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Abstract

Anti-money laundering (AML) systems play a critical role in
safeguarding global economy. As money laundering is con-
sidered as one of the top group crimes, there is a crucial need
to discover money laundering sub-network behind a particu-
lar money laundering transaction for a robust AML system.
However, existing rule-based methods for money laundering
sub-network discovery is heavily based on domain knowl-
edge and may lag behind the modus operandi of launderers.
Therefore, in this work, we first address the money launder-
ing sub-network discovery problem with a neural network
based approach, and propose an AML framework AMAP
equipped with an adaptive sub-network proposer. In partic-
ular, we design an adaptive sub-network proposer guided by
a supervised contrastive loss to discriminate money launder-
ing transactions from massive benign transactions. We con-
duct extensive experiments on real-word datasets in AliPay
of Ant Group. The result demonstrates the effectiveness of
our AMAP in both money laundering transaction detection
and money laundering sub-network discovering. The learned
framework which yields money laundering sub-network from
massive transaction network leads to a more comprehensive
risk coverage and a deeper insight to money laundering strate-
gies.

1 Introduction
Money laundering (ML), aiming at giving illegally-gained
proceeds (i.e.“dirty money”) a legitimate appearance (i.e.
“clean”), has been one of the major threat for economy and
society for decades . It’s estimated that the amount of money
laundered globally every year accounts for 2-5% of global
GDP and is expected to continue to grow (Kute et al. 2021).
Typically, the illegitimate funds to be laundered are trans-
ferred around, sometimes through numerous complex finan-
cial transactions, until the illegal source of the funds is dis-
guised (Force 1999). Figure 1 shows a typical case of money
laundering transaction sub-network (ML sub-network) ob-
served in a real-world online payment system of AliPay1.
Money laundering transaction chains may often be hidden
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1One of the biggest online payment system in the world that
belongs to Ant Group
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Figure 1: An illustration of real-world transaction network
in Alipay. A robust AML system is expected to discover ML
sub-network of a suspicious ML transaction for comprehen-
sive risk coverage.

among benign transactions and difficult to be uncovered. Ac-
cording to financial institutes rules, the flow of money must
be fully tracked. As a consequence, for a comprehensive risk
coverage, a robust anti-money laundering (AML) system is
expected not only to identify and block a certain suspicious
ML transaction (ML transaction detection), but also to un-
veil the suspicious ML sub-network from massive transac-
tion networks (ML sub-network discovery).

Many existing methods aiming to build AML systems
have been extensively studied. They are mainly divided
into two categories: 1). Rule-based methods have been very
popular among the commercial institutions in the past few
decades (Chen et al. 2018). The rule-based AML system is
based on embedded rules which were developed by con-
sultants and domain experts. The key issue of rule-based
systems is that keeping the rules up-to-date all the time is
extremely hard. 2). Machine/Deep learning-based methods
learn models by exploring massive amounts of historical
transaction data. For example, Kingdon (2004) proposes an
extension of support vector machine (SVM) to detect un-
usual customer behaviour. Deng et al. (2009) propose an ac-
tive learning procedure through a sequential design method.
As graph neural networks (GNNs) have become the de facto
tool for performing machine learning tasks on graphs in re-
cent years, Weber et al. (2019) use a GNN for detecting ML
transactions.
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Figure 2: Observations in real-world transaction network of
AliPay. (a) illustrates the radius of the ML sub-network of
transaction v. The radius (R) denotes the maximum dis-
tance between v to all other transactions involved in the ML
sub-network. (b) shows the radius distribution of ML sub-
networks in transaction network. (c) shows that for an ML
sub-network of radius R, how the ratio of the amount of be-
nign transaction ( ) to the amount of ML transactions ( )
in the R-hop subgraph distributes.

However, aforementioned methods are specific to AML
systems operating on the ML transaction detection task,
which identify specific suspicious transactions. To discover
ML sub-networks, it still heavily depends on methods em-
bedded with pre-defined rules designed from domain knowl-
edge (Dreżewski, Sepielak, and Filipkowski 2015; Li et al.
2017), which is costly on large-scale transaction network
and may lag behind the modus operandi of launderers.

