-Tune consists of
two stages: (1) Pre-trained model refinement: We maximize
the empirically computed representation consistency. This
stage acts as an intermediate task between pre-training and tra-
ditional fine-tuning. (2) Downstream fine-tuning: We conduct
traditional fine-tuning, in which the graph model is initialized
with the learned parameters of the refined pre-trained model.

Two challenges exist during the refinement process. Com-
putation of the empirical representation consistency needs
node labels from the downstream task. However, in many
cases, part of the downstream labels are inaccessible, making
refinement loss computation difficult. Besides the lack of
downstream labels, computing refinement loss is expensive as
it involves all pairs of nodes. Thus, the computation efficiency
is another concern for our Bridge-Tune model. We tackle
these two problems below.
Better estimation of refinement loss. During fine-tuning,
only part of the label set is accessible (call it_L); the remaining
part _U is inaccessible and needs to be predicted. With only
the labeled part of the downstream data, the estimation of
representation consistency is far from accurate. We now
propose an improved approach for estimating refinement loss.
The key insight is that if an unlabeled node is predicted
by the downstream classifier with high confidence during
downstream fine-tuning, its prediction can serve as an addition
to enhancing the estimation of refinement loss during pre-
trained model refinement. In view of this, the two stages are
suggested to be performed in a progressive and iterative way
as below.

Step 1 (Pre-trained model refinement). The graph encoder
model is further trained to maximize the refinement loss on

the downstream graph. The update at C-th iteration is

\
(C)
refine = argmax

\
Lrefine

⇣
5\ ;_L [_ (C)

P

⌘
,

where Lrefine is the refinement loss (i.e., the computed rep-
resentation consistency), 5 is the graph encoder, _ (C)

% is the
predictions of unlabeled nodes given by the downstream
classifier, and we set _ (0)

% = ;. This optimization process is
initialized at \ = \ (C)down at each iteration (see step 2), and we
take \ (0)down = \pre-train.

Step 2 (Downstream fine-tuning). In this step, the graph
encoder 5 is initialized with \ (C)refine, and trained end-to-end
together with the downstream classifier 6 (parameterized by
q
(C)
down) on a downstream task:

(\
(C+1)
down , q

(C+1)
down) = argmin

\ ,q
Ldown

�
5\ , 6q;_L

�
,

_ (C+1)
P = 6

q (C)
down

� 5
\ (C)down

(⌧down),

where Ldown is the loss of the downstream task, and 6 � 5 =
6(5 (·)) denotes the composition, and Y% is the predictions
of unlabeled nodes. For efficiency concerns, the optimization
process in the first line is initialized at (\, q) = (\

(C)
refine, q

(C)
down).

Steps 1 and 2 are performed iteratively. By doing this,
pre-trained model refinement and downstream fine-tuning
mutually boost the capability of each other, ultimately boost-
ing the downstream performance.
Efficiency improvement. The computation of refinement
loss requires all node pairs, thus leading to a high compu-
tation cost. To improve efficiency, we propose to sample
two specific categories of critical node pairs. (1) The first
category involves node pairs in which either one or both
nodes possess labels or high-confidence predictions. They are
deemed reliable for learning and can accelerate the training
process. This set of node pairs forms %certain. (2) The second
category includes node pairs where one node is reliable (i.e.,
labeled or predicted with high confidence) and the other is
the downstream classifier uncertain with. In this way, the
information in the reliable nodes can diffuse to unlabeled
nodes with low prediction confidence. This set of node pairs
constitutes %uncertain.

Given the above two node pair sets, we argue that different
node pairs should be paid with different attention during
the fine-tuning phase proceeds. Initially, the predictions of
the downstream classifier may not be accurate enough, in
which case we focus on %certain. As the fine-tuning phase
proceeds, we can gradually trust the predictions provided
by the downstream classifier, and add %uncertain to estimate
refinement loss while paying less attention to labeled node
pairs.

