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Abstract
Modeling time series data has become a very at-
tractive research topic due to its wide application,
such as human activity recognition, financial fore-
casting and sensor-based automatic system moni-
toring. Recently deep learning models have shown
great advances in modeling the time series data, but
they heavily depend on a large amount of labeled
data. To avoid costly labeling, this paper explores
domain adaptation from a labeled source domain to
the unlabeled target domain on time series data. To
achieve the goal, we propose a disentangled rep-
resentation learning framework named CADT to
disentangle the domain-invariant features from the
domain-specific ones. Particularly, CADT is in-
jected with a novel class-wise hypersphere loss to
improve the generalization of the classifier from the
source domain to the target domain. Intuitively, it
restricts the source data of the same class within the
same hypersphere and minimizes the radius of it,
which in turn enlarges the margin between different
classes and makes the decision boundary of both
domains easier. We further devise several kinds of
domain-preserving data augmentation methods to
better capture the domain-specific patterns. Exten-
sive experiments on two public datasets and three
real-world applications demonstrate the effective-
ness of the proposed model against several state-
of-the-art baselines.

1 Introduction
Time series data is prevalent in real-world applications like
human activity recognition, financial prediction, and manu-
facturing sensor monitoring. Recently, deep learning models
such as long short-term memory networks (LSTM) [Hochre-
iter and Schmidhuber, 1997] and 1-dimensional convolution
networks (Conv1D) [Bai et al., 2018] have shown promising
advances in time series classification and forecasting.

Using the mentioned deep learning models effectively typ-
ically requires a large amount of labeled data. Labeling time
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series data demands more manual effort from experts due to
the consecutive property of time series data [Lin and Jung,
2017; Wang et al., 2018; Kim and Jeong, 2021]. Fig. 1(a)
demonstrates the challenge of identifying electricity theft,
highlighting the extensive effort required for labeling. Detect-
ing such behavior often demands prolonged on-site investiga-
tions by domain experts. Applying models trained on labeled
data from one city to others is complex due to variations in
electricity consumption patterns influenced by economic sta-
tus, weather conditions, and electricity prices, leading to po-
tential misclassification or failure to detect electricity thieves.

In view of the great labeling cost and the significant do-
main gap of time series data, we propose to study unsuper-
vised domain adaptation (UDA) for time series data. UDA
aims to perform the task on the unlabeled target domain by
leveraging the labeled data of a source domain. Compared
to existing pretraining methods, UDA does not require la-
beled target domain datasets for fine-tuning. Additionally,
compared to zero-shot pretraining, UDA can better lever-
age the correlation between the source and target domains,
thereby achieving improved performance. Back to our exam-
ple, if the model can mitigate the distribution divergence be-
tween the source domain and target domain. Intuitively, elec-
tricity thieves share some common characteristics no matter
in which city they live. For example, their overall electric
power consumption is higher than that of normal residents
which can be treated as domain-invariant patterns across do-
mains. However, thieves of different areas have their specific
electricity consumption patterns and theft modes which are
domain-specific patterns. Thus, how to capture the domain-
invariant patterns across the source and the target domain
with remarkable domain-specific patterns is crucial.

To achieve the goal, we disentangle the representation
learning of the domain-invariant and the domain-specific pat-
terns. The motivation is depicted through the electricity theft
example in Fig. 1(b), showcasing the variations in average
daily electricity consumption over a month for regular users
and electricity thieves in two distinct Chinese cities. City
A, with an adequate label set, serves as the source domain,
while city B represents the target domain devoid of any la-
bels. No matter what users we consider, we can see that
city A consumes much more electrical power than city B. If
the difference between such domain-specific patterns is ig-
nored, we might derive the wrong domain-invariant pattern
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Figure 1: Illustration of domain adaptation and its challenges by taking electricity theft detection task as the example.

that users who consume electricity of more than 13 Kilowatt
hours (kWh) are thieves. As a result, the electricity thieves
of city B will be easily misclassified as normal users. To un-
fold the correct domain-invariant pattern such as the higher
power consumption of the thieves compared with the nor-
mal users, we need to disentangle the domain-specific pat-
terns from the domain-invariant ones, i.e., to perform UDA
by disentangled representation learning, which is inspired
by the similar studies in the image data [Chen et al., 2016;
Tran et al., 2017] and the textural data [Mathieu et al., 2016].
To the best of our knowledge, we are the first to explore
disentangled representation learning for time series domain
adaptation. Despite the success of such studies on other
types of data, disentangling the domain-specific representa-
tions from the general (domain-invariant) representations by
the widely-adopted adversarial learning [Tzeng et al., 2017;
Ganin and Lempitsky, 2015] without considering the classes
of data instances, may cause the domain-invariant representa-
tions cannot be discriminated between different classes of the
prediction task. Efforts to minimize domain differences can
hinder the classifier’s ability to distinguish between different
classes due to the adversarial loss. Then, the source classi-
fier’s capacity to generalize knowledge to the target classifier
diminishes. [Koltchinskii and Panchenko, 2002].