To bridge the gap between existing AML systems and
industrial risk coverage requirements, it’s essential to de-
sign a well-behaved AML system that can further discover
potential ML sub-network when identifying suspicious ML
transactions. It requires the AML system to capture the un-
derlying pattern of ML sub-network involved in a money
laundering case. From a real-world online payment network
in AliPay, we summarize the following two major chal-
lenges: 1). Multi-hop money laundering chain. Illegitimate
funds laundered may often transfer through multiple trans-
actions to form a complex multi-hop ML sub-network. As
Figure. 2(b) illustrates, more than 40% ML sub-networks
have a radius larger than 1 (See the definition of radius in
Figure. 2(a)). Therefore, to fully track the ML sub-network,
we may often need to capture multi-hop underlying pat-
terns and explore exponentially-increased transactions; 2).
Camouflaged Launderers. Launderers may conduct numer-
ous benign transactions simultaneously to hide themselves.
Thus an ML transaction is often connected with a large num-
ber of benign transactions in the transaction network. For an
ML transaction v involved in an ML sub-network of radius
R, we need to explore v’s R-hop ego-subgraph GR

v to un-
cover the ML sub-network. And we find that the majority of
transactions in GR

v is benign (Figure. 2(c)). The camouflage
strategy brings additional challenges to discriminating ML
transactions from massive benign transactions.

Therefore, in this paper, we present the AMAP, a novel
neural network based framework for Anti-Money launder-
ing, equipped with an Adaptive sub-network Proposer. Our
framework aims at simultaneously addressing the two objec-
tives, ML transaction detection and ML sub-network discov-
ery. Our designed adaptive sub-network proposer is guided

by a supervised contrastive loss considering the “camou-
flaged launderers”, which empowers the model to discrim-
inate ML transactions from benign ones. The adaptive sub-
network proposer starts from a node and expands the sub-
network iteratively to explore underlying patterns of multi-
hop money laundering chains. Our framework then utilizes
a dual-view fusion classifier, leveraging the potential ML
sub-networks yielded by the adaptive sub-network proposer,
to identify ML transactions. Compared to AML methods in
the literature, AMAP not only predicts ML transactions, but
also yields the ML sub-network of a suspicious ML transac-
tion, which leads to a more comprehensive risk control and
a deeper understanding of ML strategies.

To summarize, Our main contributions are as follows:
• To our best knowledge, we are the first to address the

money laundering sub-network discovering problem by a
deep neural network based approach, which is hard to re-
solve for existing rule-based methods.

• We propose an AML framework AMAP equipped with a
novel adaptive sub-network proposer. With designed su-
pervised contrastive loss and iterative generation mecha-
nism, our proposer is endowed with the ability in discrim-
inating ML transactions from massive benign transactions
and capturing multi-hop underlying patterns.

• Our AML framework is extensively evaluated in a real-
world online payment system. The experimental results
show the superiority of our proposed framework on both
ML transaction detection and ML sub-network discovery.

2 Preliminaries
2.1 Problem Definition
Transaction Network is a attributed network G =
{V,X,Y , E = {E+, E−}}, where each node v ∈ V denotes
a transaction with a corresponding feature vector xv ∈ Rd.
X ∈ R|V|×d denotes the feature matrix. Y ∈ R|V| is an
indicator vector representing whether node v is a ML trans-
action or not. An edge euv ∈ E between two transactions
u and v indicates the two transactions are related. E+ de-
notes the set of edges between money-laundering transac-
tions, E− = E \ E+ and E+ ∩ E− = ∅.

Money Laundering Sub-network Given G+ ={
V+,X+, E+

}
be the edge-induced subgraph of G

induced by edge set E+, we define G+v = {V+
v , E+v } as

the money laundering sub-network of a ML transaction v,
where ∀u ∈ V+

v , |d (u, v)| ≤ k, where d (u, v) is the graph
distance on G+v between u and v.