In view of this, a time-varying strategy is developed to
assign weights to different node pairs. Specifically, the weight
of a node pair (E8 , E 9) at C-th iteration is 08 9 = cos(cC2))?8 ? 9 ,
if (E8 , E 9) 2 %certain and 08 9 = sin(cC2))?8 (1�? 9), if (E8 , E 9) 2
%uncertain, where ?8 and ? 9 are the probabilities of sampling
node E8 and E 9 respectively, and) is the total number of
iterations.

Finally, the refinement loss at C-th iteration is computed as

Lrefine =
Õ

(E8 ,E 9)2%certain[%uncertain

08 9 dSim(5 (E8), 5 (E 9))1(H⇤D(E8 , E 9)= H⇤P (E8 , E 9)).

Theoretical analysis. Finally, we theoretically demonstrate
that pre-trained model refinement can achieve a lower classifi-
cation loss on the downstream task than traditional fine-tuning.
Theorem 2 (informal). Under certain theoretical assump-
tions, the loss for the downstream task Ldown (\refine)

Ldown (\pre-train), where \refine is the model parameter after
pre-trained model refinement and \pre-train is the pre-trained
model parameter.

The formal statement of Theorem 2 as well as the proof
can be found in Appendix A.5.

5 Experiments
In the experiments, we evaluate the performance of Bridge-
Tune with different pre-trained models and on different down-
stream tasks. We present our setup in §5.1, and the comparison
results in terms of performance and runtime in §5.2. Addi-
tional experimental results are presented in Appendix A.4. Our
codes are available at https://github.com/zjunet/Bridge-Tune.

5.1 Experimental Setup
Datasets. We use a total of 12 downstream datasets for eval-
uation: US-Airport, Brazil-Airport, Europe-Airport, H-index,
Wisconsin, Texas, Cora, Cornell, DD242, DD68, DD687, and
the large-scale dataset Ogbarxiv. Since our focus is not on
the pre-training stage, in the experiments we directly use the
graph pre-trained models that have already been trained on
their corresponding datasets.
Baselines. A total number of 13 baselines are considered
in the experiments, and they can be roughly categorized
into three groups: naïve fine-tuning, advanced fine-tuning,
and prompt-tuning. For naïve fine-tuning, we compare with
(1) Fine-tune: graph encoder initialized with pre-trained
parameters is trained end-to-end with downstream classifier;
(2) Freeze: graph encoder’s parameters are frozen during fine-
tuning; and (3) Rand: graph encoder is learning from scratch.
For advanced fine-tuning, we compare with (1) L2_penalty,
L2_SP and L2_SP_Fisher (Xuhong, Grandvalet, and Davoine
2018): parameter regularization-based models; (2) DELTA,
Feature (DELTA w/o Att) (Li et al. 2019) and GTOT (Zhang
et al. 2022): representation regularization-based models; (3)
SupCon (Khosla et al. 2020): a supervised contrastive learning
method, which can also be adopted during fine-tuning; (4)
L2P (Lu et al. 2021): While not exactly a fine-tuning strategy
as it adjusts the pre-training stage to benefit downstream, we
include it for a comprehensive comparison; Note that except
for GTOT and L2P, the other baselines are originally designed
for convolutional neural networks, so we adapt them to our
settings by changing the backbone model to the GNN used
in our framework. For prompt-tuning, we compare with
GPPT (Sun et al. 2022a) and GraphPrompt (Liu et al. 2023b).
Settings. We fine-tune on a variety of graph pre-trained
models: GCC, GraphCL, EdgePred, and ContextPred. We set
the learning rate as 5, 0.1, 0.1, 0.1 when fine-tuning GCC (Qiu

