
Dynamic Network Embedding by
Modeling Triadic Closure Process

Lekui Zhou,1 Yang Yang,1∗ Xiang Ren,2 Fei Wu,1 Yueting Zhuang1

1 Department of Computer Science and Technology, Zhejiang University
2 Department of Computer Science, University of Southern California
{luckiezhou, yangya, wufei, yzhuang}@zju.edu.cn, xiangren@usc.edu

Abstract

Network embedding, which aims to learn the low-
dimensional representations of vertices, is an important task
and has attracted considerable research efforts recently. In
real world, networks, like social network and biological net-
works, are dynamic and evolving over time. However, almost
all the existing network embedding methods focus on static
networks while ignore network dynamics.
In this paper, we present a novel representation learning ap-
proach, DynamicTriad, to preserve both structural informa-
tion and evolution patterns of a given network. The general
idea of our approach is to impose triad, which is a group
of three vertices and is one of the basic units of networks.
In particular, we model how a closed triad, which consists
of three vertices connected with each other, develops from
an open triad that has two of three vertices not connected
with each other. This triadic closure process is a fundamen-
tal mechanism in the formation and evolution of networks,
thereby makes our model being able to capture the network
dynamics and to learn representation vectors for each vertex
at different time steps.
Experimental results on three real-world networks demon-
strate that, compared with several state-of-the-art techniques,
DynamicTriad achieves substantial gains in several applica-
tion scenarios. For example, our approach can effectively be
applied and help to identify telephone frauds in a mobile net-
work, and to predict whether a user will repay her loans or
not in a loan network.

Introduction

There is nothing permanent except change.
— Heraclitus

The goal of network embedding, also known as net-
work representation learning, is to project a network to
a low-dimensional space, where each vertex can be pre-
sented as a single point in the learned latent space. Net-
work embedding has attracted considerable research efforts
recently by benefiting social and biological network re-
search. Most existing work, varying from Bayesian infer-
ence (Ho, Yin, and Xing 2016; Hoff, Raftery, and Hand-
cock 2012) , multidimensional scaling (Sarkar and Moore
2005), matrix factorization (Erds, Gemulla, and Terzi 2014;
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Qi, Aggarwal, and Huang 2013; Zhu et al. 2014), to deep
learning (Wang, Cui, and Zhu 2016; Grover and Leskovec
2016), were focusing on static networks, where the structure
of vertices are fixed.

However, in real world, network is dynamic and evolv-
ing over time. Users develop their connections to each other
in social networks, while interactions between proteins vary
over time in biological networks. Representation learning al-
gorithms that ignore the dynamics of a given network can
hardly capture sufficient information.

Figure 1 illustrates the dynamic structure of a network at
different time steps. We take social network as an exam-
ple, where each vertex indicates a user, each edge denotes
a friendship between two users, and the weight associated
with each edge indicates tie strength, or the energy that users
spend to keep their relationship (e.g., number of calls be-
tween two users in a mobile network). At time step t, user
A and user B have similar structures: they both have three
friends, who do not know each other. In addition, both of
them spend most energy on a particular friend (i.e., spending
0.8 energy on a particular friend while spending 0.2 energy
on others in total). Therefore, traditional network embed-
ding methods, like DeepWalk (Perozzi, Al-Rfou, and Skiena
2014) and node2vec (Grover and Leskovec 2016), will con-
struct similar representation vectors for A and B. However,
their evolution patterns are different. For example, at time
step t + 1, two pairs of A’s friends connect to each other,
while there is still no links among B’s friends. In addition,
user B distracts her energy to other friends at time step t+1,
while user A keeps focusing on developing her relationship
with the same friend as at time step t. Different evolution
patterns of users reflects the differences between their own
characters and social strategies, which are used to meet their
social needs like developing connections to others. For in-
stance, user A tends to introduce her friends to each other,
while user B prefers to let her friends stay tight in their
own communities. Therefore, whether the learned represen-
tations can well reflect the evolution patterns of vertices is a
critical requirement for network embedding methods.