Objectives of Anti-money Laundering Given the ob-
served Gt =

{
Vt,Xt,Y t, Et

}
as the training set, our objec-

tives are to learn an AML model for 1). predicting whether
a given transaction v is an ML transaction or not, and 2).
yielding the money laundering sub-network G+v if v is iden-
tified as an ML transaction. We denote the sub-objectives
1) and 2) as ML transaction detection and ML sub-network
discovery, respectively. We follow the inductive setup where
v belongs to a new-observed G = {V,X, E}, and Gt and G
have no overlap, which conforms with the settings of real-
world AML systems.
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Figure 3: Illustration of AMAP. For convenience, we illustrate both training and inference process on transaction v. In practice,
the framework could be trained batch-wise and infer inductively. The adaptive sub-network proposer starts from the initial node,
and expands the sub-network iteratively. The process of expansion is guided by a supervised contrastive loss. After training the
adaptive sub-network proposer, the module is used to propose a potential ML sub-network G+v for inferred transaction v. Then
a dual-view fusion classifier leverages both the potential ML sub-network and original ego-network to identifying transaction
v. G+v is outputted as the ML sub-network of v when v is identified as an ML transaction.

3 The Proposed Approaches
3.1 Overview
The overall framework of AMAP is shown in Figure 3.
Given the transaction network as input, we train the adap-
tive sub-network proposer to generate the potential ML sub-
network of a transaction from the massive transaction net-
work. Then for a transaction to be identified, we apply the
adaptive sub-network proposer to obtain a potential ML sub-
network, which is fed into the dual-view fusion classifier
to boost classification performance. The potential ML sub-
network will also be the output of AMAP, if AMAP identi-
fies an ML transaction.

3.2 Adaptive Sub-network Proposer
Our designed sub-network proposer module aims to gener-
ate a potential critical sub-network (i.e. ML sub-network) of
a transaction from massive transaction network. The mod-
ule works in an iterative way. Given the already-generated
subgraph in the previous iteration, the module explores the
candidate set of nodes connected to the sub-network and ex-
pands the suspicious transaction nodes. To distinguish be-
tween ML transactions and benign transactions involved in
the candidate set, we adopt a loss function in the form of
supervised contrastive learning, which pulls together the
already-generated subgraph and ML transaction nodes in
the embedding space, while simultaneously pushes apart the
sub-network from benign nodes. Formally, we can define the
module by examining the k-th iteration (k = 1, · · · ,K) as
follows:
Sub-network Encoding. Here we focus on node v. Given
the already-generated sub-network Gk−1

v at the last (k − 1)-
th iteration, we use a GNN on the graph Gk−1

v to get node
representations (G0

v contains v only). More concretely, the

propagation process of the m-th GNN layer is implemented
with the following operations:

h(m)
u = UPDATE

(
h(m−1)
u , AGG

({
h(m−1)
n : n ∈ N (u)

}))
hu = h(M)

u
(1)

where M is the number of stacked GNN layers and N is
neighboring function. We use the output of the final layer hu

as node u’s representation. And the representation of sub-
network Gk−1

v is obtained by aggregating node representa-
tions by a READOUT function:

hGk−1
v

= READOUT
({

hu | u ∈ Gk−1
v

})
(2)

Denoting the nodes expanded into the sub-network in the
(k− 1)-th step as Ok−1

v (O0
v contains v only), the candidate

node set for the k-th expanding is the neighbors of nodes in
Ok−1

v :
Ck ≜ ∪

{
N (u) | u ∈ Ok−1

v

}
(3)

Our goal is to learn to distinguish between ML and benign
transactions in Ck, given the already-generated sub-network.
For each node u in Ok−1

v , the final representation ĥu is de-
fined as the combination of hGk−1

v
and hu to capture both

global and local information:

ĥu =
(
hu ⊕ hGk−1

u

)
Ws (4)

where ⊕ denotes concatenating operation and Ws ∈
R2d′×d′

denotes the projection matrix.
Supervised Contrastive Learning. Now for node u in
Ok−1

v , we have its neighbors to be added into the sub-
network in k-th step, where we aim to include ML trans-
action nodes but exclude benign nodes. To achieve this goal,



a supervised contrastive loss (Khosla et al. 2020) is adopted
and the loss in k-th step reads