Model Dataset US-Airport Brazil-Airport Europe-Airport H-index Wisconsin Texas DD242 DD68 DD687 Cornell Cora Ogbarxiv
Task consistency 0.249 0.245 0.248 0.501 0.321 0.370 0.075 0.081 0.067 0.370 0.179 0.077
Fine-tune 66.21(4.23) 73.24(11.60) 58.62(7.35) 81.90(1.59) 59.82(7.69) 63.95(8.67) 14.49(2.94) 12.39(3.74) 8.26(4.16) 48.04(5.94) 29.54(1.44) 18.62(1.92)
Freeze 63.78(5.11) 69.31(14.02) 53.43(7.57) 74.88(0.97) 53.39(8.47) 62.31(10.80) 14.79(3.17) 12.77(4.46) 11.31(2.74) 47.57(5.65) 29.98(1.82) 14.56(7.60)
Rand 63.44(3.22) 71.73(13.56) 57.35(4.72) 81.21(1.62) 56.89(8.11) 59.70(12.75) 12.31(2.17) 13.81(3.12) 11.18(3.25) 50.82(3.27) 29.80(1.74) 18.61(1.88)
L2_penalty 64.63(2.31) 67.60(11.93) 55.38(5.37) 79.88(0.75) 55.84(7.62) 56.33(3.46) 16.59(2.28) 12.26(2.80) 8.98(3.60) 42.54(10.81) 31.68(0.84) 19.27(0.21)
L2_SP 63.70(3.73) 67.02(8.42) 54.41(5.53) 78.56(1.97) 53.43(5.53) 56.95(8.59) 13.71(2.07) 9.16(2.19) 7.04(2.03) 36.49(8.95) 36.60(3.22) 19.28(0.17)
L2_SP_Fisher 64.71(3.94) 71.25(12.42) 57.14(4.81) 80.32(1.44) 57.71(6.52) 60.76(13.11) 19.32(3.83) 13.54(4.25) 8.97(2.09) 44.30(5.80) 43.28(2.21) /
DELTA 63.37(3.13) 62.56(11.56) 55.95(6.23) 75.42(1.02) 55.39(4.31) 56.36(9.82) 14.57(2.78) 11.62(2.77) 9.93(3.00) 45.35(5.95) 39.33(2.09) /
Feature (DELTA w/o Att) 62.70(1.84) 62.78(1.60) 53.18(7.08) 72.04(2.17) 55.36(5.94) 64.06(6.32) 14.72(1.73) 9.81(3.18) 7.86(3.85) 47.40(9.43) 37.26(1.48) 19.34(0.13)
GTOT 65.82(3.81) 74.60(14.10) 58.43(4.93) 81.00(1.36) 54.14(6.14) 62.95(7.99) 20.33(3.33) 14.45(2.26) 8.28(2.49) 45.91(8.82) 44.13(2.33) 19.32(0.16)
SupCon 66.56(4.18) 76.21(13.15) 59.88(6.67) 81.00(1.47) 60.60(8.20) 67.28(7.83) 14.88(1.77) 9.54(3.69) 7.17(1.71) 37.69(11.29) 35.42(3.13) 19.36(0.31)
L2P 55.90(3.80) 68.43(16.48) 57.51(4.20) 80.82(1.43) 59.37(9.04) 62.32(4.26) 9.15(2.68) 8.59(1.41) 7.26(2.67) 27.89(15.97) 28.97(3.55) 19.13(0.35)
GPPT 64.03(4.13) 65.66(13.82) 53.12(9.00) 74.66(1.90) 47.42(5.22) 57.90(7.46) 13.63(1.31) 10.83(2.98) 6.35(3.20) 43.60(11.57) 35.45(1.43) 19.85(0.19)
GraphPrompt 62.86(5.90) 60.99(16.06) 50.35(10.46) 73.40(1.85) 51.40(7.27) 59.06(7.59) 13.79(1.83) 11.75(3.00) 5.93(2.40) 39.83(8.19) 36.52(1.97) 19.78(0.25)
Bridge-Tune 68.99(4.96) 77.86(13.95) 61.88(5.22) 82.66(0.96) 62.23(8.44) 70.00(5.82) 22.97(2.64) 16.00(5.60) 12.82(4.14) 50.32(9.37) 44.17(3.37) 20.49(4.35)