In this paper, our goal is to learn the embedding vectors
for vertices by capturing the evolutionary structure proper-
ties of a network. That is, given a sequence of network snap-
shots G1, · · · , GT from time steps 1 to T , we aim to design
an objective that learn the embedding vector ut

i for vertex i
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Figure 1: An illustration of dynamic social network. User
A and B have different social strategies. For example, user
A tends to introduce her friends to connect with each other,
while user B tends to keep her friends in their own commu-
nities.

at each time step t.
However, it is very challenging to preserve the tempo-

ral information of dynamic networks. Existing work has
a limited development of modeling how the latent space
evolves over time. A typical solution used by most of
current models is to assume that vertices will only move
smoothly in the latent space over time by adding a regular-
ization term in objective function (Sarkar and Moore 2005;
Zhu et al. 2014). However, this assumption does not always
hold as the structure of some vertex may evolve sharply. Be-
sides, this method cannot capture the difference between the
evolution patterns of vertices.

In this paper, we propose a novel dynamic network em-
bedding approach, namely DynamicTriad. The general idea
of our model is to impose triad (i.e., a group of three ver-
tices) to model the dynamic changes of network structures.
Roughly speaking, there are two types of triads: closed tri-
ads and open triads. In a closed triad, for any two vertices,
there is a relationship between them. In an open triad, there
are only two relationships, which means that two of the three
vertices are not connected with each other. We model how
a closed triad develops from an open triad, which is called
as triad closure process and is a fundamental mechanism in
the formation and evolution of dynamic networks (Coleman
1994; Huang et al. 2015). In particular, we design a uniform
framework to quantify the probability of an open triad devel-
ops to a closed triad, and learn embedding vectors of each
vertex at different time steps jointly.

It is worthwhile to highlight our contributions as follows:

• We propose a novel representation learning model for dy-
namic networks. Our model is able to preserve the struc-
tural information and evolution pattern of a network.

• We develop a semi-supervised learning algorithm for pa-
rameter estimation efficiently.

• We construct experiments over three data sets and six
groups of application scenarios. For instance, we apply
our approach to identify telephone frauds in a mobile net-
work, and to predict users who will not repay their loans in
a loan network. Experimental results show that our model
can achieve significant improvements over several state-
of-the-art baselines (e.g., improve F1 by 34.4% on link
prediction).

Problem Definition

In this section, we give necessary definitions used through-
out this paper. We consider a set of M vertices V =
{v1, · · · , vM} and the set of undirected edges among these
users E = {eij}, where each edge eij indicates a rela-
tionship (e.g., friendship) between vi and vj . In most cases,
edges will evolve over time instead of being constant. For in-
stance, in a social network, a user may continued to extend
her circles by developing friendships with others. Formally,
given T time steps, we define dynamic networks as follows:

Definition 1. Dynamic network. A series of a dynamic net-
work snapshots is a set of undirected graphs {G1, · · · , GT },
where Gt = (V,Et,W t) (1 ≤ t ≤ T ) represents how
vertices are connected at time t. Each edge etij ∈ Et is
associated with an edge weight wt

ij := w̃t(eij) , where
w̃t : Et �→ R

+ is a function mapping from edges to pos-
itive real values.

Our goal is to learn the low-dimensional representations
of users by capturing the evolutionary structure properties of
a network and the social strategies of users. We define this
problem as follows:

Definition 2. Dynamic network embedding. Given a series
of dynamic networks {G1, · · · , GT }, dynamic network em-
bedding aims to learn a mapping function f t : vi �→ R

d

for each time step t, where d is a positive integer indicating
the number of embedding dimensions. The objective of the
function f t is to preserve the similarity between vi and vj on
both the network structure at time step t and their tendencies
to develop relationships with others in the future.

In the rest of this paper, for simplification, we define
ut
i := f t(vi), and u = {ut

i}i={1,··· ,M},t={1,··· ,T}. Note
that, different from previous network embedding tasks,
which focus on static networks, our task aims to preserve
the evolutionary network structures.