Lk(u) = En+∼N+(u) log σ
(
S(n+, u)

)
+

En−∼N−(u) log σ
(
−S(n−, u)

) (5)

where N+ (v) are node u’s neighbors which are ML
transactions and N− (v) are node v’s neighbors which are
benign. In the case thatN+ (v) orN− (v) is empty, the cor-
responding item in Eq. (5) will not be calculated. S(n, u) is
a similarity function which measure the similarity between
node u and its neighbor n. Formally, we implement S(n, u)
in the latent representation space as follows:

S(n, u) = Φθ (xn) · ĥu

∥Φθ (xn)∥2
∥∥∥ĥu

∥∥∥
2

(6)

where Φθ is a multilayer perceptron (MLP) that trans-
forms node n’s feature xn ∈ Rd into the latent space Rd′

,
.
Adaptive Thresholding with Virtual Node. At infer-
ence time, after calculating the similarity scores through
Eq. (6), the module use the scores to select suspicious neigh-
bors (i.e., ML transactions) and expand them into the sub-
network. Previous approaches set a global threshold to filter
the neighbors as a hyper-parameter (Liu et al. 2021a; Dou
et al. 2020). These methods apply global thresholds to all the
nodes. However, the optimal threshold for each node could
be node-dependent, i.e. an over-sampling threshold for one
node could be under-sampling for another node.

To alleviate the problem, we introduce a virtual threshold
node (VTN) to serve as an adaptive threshold, which sep-
arates the nodes of ML transactions from the benign ones.
Formally, the virtual threshold node is implemented as a
learnable parameter hVTN ∈ Rd′

. Thus the supervised con-
trastive loss in Eq. 5 can be revised in the following form:

L1
k(u) = En+∼N+(u) log σ

(
S(n+, u)− S(nVTN, u)

)
L2
k(u) = En−∼N−(u) log σ

(
S(nVTN, u)− S(n−, u)

)
Lk(u) = L1

k(u) + L2
k(u)

(7)

where nVTN denotes the virtual threshold node and
S(nVTN, u) is the similarity function and implemented as the
cosine similarity of hVTN and ĥu. L1(u) encourages the ML
transaction neighbors to have higher similarity score than the
virtual node, whileL2(u) pulls the similarity score of benign
neighbors to be lower than the virtual node. L1(u)/L2(u)
will not be used if node u has no ML/benign neighbors. Fig-
ure 4 illustrates how the virtual threshold node serves as an
adaptive threshold by separating ML transaction nodes and
benign nodes. The introduction of the VTN empowers the
model to learn a personalized threshold for each node u.
One can also use an independent VTN at each iteration to
improve the model capacity.
Training. The overall loss function of the adaptive sub-
network proposer is the summation of the K iteration:

Figure 4: An artificial illustration of our proposed loss for
adaptive thresholding. A virtual threshold node ( ) is in-
troduced to separate ML transaction nodes ( ) and benign
nodes ( ) in the neighbors of node u.

LSP =
∑
v∈Vt

K∑
k=1

γk−1
∑

u∈Ok−1
v

Lk(u) (8)

where γ is the balance parameter for each iteration and Vt
is the training node set.

The training/inference process of the adaptive sub-
network proposer is summarized in Algorithm 1. In training
phase, the ground truth is used to build already-generated
sub-network for each iteration (Line 9). The iterations on
node v will terminate if no nodes are expanded into the sub-
network of node v. It is worth noting that to reduce the influ-
ence of sample imbalance (the majority of nodes is benign
and has no ML transaction neighbors, where the training is
performed only for the first iteration), we employ under-
sampling technique to train our adaptive sub-network pro-
poser. specifically, we randomly sample the same number of
benign nodes as the ML transaction nodes to build the train-
ing set Vt.