Table 1: Micro F1 scores of different fine-tuning strategies on pre-trained GCC model under the downstream task of node classification. The
notation “/” means out of memory or no convergence for more than three days. The p-values comparing our model with competitive baseline
GTOT are much smaller than 0.05, which indicates our model significantly outperforms baselines.

et al. 2020), GraphCL (You et al. 2020), EdgePred (Hamilton,
Ying, and Leskovec 2017), and ContextPred (Hu et al. 2020b)
respectively. We utilize mini-batch training and the batch size
is 32. The total iterations of fine-tuning is 30, alternating
between one iteration of pre-trained model refinement and one
iteration of downstream fine-tuning. When defining %certain,
we regard nodes with prediction confidence higher than 0.5
as high-confidence nodes. The numbers reported in all the
experiments are the mean and standard deviation over 10
trials. More details can be found in Appendix A.4.

Node Classification Link Prediction

GCC

Task consistency 0.249 0.980
GTOT 65.82(3.81) 90.76(0.12)

Bridge-Tune 68.99(4.96) 94.97(0.35)
improvement 4.82% " 4.64% "

GraphCL

Task consistency 0.249 0.980
GTOT 59.58(3.13) 63.81(2.37)

Bridge-Tune 60.50(2.84) 65.71(1.80)
improvement 1.54% " 2.98% "

EdgePred

Task consistency 0.242 1.000
GTOT 61.09(6.63) 62.46(1.87)

Bridge-Tune 61.34(2.03) 63.15(1.20)
improvement 0.41% " 1.10% "

ContextPred

Task consistency 0.292 0.103
GTOT 60.72(2.58) 64.54(2.52)

Bridge-Tune 61.86(2.47) 65.29(0.98)
improvement 1.88% " 1.16% "

Table 2: Micro F1 on different downstream tasks (in columns), given
different pre-trained models (in rows) and on dataset US-Airport.

5.2 Experimental Results
Comparison: fine-tuning baselines. Table 1 presents the
node classification performance after fine-tuning on the graph
pre-trained model GCC. Our model beats the best baseline
by an average of +4.68%. In contrast, advanced fine-tuning
baselines often cannot help fine-tuning, and even perform
worse than directly fine-tuning the models (i.e., the naïve fine-
tuning strategies). One possible reason is that most baselines

simply focus on regularizing the parameters and represen-
tations, and thus cannot essentially diminish the impact of
task difference. The unsatisfactory results of SupCon suggest
that those methods tailored for supervised learning might
not be suitable in “pre-train and fine-tune” paradigm. Recent
prompt-tuning approaches also fall short, possibly because
they assume pre-training and fine-tuning are conducted on
the same dataset.
Comparison: different pre-trained models and down-
stream tasks. We also conduct experiments using different
pre-trained models and on various downstream tasks. Due
to space limitations, we only report the comparison between
our model and the best baseline GTOT. The results in Table 2
show that our model achieves a significant improvement under
various scenarios. More results and details can be found in
Appendix A.4.
Ablation study. To demonstrate the effectiveness of each
component in our model, we conduct ablation studies on
(1) Bridge-Tune-0, which removes the time-varying strategy;
(2) Bridge-Tune-P, which does not consider predictions of
unlabeled nodes when estimating refinement loss. The Micro
F1 score of node classification for Bridge-Tune, Bridge-Tune-
0, Bridge-Tune-P, fine-tuned on GCC on US-Airport dataset
is 68.99%, 67.25% and 68.32% respectively. The superiority
of Bridge-Tune compared with Bridge-Tune-0 and Bridge-
Tune-P highlights the importance of time-varying strategy
and our estimation of refinement loss.
Case study. To examine whether the proposed pre-trained
model refinement can help diminish the impact of the differ-
ence between pre-training and downstream tasks, we conduct
the following analysis. Figure 4 presents the distribution of
pre-trained representation similarity of two nodes in negative
pairs. We adopt the pre-trained model GCC on the node clas-
sification task on US-Airport. The red (or blue) distribution
records the similarity distribution of negative pairs whose two
nodes are (or are not) from the same class in downstream task.
We first observe a significant difference between pre-training
and downstream task: As shown in Figure 4(a), We observe
that the similarity distributions of negative pairs within the