Our Approach

Model Description

In this section, we present a framework, DynamicTriad,
which is capable of learning desirable representations for
users in dynamic networks. Overall, the objective of Dy-
namicTriad is modeling the triadic closure process, which
describes how open triads evolve into closed traids, and re-
flects the difference between characters of different vertices.
We take social network as an example to introduce describe
our model, which can also be applied on other types of net-
works. An implementation of the model is publicly avail-
able 1.

Triadic closure process. We begin with an example of open
triads (vi, vj , vk) at time t, where user vi and vj do not know
each other but they are both friends of vk (i.e., eik, ejk ∈ Et

and eij /∈ Et). Now, the user vk will decide whether or not
to introduce vi and vj , let them know each other, and build
a connection between them at the next time step t + 1. We
naturally assume vk will make her decision based on how

1https://github.com/luckiezhou/DynamicTriad
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close she is with vi and vj (in the latent space), which is
quantified by a d-length vector xt

ijk as

xt
ijk = wt

ik ∗ (ut
k − ut

i) + wt
jk ∗ (ut

k − ut
j) (1)

where wt
ik indicates the tie strength of vi and vk at time

t, and ut
i is the embedding vector of vi at time t. Further-

more, we define a social strategy parameter θ, which is a d-
dimension vector to extract social strategy information em-
bedded in each node’s latent vector.

Based on the above definitions, we define the probability
that the open triad (vi, vj , vk) evolves into a closed triad,
i.e., vi and vj will develop a link between them at time t+1,
under the introduction (or influence) by vk, as

P t
tr(i, j, k) =

1

1 + exp(−〈θ,xt
ijk〉)

(2)

One thing worth to mention is that vi and vj might be
introduced by several of their common friends. Thus, our
next aim is to jointly model how multiple open triads, with
a common pair of unlinked vertices, evolve. To do that, we
define set Bt(i, j) as vi and vj’s common neighbors at time
step t, and define a vector αt,i,j = (αt,i,j

k )k∈Bt(i,j), where
αt,i,j
k = 1 if the open triad (vi, vj , vk) will develop into a

closed triad at t + 1. In other words, vi and vj will become
friends under the influence of vk. Straightforwardly, once
(vi, vj , vk) becomes closed, all open triads relevant to vi and
vj will become closed. Thus, by further assuming indepen-
dence between the influence of each common friend to vi
and vj’s potential link, we define the probability that a new
link eij will be created at time step t+ 1 as

P t
tr+

(i, j) =
∑

αt,i,j �=0

∏
k∈Bt(i,j)

(P t
tr(i, j, k))

αt,i,j
k ×

(1− P t
tr(i, j, k))

(1−αt,i,j
k )

(3)

Meanwhile, if vi and vj have not been influenced by any
of their common friends, the edge eij will not be created.
We define its probability as

P t
tr−(i, j) =

∏
k∈Bt(i,j)

(1− P t
tr(i, j, k)) (4)

To put the above two possible evolution traces of the
open triad (vi, vj , vk) together, we define the set St

+ =
{(i, j)|eij /∈ Et ∧ eij ∈ Et+1} to indicate the links be-
ing successfully created at time step t + 1, and let the set
St
− = {(i, j)|eij /∈ Et ∧ eij /∈ Et+1} indicate those not be-

ing created. We then define the loss function of triad closure
process as the negative log likelihood of the data:

Lt
tr =−

∑
(i,j)∈St

+

logP t
tr+

(i, j)

−
∑

(i,j)∈St
−

logP t
tr−(i, j)

(5)

Social homophily and temporal smoothness . We utilize
two more assumptions to strengthen DynamicTriad: social

homophily and temporal smoothness. Social homophily sug-
gests that highly connected vertices should be embedded
closely in the latent representation space. Formally, we de-
fine the distance between two vertices vj and vk’s embed-
ding ut

j and ut
k as

gt(j, k) = ||ut
j − ut

k||22 (6)
At the current time step t, we divide all pairs of vertices

into two sets, namely edges Et
+ = Et and non-edges Et

− =
{ejk|j ∈ {1, · · · , N}, k ∈ {1, · · · , N}, j 
= k, ejk /∈ Et}.
According to the homophily hypothesis, if two vertices are
linked with each other, they tend to be embedded closer in
the latent-representation space, which results in our ranking
loss-based function for the social homophily as

Lt
sh =

∑
(j,k)∈Et

+

(j′,k′)∈Et
−

h(wjk, [g
t(j, k)− gt(j′, k′) + ξ]+) (7)

where [x]+ = max(0, x) for any real number x, and ξ ∈ R
+

is the margin value. Function h(·, ·) combines the weight
and the measure of discrepancy, and is commonly defined as
h(w, x) = w · x.