To address the above challenge, we propose to inject the
class-wise hypersphere loss into the traditional adversarial
learning, expecting to learn an easier decision boundary in
the source domain as well as the target domain illustrated in
the right bottom of Fig. 1(c). To be specific, in the source
domain, we restrict the data instances of the same class in the
same hypersphere and minimize the radius of it to compact
the instances of the same class instead of all the instances re-
gardless of their classes. By doing this, the margin between
different classes could be relatively enlarged.

Formally, we propose a Class-wise Adversarial learn-
ing framework for Domain adaptation in Time-series data
(CADT), to learn the domain-invariant representations by the
supervision of the class labels. CADT is equipped with cou-
pled interactive networks to enable the disentangled represen-
tation learning, which extracts the domain-specific features

and the domain-invariant features by different networks re-
spectively. An additional class-wise hypersphere loss is in-
jected into the traditional adversarial learning loss to enhance
the discrimination ability of the task classifier. To capture
various domain-specific time series patterns, we devise sev-
eral kinds of domain-preserving data augmentation methods.
Overall, our main contributions are summarized as follows:

• To the best of our knowledge, we are the first to explore the
disentangled domain-invariant and domain-specific repre-
sentation learning for UDA in time series data.

• We propose an adversarial learning framework, CADT,
equipped with coupled interactive networks for disentan-
gled learning. It includes the class-wise hypersphere loss
to improve model generalization and is enhanced by data
augmentation to capture domain-specific patterns.

• We conduct extensive experiments on two public datasets
and two real-world application datasets (electricity theft
detection and electric vehicle accident prediction). The
results show that CADT consistently outperforms several
state-of-the-art baseline methods.

2 Related Works
Unsupervised domain adaptation is a specific instance of
transfer learning [Zhuang et al., 2019; Long et al., 2015] with
labeled source domain data and unlabeled target domain data,
where the mapping representation spaces are shared but their
marginal distributions remain different due to the dataset shift
[Yang et al., 2021; Yan et al., 2021; Liu et al., 2019]. Abun-
dant previous works survey on this topic in computer vision
(CV) [Patel et al., 2015; Sun et al., 2015] and natural lan-
guage processing (NLP) applications [Glorot et al., 2011;
Pan and Yang, 2010]. Typically, the mapping representa-
tion involves minimizing the measure of discrepancy between
source features and target features [Zellinger et al., 2017;
Lee et al., 2019; Li et al., 2022]. With the remarkable suc-
cess in deep learning, many studies utilize the deep neu-
ral networks as a feature extractor to learn representative
domain-invariant representations [Sun and Saenko, 2016;
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Figure 2: The overall architecture of CADT. It contains three components: interactive networks to learn domain-invariant and domain-specific
features for source and target data simultaneously, domain discriminator with class-wise hyperspheres to adversarially guide the model to
learn domain-invariant features, and domain classifier with data augmentations to help the model learn plentiful domain-specific features.

Li et al., 2021; Long et al., 2016]. Inspired by the genera-
tive adversarial networks (GANs) [Goodfellow et al., 2014;
Arjovsky et al., 2017], many UDA approaches [Tzeng et al.,
2017; Ganin and Lempitsky, 2015; Bousmalis et al., 2017;
Zhang et al., 2021; Qiang et al., 2021] are proposed to learn
domain-invariant representation based on adversarial learn-
ing. Specifically, these approaches consist of a feature ex-
tractor, a domain discriminator, and a label predictor. The
feature extractor acts as the generator in GAN, whose goal
is to produce domain-invariant representation in the map-
ping space to fool the domain discriminator. The domain
discriminator is trained to detect if the extracted feature is
from the source or the target domain. The domain adapta-
tion and deep feature learning are within one training process.
Furthermore, the label predictor predicts the label of train-
ing source samples based on features that are both invariant
to domains and discriminative. Although time series data is
abundant in real-world applications [Liu et al., 2022; Fulcher
and Jones, 2014], few works focused on UDA for tempo-
ral data. Specifically, considering the sequential structure
of temporal data, previous works [Purushotham et al., 2017;
Tonutti et al., 2019] leveraged recurrent neural network as the
feature extractor. CoDATS [Wilson et al., 2020] leverage 1-
dimensional convolutional neural networks as the feature ex-
tractor. CoDATS achieves competitive performances on sev-
eral human activity recognition tasks. However, these meth-
ods have vulnerable domain-invariant representations due to
shared feature extractor and adversarial architecture. Addi-
tionally, a particular design for time series data is also essen-
tial due to its consecutive property.