same class (in red) and across different classes (in blue) in
the downstream task are indistinguishable. Then, we can see
that our pre-trained model refinement indeed helps diminish
the task difference: these two distributions are pulled apart in
Figure 4(c). We also note that traditional fine-tuning is less
distinctive than ours in diminishing the task difference (see
Figure 4(b)). Additional results can be found in Appendix A.4.

/
same / different label
(in downstream task)

mean difference: 0.1524

representation similarity (in pre-training task)

de
ns

ity

(a) After pre-train.

/
same / different label
(in downstream task)

mean difference: 0.2852

representation similarity (in pre-training task)

de
ns

ity

(b) After fine-tune.
representation similarity (in pre-training task)

same / different label
(in downstream task)

/

mean difference: 0.6558

de
ns

ity

(c) After refinement.
Figure 4: The distribution of representation similarity (cosine simi-
larity) of two nodes in negative pairs. The red (or blue) distribution
records the similarity distribution of negative pairs whose two nodes
are (or not) from the same class in downstream task. The means are
shown in dashed vertical lines.

Comparison: runtime. Table 3 presents the runtime for
Bridge-Tune and the best baselines in the three categories
(naïve fine-tuning, advanced fine-tuning, and prompt-tuning).
Bridge-Tune has the best downstream performance while
the runtime is comparable to naïve fine-tuning. In contrast,
GraphPrompt is the fastest due to fewer learnable parameters
but its performance is not satisfactory, GTOT stands as the
most competitive baseline but comes with a higher compu-
tation burden. A comprehensive time complexity analysis is
available in Appendices A.3 and A.4.

Fine-tune GraphPrompt GTOT Bridge-Tune
pre-trained model refinement - - - 28.65(1.45)
downstream fine-tuning 150.66(4.47) 45.41(3.89) 478.09(9.26) 144.86(8.65)
total 150.66(4.47) 45.41(3.89) 478.09(9.26) 173.51(8.85)

Table 3: Runtime (sec) comparison during the fine-tuning of GCC
for node classification on US-Airport. All models are trained till
convergence, where the convergence condition is defined as the point
where the increase in accuracy on the training set is less than 0.01.

6 Related Work
Graph fine-tuning strategy. Various fine-tuning strategies
have been proposed recently, and most research works con-
centrate on the image and text domains. These works can be
roughly categorized into parameter regularization (Xuhong,
Grandvalet, and Davoine 2018) and representation regulariza-
tion (Li et al. 2019; Chen et al. 2019; Kou et al. 2020; Flamary
et al. 2016; Xu et al. 2020). However, due to the special struc-
ture of graph data, these methods are not directly applicable
in the graph domain. Fine-tuning in the graph domain is a
promising, yet largely unexplored, research direction. Zhang
et al. (2022) adapts representation regularization to graph
domain, and the regularizer is inspired by some distances
in optimal transport. Though the performance is promising,
the use of optimal transport requires a high computational
cost, thus not applicable for large-scale models. As another
example, Xia et al. (2022) focuses on molecular graphs, and
proposes a new regularization tailored to pre-trained molecu-

lar model, but this approach can only be applied to molecular
graphs.