It is natural to assume that a network will evolve smoothly
over time, instead of being totally rebuilt in each time step.
Therefore, we define the temporal smoothness by minimiz-
ing the Euclidean distance between embedding vectors in
adjacent time steps. Formally, the corresponding loss func-
tion is

Lt
smooth =

{∑N
i=1 ||ut

i − ut−1
i ||22 t > 1

0 t = 1
(8)

Therefore, the overall optimization problem given the first
T time steps is

argmin
{ut

i},θ

T∑
t=1

Lt
sh + β0L

t
tr + β1L

t
smooth (9)

Notice that regularization terms are omitted since they are
handled by normalization techniques during training.

Model Learning

In this section, we will introduce how to learn the proposed
model in detail. Generally, we aim to find a configuration of
model parameters {θ,u} that optimize Eq. (9).

Log-likelihood approximation. We start with the loss
function of triad closure process Lt

tr, which consists
of two terms as Eq. (5) shows. The second term (i.e.,
−∑

(i,j)∈St
−
logP t

tr−(i, j)) can be easily computed as

∑
(i,j)∈St

−
k∈Bt(i,j)

〈θ,xt
ijk〉+ log(1 + exp(−〈θ,xt

ijk〉))
(10)

However, one issue here is that the other term,
−∑

(i,j)∈St
+
logP t

tr+
(i, j), is intractable as the hidden vari-

able αt,i,j has an exponential number of possible values. To
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solve this, we adopt a procedure similar to the expectation-
maximization (EM) algorithm (Dempster, Laird, and Ru-
bin 1977) that optimizes the upper bound of this intractable
term. Specifically, we compute the upper bound for this term
as

−
∑

(i,j)∈St
+

logP t
tr+

(i, j)

≤
∑

(i,j)∈St
+

k∈Bt(i,j)

Ct
ijk〈θ, xt

ijk〉+ log(1 + exp(−〈θ, xt
ijk))

(11)

where

Ct
ijk = 1− P t

tr(i, j, k;θ
(n),u(n))

1− ∏
k∗∈Bt(i,j)

(1− P t
tr(i, j, k∗;θ(n),u(n)))

(12)
which can be pre-calculated given i, j, k and t at the begin-
ning of an iteration, and θ(n) and u(n) are the model param-
eters under the current iteration. The derivation details are
omitted due to the limited space.

Combining Eq. (10) and Eq. (11), we have got an upper
bound for Lt

tr

∑
{(i,j)|eij /∈Et},k∈Bt(i,j)

log(1 + exp(−〈θ,xt
ijk〉))

+ (I(eij ∈ Et+1)Ct
ijk + I(eij /∈ Et+1))〈θ,xt

ijk〉
(13)

Sampling. It is expensive, especially for large graphs, to
calculate all the combinations of positive and negative sam-
ples as defined in Eq. (7). In order to address this problem,
we utilize a sampling technique, which is similar with (Wang
et al. 2014).

Specifically, for social homophily loss function, given a
positive sample (edge) ejk at time step t, we first randomly
choose a vertex vj′ among vj and vk (i.e., j′ ∈ {j, k}). We
then randomly sample another vertex vk′ from other ver-
tices, which stratifies that ej′k′ /∈ Et is a valid negative
sample.