3.3 Dual-view Fusion Classifier
After training the the proposer, we can use it to generate
a potential ML sub-network for a node in the transaction
network. Ideally, the proposer could extend a ML transaction
node into its ML sub-network, and extend none for a benign
node, of which the output could be used for classifying ML
transactions. However, in practice, the output of the adaptive
sub-network proposer could be noisy due to factors such as
miss-labeling data, etc. Therefore, to achieve a more robust
result, we employ an additional classifier, which fuses the
information from the potential ML sub-network and original
network, to recognize ML transactions.

More concretely, we focus on node v here. With the adap-
tive sub-network proposer, we get v’s potential ML sub-
network G+v . We use a GNN to get v’s representation hp

v
on G+v by the means described in Eq. 1. For getting more
comprehensive information, we also employ another GNN
to encode v’ as ho

v in the original graph G. We use the at-
tention mechanism att(hp

v,h
o
v) to learn their corresponding

importance (αp
v, α

o
v) as follow:

(αp
v, α

o
v) = att(hp

v,h
o
v) (9)

where αp
v and αo

v indicates the attention values of node v
with representations hp

v ∈ Rh and ho
v ∈ Rh from different

graph views G+v and G, respectively.



Algorithm 1: Adaptive Sub-network Proposer
Input: Transaction Network: G = {V,X , Y, E};

Training Node Set: Vt; Training Epochs:
Nepoch; Iteration Number: K; Test Node: v;

Output: Proposed Sub-network G+v for test node v
1 ▷ Training phase:
2 for e = 1, · · · , Nepoch do
3 for u ∈ Vt do
4 G0u ← {u} ,O0

u ← {u}
5 for k = 1, · · · ,K do
6 for o ∈ Ok−1

u do
7 ĥo ← Eq. 4
8 Lk(o)← Eq. 7
9 Ok

u ← N+(o) ∪ Ok
u

10 end
11 Gku ← Gk−1

u ∪ Ok
u

12 end
13 end
14 LSP ← Eq. 8;
15 Back-propagation to update parameters;
16 end
17 ▷ Inference phase: Initialization G0v ← {v}
18 O0

v ← {v}
19 for k = 1, · · · ,K do
20 for o ∈ Ok−1

v do
21 ĥo ← Eq. 4;
22 for u ∈ N (o) do
23 S(o, uk

VTN),S(o, u)← Eq. 6
24 if S(o, u) > S(o, uk

VTN) then
25 Ok

v ← {u} ∪ Ok
v

26 end
27 end
28 end
29 Gkv ← Gk−1

v ∪ Ok
v

30 end
31 G+v ← GKv
32 Return: G+v .

The attention mechanism is instantiated as follow. Firstly,
we transform the representation through a nonlinear trans-
formation, and then use one shared attention vector q ∈
Rh′×1 to get the attention weight ωi

v:

ωi
v = qT · tanh

(
Wahi

v

T
+ b

)
for i ∈ {p, o} (10)

where Wa ∈ Rh′×h is the weight matrix and b ∈ Rh′×1

is the bias vector.
We then normalize the attention weights with softmax

function to get the final attention values:

αi
v =

exp
(
ωi
v

)∑
i∈{p,o} exp (ω

i
v)

for i ∈ {p, o} (11)

Then we combine the two embeddings to obtain the fused
embedding z

zv =
∑

i∈{p,o}

αi
vh

i
v (12)

We use the output embedding zv in Eq. 12 as the final em-
bedding of node v. Based on this, we regard the ML transac-
tion detection problem as a node classification problem, and
use cross entropy to model it.

Lcls = −
∑
v∈V

[yv log pv + (1− yv) log (1− pv)]

pv = softmax (MLP (zv))

(13)

where MLP transforms the node embedding into predic-
tion scores and pv is the probability of node v belonging to
ML transactions.

4 Experiments
In this section, we perform evaluations on the effectiveness
of our proposed framework AMAP. Note that AMAP si-
multaneously addresses two subtasks, namely ML transac-
tion detection and ML sub-network discovery. Therefore, we
evaluate AMAP on the two subtasks in separate in this sec-
tion. More specifically, we aim to answer the following re-
search questions:

• Q1: How does our overall framework perform against
state-of-the-art baselines on real-world ML transaction de-
tection task?