As a newly developed research direction, prompt-tuning
has attracted considerable attention recently. It designs and
refines prompts to guide the behavior of pre-trained models
towards specific downstream tasks (Liu et al. 2023a). Moti-
vated by this research trend, graph prompt-tuning has received
growing research attention. In the context of graph domain,
GPPT (Sun et al. 2022a) proposes task token and structure
token as prompt template for the node classification applica-
tions. GraphPrompt (Liu et al. 2023b) employs a learnable
prompt to actively guide downstream tasks using task-specific
aggregation. These methods focus on link prediction as the
pre-training task and node classification as the downstream
task. It is not straightforward to extend these techniques to
different tasks, which largely limits their application scope.
A very recent paper (Sun et al. 2023) introduces a prompt
approach to match various pre-training strategies, but it still
lacks explicit consideration of the difference between the
pre-training and downstream tasks.

Another line of research, though focusing on the pre-
training phase, also attempts to improve downstream per-
formance (Han et al. 2021; Lu et al. 2021). They propose
to incorporate auxiliary tasks during pre-training phase so
that the pre-trained model is more amenable when adopted
to downstream. However, the inclusion of auxiliary tasks
potentially compromises the pre-trained model’s capacity to
generalize across various downstream tasks.
Task similarity. Task similarity refers to the similarity
between two machine learning tasks. The research on task
similarity was initiated by scholars in the computer vision
field, and is used to further improve model performance.
Taskonomy (Zamir et al. 2018) delves into the relationship
between visual tasks by employing task affinity normalization.
Task2vec (Achille et al. 2019) introduces a method to generate
task representations. A few follow-up studies apply Task2vec
to the graph domain. One such work is GraphGym (You,
Ying, and Leskovec 2020), which calculates task similarity by
training a collection of anchor models. All the aforementioned
works, however, work on supervised tasks, and thus are not
applicable to graph pre-training with unlabeled data.

7 Conclusion
We introduce the task consistency measure to quantify the sim-
ilarity between the graph pre-training and downstream tasks.
Such a measure indicates the extent to which a downstream
task can benefit from a given pre-training task. Moreover,
to diminish the potential impact of task inconsistency, a
novel fine-tuning strategy, Bridge-Tune, is proposed, in which
the key step aims to mitigate the distinction between the
pre-training and downstream tasks. The proposed concepts
are theoretically justified, and extensive experiments suggest
the superiority of Bridge-Tune on various pre-trained GNN
models and downstream tasks.

Acknowledgements
This work is supported by NSFC (No. 62206056, No.
62176233) and the Fundamental Research Funds for the
Central Universities.