Repeat the sampling process for each edge ejk, and we
define the training set as Et

sh = {(j, k, j′, k′)|(j, k) ∈ Et},
and the loss function can be represented as

Lt
sh,1 =

∑
(j,k,j′,k′)∈Et

sh

h(wjk, [g
t(j, k)− gt(j′, k′) + ξ]+)

(14)
For the loss function of triad closure process, for each

(j, k, j′, k′) ∈ Et
sh, we first randomly choose a vertex from

{vj , vk}, without loss of generality, we assume vk is cho-
sen. Then we aim to sample a vertex vi, where eik ∈ Et

and eij /∈ Et, so that we obtain an open triad (i, j, k)
where vk connects both vi and vj . The open triad can be
either a positive or a negative instance and can be used
to train our model, depending on whether it closes in the

next time step (i.e. whether eij ∈ Et+1). Let Et
tr =

{(j, k, j′, k′, i)|(j, k, j′, k′) ∈ Et
sh}, combing Eq. (13), the

loss function for triad closure process can be represented as

Lt
tr,1 =

∑
(j,k,j′,k′,i)∈Et

tr

log(1 + exp(−〈θ,xt
ijk〉))

+ (I(eij ∈ Et+1)Ct
ijk + I(eij /∈ Et+1))〈θ,xt

ijk〉
(15)

As Lt
tr,1 relies on information at time step t + 1, there is

a special case for the last time step T :

Lt
tr,2 =

{
Lt
tr,1, t < T

0, t = T
(16)

Putting it all together, the overall loss function at training
step is

L =
T∑

t=1

(Lt
sh,1+β0L

t
tr,2)+β1

T−1∑
t=1

N∑
i=1

||ut+1
i −ut

i||22 (17)

where the first two terms share a same set of samples, and
the third term corresponds to the temporal smoothness. Note
that due to space limitation, the derivation of the gradi-
ents are omitted, which can be found in the project’s online
homepage.

Input: Dynamic network G1, · · · , GT ;
Output: Embedding vectors for graph nodes ut

i;
Initialize model parameters θ(n),u(n) randomly;
Sample E′ from all existing edges in Gi

for n ← 1 to N do

Sample Et
sh according to E′

Sample Et
tr according to Et

sh

Compute each Ct
ijk given θ(n),u(n)

for b ← batch(Et
sh, E

t
tr) do

Compute loss L on b according to Eq. (17)
Compute gradients ∂L

∂θ |θ=θ(n) and ∂L
∂u |u=u(n)

Update θ(n),u(n) according to the gradients
end

θ(n+1) ← θ(n), u(n+1) ← u(n)

end

ut
i ← {u(N)}ti
Algorithm 1: Training process of DynamicTriad

Optimization. In order to minimize Eq. (17), we adopt the
stochastic gradient decent (SGD) framework with Adagrad
method (Duchi, Hazan, and Singer 2011). See details of our
training framework in Algorithm 1.

Experimental Results

In this section, we employ three real-world networks to vali-
date the effectiveness of the proposed model, DynamicTriad,
on six application scenarios.
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Data Sets

• Mobile. This is a mobile network provided by China Tele-
com2. It consists of more than 2 million call logs between
340,751 users over 15 days. In this data set, users are con-
sidered as vertices, and time steps are defined as consecu-
tive non-overlapping one-day periods. In each time step t,
if one user has called another, we create an edge between
them in Gt, whose weight is determined by the number of
calls between the users. Through this definition, we obtain
2,200,203 edges in total. Furthermore, each vertex has a
label indicating if the user is a telephone fraudster.

• Loan. This network is provided by PPDai3. It has a sim-
ilar structure with Mobile, and consists of 1,603,712 call
logs between 200,000 registered users of PPDai over 13
months. We construct the network in the same way as Mo-
bile except that the length of each time step is set to one
month. In Loan, each vertex has a time-sensitive label at
time t to indicate if the user has ever failed to repay a loan
during that time.

• Academic. We derive a co-authorship network from the
academic network of AMiner4 (Tang et al. 2008). It con-
sists of 51,060 researchers as vertices and 794,552 coau-
thor relationships as edges. Each time step is a 4-year pe-
riod and there is a 2-year interval between the start time of
consecutive time steps. At time step t, we create an edge
between two users weighted by the number of coauthor-
ships between them during that period. At each time step,
we say a researcher belong to a particular community if
over half of her papers were published in correponding
conferrences5, and the information is available as labels
in this data set.
Statistics of the above data sets are shown in Table 1.