• Q2: Can our designed sub-network proposer effectively
ML sub-network discovery of ML transactions? How does
it compete against alternative methods like GNN explana-
tion methods.

• Q3: Does the designed mechanism of the AMAP work
effectively and as expected?

4.1 Experimental Setup
Datasets We use the real-world datasets in Alipay, an on-
line payment service provided by Ant Group, which serves
more than 1 billions of users. We extract two sub-datasets,
named M6 (sampled from transactions occurring between
02/22/22 and 02/28/22) and M12 (sampled from transactions
occurring between 02/16/22 and 02/28/22). We extract 400
attributes for each transaction, including profiles of trans-
action sender/receiver, transaction amount and so on. The
dataset is desensitized and encrypted and does not contain
any Personal Identifiable Information (PII). The dataset is
only used for academic research, it does not represent any
real business situation. During the experiment, adequate data
protection was carried out to prevent the risk of data copy
leakage, and the dataset was destroyed after the experiment.
For both datasets, we test the model performance on trans-
actions occurring between 03/02/22 and 03/05/22.

4.2 Evaluation on ML Transaction Detection (Q1)
ML Transaction Detection Baselines We compare
AMAP with three categories of baseline: 1) Feature-
based methods, including SVM (Chang and Lin 2011) and



Table 1: Experimental results (Mean ± Std.) of compared methods on the M6 and M12 datasets

METHODS
DATASET M6 M12

METRIC ROC AUC-PR GMEANS ROC AUC-PR GMEANS

FEATURE-BASED
SVM 0.8803±0.0186 0.6335±0.0711 0.7561±0.0230 0.8774±0.0162 0.6500±0.0511 0.7791±0.0294

GBDT 0.8869±0.0377 0.6252±0.0443 0.7611±0.0217 0.8901±0.0306 0.6333±0.0061 0.7812±0.0114

GNN

GCN 0.8791±0.0066 0.6275±0.0145 0.7508±0.0190 0.8832±0.0034 0.6459±0.0077 0.7635±0.0343

GAT 0.8682±0.0312 0.6102±0.0139 0.7464±0.0063 0.8572±0.0247 0.6160±0.0126 0.7289±0.0053

GRAPHSAGE 0.9082±0.0221 0.7026±0.0196 0.8239±0.0241 0.8937±0.0385 0.6685±0.0294 0.7746±0.0274

GIN 0.9040±0.0115 0.6868±0.0137 0.8097±0.0106 0.8860±0.0412 0.6562±0.0328 0.7621±0.0299

GENIEPATH 0.9002±0.0024 0.6892±0.0092 0.8098±0.0023 0.8970±0.0125 0.6797±0.0335 0.8002±0.0176

FAGCN 0.9116±0.0563 0.7003±0.0984 0.8273±0.0897 0.9080±0.0176 0.6915±0.0322 0.8026±0.0047

GAD
GRAPHCONSIS 0.9003±0.0227 0.6961±0.0413 0.8139±0.0302 0.8856±0.0314 0.6445±0.0532 0.7956±0.0320

CARE-GNN 0.9267±0.0193 0.7443±0.0392 0.8167±0.0229 0.9231±0.0186 0.7043±0.0359 0.8306±0.0379

H2-FDETECTOR 0.9217±0.0041 0.7520±0.0292 0.8364±0.0098 0.9347±0.0078 0.7454±0.0262 0.8426±0.0106

PC-GNN 0.9151±0.0241 0.7465±0.0094 0.8291±0.0014 0.9355±0.0392 0.7373±0.0593 0.8561±0.0401

OURS AMAP 0.9513±0.0040 0.7724±0.0175 0.8795±0.0078 0.9678±0.0033 0.7810±0.0336 0.9016±0.0108

GBDT (Friedman 2001); 2) GNN-based models, includ-
ing GCN (Kipf and Welling 2017), GraphSAGE (Hamil-
ton, Ying, and Leskovec 2017), GAT (Veličković et al.
2018) GIN (Xu et al. 2018) GeniePath (Liu et al. 2019)
and FAGCN (Bo et al. 2021); 3) Graph anomaly detec-
tion (GAD) model, including GraphConsis (Liu et al. 2020),
CARE-GNN (Dou et al. 2020), PC-GNN (Liu et al. 2021b)
and H2-FDetector (Shi et al. 2022).