References
Achille, A.; Lam, M.; Tewari, R.; Ravichandran, A.; Maji, S.;
Fowlkes, C. C.; Soatto, S.; and Perona, P. 2019. Task2vec:
Task embedding for meta-learning. In ICCV, 6430–6439.
Chen, S.; Wang, J.; Chen, Y.; Shi, Z.; Geng, X.; and Rui, Y.
2020. Label distribution learning on auxiliary label space
graphs for facial expression recognition. In CVPR, 13984–
13993.
Chen, X.; Wang, S.; Fu, B.; Long, M.; and Wang, J. 2019.
Catastrophic forgetting meets negative transfer: Batch spectral
shrinkage for safe transfer learning. In NeurIPS.
Flamary, R.; Courty, N.; Tuia, D.; and Rakotomamonjy, A.
2016. Optimal transport for domain adaptation. IEEE Trans.
Pattern Anal. Mach. Intell, 1: 1853–1865.
Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle,
H.; Laviolette, F.; Marchand, M.; and Lempitsky, V. 2016.
Domain-adversarial training of neural networks. JMLR, 17(1):
2096–2030.
Geng, X. 2016. Label distribution learning. TKDE, 28(7):
1734–1748.
Gu, Q.; Li, Z.; and Han, J. 2012. Generalized fisher score for
feature selection. arXiv preprint arXiv:1202.3725.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In NeurIPS.
Han, X.; Huang, Z.; An, B.; and Bai, J. 2021. Adaptive
transfer learning on graph neural networks. In SIGKDD,
565–574.
Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.;
Catasta, M.; and Leskovec, J. 2020a. Open graph benchmark:
Datasets for machine learning on graphs. In NeurIPS, 22118–
22133.
Hu, W.; Liu, B.; Gomes, J.; Zitnik, M.; Liang, P.; Pande, V. S.;
and Leskovec, J. 2020b. Strategies for Pre-training Graph
Neural Networks. In ICLR.
Huang, X.; Yang, Y.; Wang, Y.; Wang, C.; Zhang, Z.; Xu, J.;
Chen, L.; and Vazirgiannis, M. 2022. Dgraph: A large-scale
financial dataset for graph anomaly detection. In NeurIPS,
22765–22777.
Ju, M.; Zhao, T.; Wen, Q.; Yu, W.; Shah, N.; Ye, Y.; and
Zhang, C. 2023. Multi-task self-supervised graph neural
networks enable stronger task generalization. In ICLR.
Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola,
P.; Maschinot, A.; Liu, C.; and Krishnan, D. 2020. Supervised
contrastive learning. In NeurIPS, 18661–18673.
Kornblith, S.; Norouzi, M.; Lee, H.; and Hinton, G. 2019.
Similarity of neural network representations revisited. In
ICML, 3519–3529.
Kou, Z.; You, K.; Long, M.; and Wang, J. 2020. Stochastic
normalization. In NeurIPS, 16304–16314.
Li, X.; Xiong, H.; Wang, H.; Rao, Y.; Liu, L.; and Huan, J.
2019. Delta: Deep Learning Transfer using Feature Map with
Attention for Convolutional Networks. In ICLR.
Liu, P.; Yuan, W.; Fu, J.; Jiang, Z.; Hayashi, H.; and Neubig,
G. 2023a. Pre-train, prompt, and predict: A systematic survey
of prompting methods in natural language processing. In

ACM Computing Surveys, volume 55, 1–35. ACM New York,
NY.
Liu, S.; Wang, H.; Liu, W.; Lasenby, J.; Guo, H.; and Tang, J.
2022. Pre-training Molecular Graph Representation with 3D
Geometry. In ICLR.
Liu, Z.; Yu, X.; Fang, Y.; and Zhang, X. 2023b. GraphPrompt:
Unifying Pre-Training and Downstream Tasks for Graph
Neural Networks. In WWW, 417–428.
Lu, Y.; Jiang, X.; Fang, Y.; and Shi, C. 2021. Learning to
pre-train graph neural networks. In AAAI, 4276–4284.
Ma, R.; Xu, J.; Zhang, X.; Zhang, H.; Zhao, Z.; Zhang, Q.;
Huang, X.-J.; and Wei, Z. 2023. One-Model-Connects-All:
A Unified Graph Pre-Training Model for Online Community
Modeling. In EMNLP, 15034–15045.
McCallum, A. K.; Nigam, K.; Rennie, J.; and Seymore, K.
2000. Automating the Construction of Internet Portals with
Machine Learning. Information Retrieval, 2(3): 127–163.
Oord, A. v. d.; Li, Y.; and Vinyals, O. 2018. Representation
learning with contrastive predictive coding. arXiv preprint
arXiv:1807.03748.
Pei, H.; Wei, B.; Chang, K. C.-C.; Lei, Y.; and Yang, B. 2020.
Geom-gcn: Geometric graph convolutional networks. arXiv
preprint arXiv:2002.05287.
Qiu, J.; Chen, Q.; Dong, Y.; Zhang, J.; Yang, H.; Ding,
M.; Wang, K.; and Tang, J. 2020. Gcc: Graph contrastive
coding for graph neural network pre-training. In SIGKDD,
1150–1160.
Ribeiro, L. F.; Saverese, P. H.; and Figueiredo, D. R. 2017.
struc2vec: Learning node representations from structural
identity. In SIGKDD, 385–394.
Rong, Y.; Bian, Y.; Xu, T.; Xie, W.; Wei, Y.; Huang, W.;
and Huang, J. 2020. Self-supervised graph transformer on
large-scale molecular data. In NeurIPS, 12559–12571.
Rossi, R. A.; and Ahmed, N. K. 2015. The Network Data
Repository with Interactive Graph Analytics and Visualiza-
tion. In AAAI, 4292–4293.
Sun, M.; Zhou, K.; He, X.; Wang, Y.; and Wang, X. 2022a.
Gppt: Graph pre-training and prompt tuning to generalize
graph neural networks. In SIGKDD, 1717–1727.
Sun, X.; Cheng, H.; Li, J.; Liu, B.; and Guan, J. 2023. All in
One: Multi-Task Prompting for Graph Neural Networks. In
SIGKDD.
Sun, Y.; Deng, H.; Yang, Y.; Wang, C.; Xu, J.; Huang, R.;
Cao, L.; Wang, Y.; and Chen, L. 2022b. Beyond homophily:
structure-aware path aggregation graph neural network. In
ĲCAI, 2233–2240.
Sun, Y.; Wang, X.; Liu, Z.; Miller, J.; Efros, A. A.; and
Hardt, M. 2019. Test-time training for out-of-distribution
generalization. In ICLR.
Wang, B.; Guo, J.; Li, A.; Chen, Y.; and Li, H. 2021. Privacy-
preserving representation learning on graphs: A mutual infor-
mation perspective. In SIGKDD, 1667–1676.
Wu, Z.; Xiong, Y.; Yu, S. X.; and Lin, D. 2018. Unsupervised
feature learning via non-parametric instance discrimination.
In CVPR, 3733–3742.