Table 1: Statistics of each data set.

Data Set #vertices #edges #time steps
Mobile 340,751 2,200,203 15
Loan 200,000 1,603,712 13

Academic 51,060 794,552 16

Tasks and Baselines

On each data set, we first learn embedding vectors u of all
vertices at different time steps according to the correspond-
ing dynamic network {G1, · · · , GT } by our model. We then
apply the embedding vectors on the following six tasks:
• Vertex classification. In this task, we aim to determine

each vertex’s label at a particular time step t by training a
classifier. In particular, the classifier takes a vertex’s em-
bedding vector ut

i as its features.
2The major mobile service provider in China
3An unsecured micro-credit loan platform in China
4http://www.aminer.org, an academic search engine
5The representing conferences being considered are ASP-

LOS, FAST, HPCA, ISCA for computer architecture, SIGMOD,
SIGKDD, SIGIR, VLDB and ICDE for data mining, and STOC,
FOCS, LICS and CAV for computing theory.

• Vertex prediction. Different from vertex classification, this
tasks aims to use each vertex’s embedding vector ut

i at
current time step t to predict its label at the next time step
t+ 1.

• Link reconstruction. In this task, we aim to determine if
there is an edge between two given vertices vi and vj
based on the absolute difference in positions between their
corresponding embedding vectors, i.e., |ut

i − ut
j |.

• Link prediction. This task is similar to link reconstruction,
with the only difference that we aim to predict the exis-
tence of an edge in the next time step t + 1 based on the
absolute difference in positions between their embedding
vectors in the current time step t.

• Changed link reconstruction and prediction. As only a
small percentage of links will change over time, we put
focus on the changed links and study how they evolve
(being added or removed). In particular, these two tasks
are similar with link reconstruction and link prediction
respectively, with the difference that we only consider
newly added or removed links and ignore others in the
training and test process.

Baseline methods. We compared the proposed method
(DynamicTriad) with several state-of-the-art methods using
their published codes or our implementation. In each task,
we first use different methods to obtain embedding vectors
of vertices. Then, we gather all samples from different time
steps. Using a Logisitic Regression model as classifier, we
repeat 5-fold cross validation on the gathered sample set for
10 times, and compare the average performance. We have
conducted our experiments on dimensions 16, 32, 48 and
64, and we have chosen d = 48 for presentation due to space
limitation. For each graph embedding algorithm mentioned
in this section, we perform a grid search on the values of
hyper parameters, and we choose a specific combination of
them for each task on each data set, which results in the best
performance regarding to the F1 score metric.

• DeepWalk (Perozzi, Al-Rfou, and Skiena 2014). This is
a representative embedding method for static network.
We use DeepWalk6 to learn embedding vectors for with
different combination of hyper parameters ‘walk length
(wl)’ and ‘window size (ws)’. All combinations of hy-
per parameters are tested given wl ∈ {20, 40, 60, 80} and
ws ∈ {3, 5, 7}.

• node2vec (Grover and Leskovec 2016). In this method,
we use node2vec7 to learn embedding vectors with dif-
ferent combinations of its parameters p and q, while fix-
ing ‘walk length’ and ‘window size’ to the chosen val-
ues in DeepWalk experiments. All combinations of hy-
per parameters are tested given p ∈ {0.5, 1, 1.5, 2, 5} and
q ∈ {0.5, 1, 1.5, 2, 5}.

• Temporal Network Embedding (TNE) (Zhu et al. 2016).
This is a dynamic network embedding algorithm based

6https://github.com/phanein/deepwalk
7https://github.com/aditya-grover/node2vec
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Table 2: Model performance. C.link reconstruction/prediction is short for changed link reconstruction/prediction.