ML Sub-network Discovery Baselines Existing rule-
based methods focusing on ML sub-network discovery are
built on pre-defined rules derived from domain knowl-
edge (Dreżewski, Sepielak, and Filipkowski 2015), which
is heavily dataset-specific and could not serve as a general
comparison method. However, there are two categories of
methods that could serve as alternatives to addressing ML
sub-network discovery, namely GNN explanation methods
and inherently interpretable GNNs. GNN explanation meth-
ods identify important graph sub-structure for GNN model
prediction results by post-hoc explanation models. Inher-
ently interpretable GNNs reach the same goal by designing
inherently interpretable model architecture. In this paper, we
compare our methods with state-of-the-art GNN explanation
methods, including GNNExplainer (Ying et al. 2019), PG-
EXplainer (Luo et al. 2020) SubgraphX (Yuan et al. 2021)
and ReFine (Wang et al. 2021), and inherently interpretable
GNN methods, including GAT and GSAT (Miao, Liu, and
Li 2022).

Implementation Details We use the under-sampled
datasets to train our adaptive sub-network proposer as men-
tioned in Sec. 3.2. According to the observation in Fig. 5(c),
we set the iteration number K to 3 for both M6 and M12.
Then the dual-view fusion classifier is trained with the out-
puts of the adapative sub-netowrk proposer.

Evaluation Metrics The ML transaction detection
datasets are inherently imbalanced, and although ML trans-
actions are in the minority, they are more concerned. In this
paper, we adopt three widely-used metrics in the imbalanced
setting: AUC-ROC (ROC), AUC-PR and GMeans (Liu et al.

2021b; Shi et al. 2022). All the results are averaged over 10
times tests with different random seeds.

Effectiveness Results Table 1 presents the experimental
results and we can make following observations. Overall,
AMAP consistently improves the performance for all met-
rics on both datasets than results of baselines methods, with
average 3.02%↑, 3.74%↑ and 6.08%↑ improvement respec-
tively in ROC, AUC-PR and GMean. Among baseline meth-
ods, graph anomaly detection methods (CARE-GNN, PC-
GNN and H2-FDetector) outperforms feature-based meth-
ods and GNN-based models. We attribute these improve-
ments by GAD methods to their intuitions of distinguishing
between anomalous and normal direct neighbors. The high-
lighted results in the table are from AMAP, which keeps
advantage over all the GAD comparison methods consis-
tently. The potential ML sub-network from the adaptive sub-
network proposer endows AMAP with the knowledge about
the underlying patterns of multi-hop ML sub-networks.

4.3 Evaluation on ML sub-network discovery
(Q2)

Setup We train both baselines and our methods on the M6
datasets. For testing, we sample from ML transactions oc-
curring between 03/02/22 and 03/05/22. For each ML trans-
action v, we build its 3-hop ego-graph G3v . ML transactions
in G3v are considered to be the ground truth. We collect ML
transactions occurring on 03/01/22 as the validation set. For
all the methods, we apply a grid search to tune their own
hyper-parameters that archives the best validation perfor-
mance.

Evaluation Metric We formulate ML sub-network dis-
covery as a binary classification problem in our setup. As
Figure. 2(c) indicates, the majority of transactions in G3v of
a ML transaction v may often be benign. Therefore, we re-
port F1-score and Predictive Accuracy (ACC) to evaluate the
model’s performance. The average F1-score are calculated
as the harmonic mean of average precision and average re-
call following (Forman and Scholz 2010).



Table 2: Experimental results (Mean ± Std.) on ML sub-
network discovery. OOT indicates run-out-of-time.