Xia, J.; Zheng, J.; Tan, C.; Wang, G.; and Li, S. Z. 2022.
Towards effective and generalizable fine-tuning for pre-trained
molecular graph models. bioRxiv.
Xu, J.; Huang, R.; Jiang, X.; Cao, Y.; Yang, C.; Wang, C.; and
Yang, Y. 2023. Better with Less: A Data-Centric Prespective
on Pre-Training Graph Neural Networks. In NeurIPS.
Xu, J.; Yang, Y.; Chen, J.; Jiang, X.; Wang, C.; Lu, J.; and Sun,
Y. 2022. Unsupervised adversarially robust representation
learning on graphs. In AAAI, 4290–4298.
Xu, R.; Liu, P.; Wang, L.; Chen, C.; and Wang, J. 2020.
Reliable weighted optimal transport for unsupervised domain
adaptation. In CVPR, 4394–4403.
Xuhong, L.; Grandvalet, Y.; and Davoine, F. 2018. Explicit in-
ductive bias for transfer learning with convolutional networks.
In ICML, 2825–2834.
You, J.; Ying, Z.; and Leskovec, J. 2020. Design space for
graph neural networks. In NeurIPS, 17009–17021.
You, Y.; Chen, T.; Sui, Y.; Chen, T.; Wang, Z.; and Shen, Y.
2020. Graph contrastive learning with augmentations. In
NeurIPS, 5812–5823.
Zamir, A. R.; Sax, A.; ; Shen, W. B.; Guibas, L.; Malik, J.; and
Savarese, S. 2018. Taskonomy: Disentangling Task Transfer
Learning. In CVPR. IEEE.
Zhang, J.; Xiao, X.; Huang, L.-K.; Rong, Y.; and Bian, Y.
2022. Fine-tuning graph neural networks via graph topology
induced optimal transport. arXiv preprint arXiv:2203.10453.
Zheng, Y.; Pan, S.; Lee, V.; Zheng, Y.; and Yu, P. S. 2022.
Rethinking and scaling up graph contrastive learning: An
extremely efficient approach with group discrimination. In
NeurIPS, 10809–10820.