Data Set Algorithm Vertex classification Link reconstruction C.Link reconstruction
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Academic

DeepWalk 0.541 0.755 0.630 0.682 0.705 0.694 0.747 0.662 0.702
TNE 0.266 0.554 0.359 0.564 0.584 0.574 0.650 0.576 0.611

node2vec 0.527 0.768 0.625 0.971 0.976 0.974 0.909 0.889 0.899
DynamicTriad 0.618 0.818 0.704 0.983 0.988 0.985 0.921 0.928 0.925

Mobile

DeepWalk 0.015 0.812 0.030 0.866 0.858 0.862 0.674 0.706 0.689
TNE 0.006 0.558 0.013 0.504 0.520 0.512 0.502 0.508 0.505

node2vec 0.016 0.748 0.032 0.986 0.985 0.986 0.723 0.830 0.773
DynamicTriad 0.033 0.553 0.062 0.992 0.986 0.989 0.684 0.732 0.707

Loan

DeepWalk 0.112 0.263 0.157 0.829 0.857 0.843 0.683 0.704 0.693
TNE 0.109 0.527 0.181 0.741 0.818 0.777 0.590 0.597 0.594

node2vec 0.111 0.253 0.154 0.988 0.983 0.986 0.762 0.894 0.822
DynamicTriad 0.114 0.501 0.185 0.995 0.994 0.994 0.833 0.872 0.852

Data Set Algorithm Vertex prediction Link prediction C.Link prediction
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Academic

DeepWalk 0.516 0.692 0.591 0.596 0.629 0.612 0.750 0.612 0.674
TNE 0.264 0.540 0.355 0.544 0.551 0.548 0.673 0.570 0.617

node2vec 0.516 0.705 0.596 0.832 0.701 0.772 0.940 0.843 0.889
DynamicTriad 0.584 0.790 0.671 0.888 0.790 0.836 0.965 0.885 0.924

Mobile

DeepWalk 0.012 0.694 0.024 0.661 0.657 0.659 0.689 0.656 0.671
TNE 0.006 0.554 0.012 0.504 0.509 0.507 0.493 0.504 0.498

node2vec 0.014 0.655 0.027 0.797 0.673 0.730 0.799 0.676 0.732
DynamicTriad 0.033 0.547 0.062 0.968 0.915 0.940 0.728 0.657 0.690

Loan

DeepWalk 0.112 0.274 0.159 0.670 0.736 0.702 0.650 0.708 0.677
TNE 0.108 0.542 0.180 0.635 0.743 0.685 0.672 0.557 0.609

node2vec 0.112 0.258 0.156 0.771 0.730 0.750 0.870 0.655 0.747
DynamicTriad 0.113 0.500 0.185 0.938 0.858 0.896 0.911 0.791 0.847

on matrix factorization8. We try different values of TNE’s
parameter λ (option “-l” in the implementation) and report
the best performance. All combinations of hyper parame-
ters are tested given λ ∈ {0.001, 0.01, 0.1, 1, 10}.

• DynamicTriad. This is the proposed model. We tested
all combinations of parameters β0 and β1 given β0 ∈
{0.01, 0.1, 1, 10} and β1 ∈ {0.01, 0.1, 1, 10}.

Quantitative Results

Comparison result. Table 2 demonstrates the comparison
results of different methods. Overall, we see that Dynam-
icTriad outperforms other methods (e.g., +25.1% in terms
of F1 averagely) in most cases, especially in link predic-
tion, which suggests the effectiveness of our method to pre-
serve both structural and temporal information of dynamic
networks. The exception happens in the changed link recon-
struction and changed link prediction task on Mobile, where
node2vec outperforms DynamicTriad. One potential reason
is, in the Mobile data sets, there are quite a few calls made by
fraudsters or couriers, whose contacts change a lot over time.
Thus it brings much noise to DynamicTriad when modeling
the changes of edges connected with fraudsters or couriers.
However, the good performance of DynamicTriad in vertex

8https://github.com/linhongseba/Temporal-Network-
Embedding
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Figure 2: Hyper parameter analysis.

classification and prediction suggests that the network evolu-
tion patterns provide effective information to make the ver-
tex representations more discriminative.