F1-SCORE ACC POST-
HOC

GAT 0.1391±.0032 0.3827±.0113

GNNEXPLAINER 0.2828±.0107 0.6889±.0276 ✓
REFINE 0.3423±.0022 0.7096±.0079 ✓
PGEXPLAINER 0.4317±.0025 0.7309±.0184 ✓
GSAT 0.4190±.0305 0.7455±.0587

SUBGRAPHX OOT OOT ✓
AMAP 0.6764±.0032 0.8836±.0129

Since comparison methods may give possibly different
prediction results, we resample the test ML transaction set
and only preserve those samples for which all model predic-
tions are correct for a fair comparison.

It’s worth mentioning that it’s a standard way for expla-
nation methods to use a threshold β or a selection ratio ρ to
give the prediction result (Ying et al. 2019). The choice of β
or ρ is critical for the performance. We apply a grid search
to find the threshold β⋆ or selection ratio ρ⋆ which achieves
the best F1-score on the validation set and report the result
with β⋆ or ρ⋆ for these methods. We report averaged results
over 10 times tests with different random seeds.

Result Comparison and Analysis As shown in Table 2,
our method significantly outperform the baselines by a large
margin (56.68%↑ in F1-score and 18.52%↑ in ACC). This
demonstrates the effectiveness of our adaptive network pro-
poser on discovering ML sub-networks. We attribute these
improvements to the explicit ML sub-network modeling: 1)
By taking ML sub-networks as explicit supervision infor-
mation, AMAP is able to capture the underlying patterns
of ML sub-network, while baseline methods implicitly in-
fer the ML sub-networks from the prediction results. How-
ever, it may be agnostic by what a predictive model deter-
mines that a node is belonging to ML transactions; and 2)
Conducting the contrastive learning between ML transac-
tion nodes and benign nodes makes AMAP better stratify the
discriminative information between ML and benign transac-
tions.We also provide visualizations of the ML sub-networks
discovered by AMAP and runner-up methods in Figure 5.
We observe that AMAP significantly reduces the number
of false positive in the examples than runner-up methods.
Also, AMAP yields a connected ML sub-network because
it expands from the initial node iteratively, while runner-up
methods may give disconnected results.

4.4 Ablation Studies (Q3)
We conduct ablation studies from two aspects: First, the
superiority of virtual threshold node (Eq. (7)) over global
threshold. Second, the effectiveness of Dual-fusion module.

• AMAP-NO-V: Replace the virtual threshold node with
global threshold searched on the validation set. Training
the adaptive sub-network proposer with loss function in
Eq. (5) without virtual threshold node.

• AMAP-NO-F: Remove the attention fusion module in

PGExplainer Ours Ground TruthGSAT

Figure 5: Visualization of ML Sub-network Discovery. ( )
indicates the test node.

Table 3: Ablation studies on M6. We report metric on both
ML transaction detection and ML sub-network discovery.

F1 ACC ROC AUC-PR GMEANS

AMAP 0.6764 0.8836 0.9513 0.7724 0.8795
AMAP-NO-V 0.4919 0.7911 0.9128 0.7370 0.8331
AMAP-NO-F - - 0.9244 0.7411 0.8414

Eq. (9). This means only the potential ML sub-networks
are used for ML transaction detection.

As shown in Table 3, the performance on ML sub-network
discovery drops significantly when we replace the virtual
threshold node with global threshold. This implies applying
virtual threshold node effectively alleviates the lack of adap-
tivity of using global threshold. Also, removing the attention
fusion module causes performance drop on ML transaction
detection. It’s worth noting that AMAP-NO-F yields com-
petitive results compared with baseline methods in Table 1.
It indicates that solely using the adaptive sub-network pro-
poser boosts the performance on ML transaction detection
significantly.

5 Conclusion
In this paper, we present a novel AML framework AMAP.
This is the first work in which a neural network based ap-
proach has ever been employed to the ML sub-network dis-
covery problem. Our AMAP is particularly designed for dis-
criminating ML transactions from massive benign transac-
tions and capturing multi-hop underlying patterns of ML
sub-network. The proposed framework is extensively eval-
uated in real-world datasets. The result demonstrates the ef-
fectiveness of our AMAP in both money laundering trans-
action detection and money laundering sub-network discov-
ering. We hope this work will bring insights towards a more
robust AML system.
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