We also notice that most of the results in prediction tasks
are slightly worse than those in corresponding classification
tasks. This is caused by the information loss between con-
secutive time steps, which is the core problem addressed
by dynamic network embedding methods. Comparing with
other methods, DynamicTriad performs more stable.

Meanwhile, TNE, as a dynamic network embedding
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Figure 3: 2D t-SNE projections of embeddings of 1040 researchers, who are in the largest component of the labelled subgraph,
from the Academic data set. The labels are taken from the 6th time step while the embedding vectors are from the 5th.

method, is incompetent in several experiments even compar-
ing with static network embedding methods (i.e., DeepWalk
and node2vec). One potential reason could be that the matrix
factorization scheme adopted in TNE fails to balance posi-
tive and negative samples given a sparse adjacency matrix.

Parameter analysis Our model has two hyper parameters
β0 and β1, where β0 is the weight of triad closure process
in Eq. (9), and β1 denotes the weight of temporal smooth-
ness. We study the sensitivity of each parameter by fixing the
other one. From Figure 2, we see that, though not very sen-
sitive, β0 and β1 improve the performance of DynamicTriad
in most tasks if a proper value is chosen, and it otherwise
will damage the performance.

Qualitative Results

We demonstrate the embedding vectors of several re-
searchers in the Academic data set learned by differ-
ent methods. We project the embedding vectors to a 2-
dimensional space with the t-SNE method (Maaten and
Hinton 2008) and compare the results of researchers from
three different research communities: computer architecture,
computing theory, and data mining. As Figure 3 shows,
DynamicTriad (Figure 3d) can clearly separate researchers
from different communities comparing with other meth-
ods. More specifically, TNE (Figure 3c) fails to distinguish
three communities from each other totally. DeepWalk and
node2vec are able to identify the computing theory commu-
nity. However, they confuse the computer architecture com-
munity and the data mining community. By a careful investi-
gation, we find that researchers from these two communities
have similar collaboration patterns. However, the computer
architecture community was built much earlier than the data
mining community, while the number of data mining papers
has a significant growth recently. Thus our method, which
considers network evolution, can better capture the differ-
ence between these communities.

Related Work

Recent years, learning representations for networks has
attracted considerable research effort. For example, con-
ventional dimensionality reduction methods (Belkin and

Niyogi 2001; Roweis and Saul 2000; Jolliffe 2002; Tenen-
baum, De Silva, and Langford 2000; Kruskal 1964) have
been proposed to learn low dimensional representations of
graphs by employing their spectral properties. Some re-
cent researches on graph embedding are inspired by the ad-
vancements in natural language processing, in particular the
adoption of skip-gram models in representation learning of
words (Mikolov et al. 2013). Analogies of sentences are de-
fined in graphs by paths sampled by various strategies (Per-
ozzi, Al-Rfou, and Skiena 2014; Grover and Leskovec 2016;
Tang et al. 2015; Dong, Chawla, and Swami 2017).

Most of the aforementioned researches focuses on static
networks, where the network itself as well as the learned rep-
resentations are fixed. However, in reality, networks evolve
over time. There is only few research on dynamic net-
work embedding, which mainly consider temporal smooth-
ness (Sarkar and Moore 2005; Zhu et al. 2016). Meanwhile,
there are many studies on identifying fundamental factors
that cause network dynamics (Kossinets and Watts 2006;
Tantipathananandh, Berger-Wolf, and Kempe 2007; Sun et
al. 2007; Zhuang et al. 2013; Zhang et al. 2016). Our idea
is employing one of these factors, the triad closure pro-
cess (Coleman 1994), as a guidance to learn dynamic rep-
resentations of networks.

Conclusion

In this paper, we present a novel representation learning al-
gorithm for dynamic networks, and a semi-supervised algo-
rithm to learn dynamic representations of vertices. To val-
idate the effectiveness of both our model and learning al-
gorithm, we construct experiments on three real-world net-
works. Experimental results demonstrate that compared to
several state-of-the-art techniques, our approach achieves
substantial gains in six applications.
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