3 Our Approach
In this section, we propose a novel CADT to fulfill domain
adaptation for time series data.
Problem definition. In domain adaptation setting, there are

two different data distributions: P from the source domain
and Q from the target domain. We are given by ns labeled
samples P̂ = {(xs

i , y
s
i )}

ns
i=1 drawn from the source distribu-

tion where ysi ∈ {1, · · · , k} is the label of k-class classifica-
tion, and nt unlabeled samples Q̂ = {xt

i}
nt
i=1 drawn from the

target distribution. Our goal is to predict the label ŷt of each
sample xt ∈ Q̂.

3.1 Model Overview
We illustrate the architecture of our method CADT in Fig. 2.
The cornerstone of CADT is the coupled interactive networks
that aims to learn the domain-invariant representations and
the domain-specific representations respectively for instances
from two domains. The two networks, therefore, interact
with each other to exchange their information. Each of the
two interactive networks will output two representations hs

and ht, corresponding to the instances from the source do-
main and the target domain respectively. To achieve the goal
of disentangling the domain-invariant representations from
domain-specific ones, we design a domain discriminator D
and a domain classifier C to guide the interactive networks.
The domain discriminator ensures that the target domain-
invariant representations cannot be distinguished from the
source domain-invariant representations. In contrast, the do-
main classifier aims to preserve the characteristics of each do-
main within their respective domain-specific representations.
We enhance the discrimination ability by using a task clas-
sifier T to leverage label information from the source do-
main and equipping the domain discriminator with a set of
class-wise hyperspheres to of the task classifier. To better
capture the plentiful domain-specific patterns, we design sev-
eral domain-preserving data augmentations.

3.2 Coupled Interactive Networks
Most existing time-series domain adaptation models adopt a
deep neural network as the single extractor to directly capture



domain-invariant features [Wilson et al., 2020; Purushotham
et al., 2017; Tonutti et al., 2019]. These methods neglect
domain-specific information, which is also very important for
domain adaptation as illustrated in Fig. 1(b). In order to ex-
tract both the domain-invariant and domain-specific features,
we propose a couple of interactive networks.

Generally, domain-invariant and domain-specific features
shall reflect different characteristics of the given time se-
ries data. In particular, domain-invariant features tend to de-
scribe the “high-level” patterns, which underlie the superfi-
cial data and are difficult to be discovered intuitively. These
features need to capture the abstract, underlying patterns that
are shared between different domains which can be complex
and not easily understood intuitively (e.g., the essential char-
acteristics of electricity stealing). Domain-specific features,
such as the scale and amplitude of electricity usage data, typ-
ically represent more concrete and identifiable information
compared to domain-invariant features. These features can
be specific to a particular domain and may not be applicable
to other domains. Deep neural network may overfit on irrele-
vant domain-specific noises while learning these “low-level”
features. Inspired by this, we propose to use a shallow neural
network to capture the “low-level” domain-specific represen-
tations and use a deep neural network to capture the “high-
level” domain-invariant representations respectively.

Intuitively, the network that is responsible for extracting
domain-invariant features requires domain-specific informa-
tion to understand which characteristics are truly common,
and vice versa. We therefore make the two networks commu-
nicate with each other to share their information by adding
interactions among their different layers. Fig. 3 shows the
architecture of the interactive networks. We use hc

k to de-
note the output of the k-th layer of the domain-specific net-
work and use hv

j to indicate the output of the j-th layer of
the domain-invariant network. The operation of interaction
between two networks can be expressed as

Finter(h
c
k,h

v
j ) = Fk,j(h

c
k) ◦ hv

j , (1)

where Finter(h
c
k,h

v
j ) corresponds to passing the information

of hc
k to hv

j , Fk,j is the transform function which can be im-
plemented by a sub-network or other forms, and ◦ is defined
as concatenation.

Note that this interaction results in a blend of domain-
invariant and domain-specific representations due to the gra-
dient flow between the two networks during backpropagation
in model learning. We add a residual connection [He et al.,
2016] between the interactive layer and the output layer, al-
lowing the network’s loss to directly influence the interactive
layer and lower layers, thus preserving the characteristics of
features before interaction.

3.3 Domain-invariant Representations Learning

Adversarial Learning. Idea of adversarial learning is used
in prior UDA methods [Wilson et al., 2020; Purushotham et
al., 2017]. We use Hv(x) to denote the domain-invariant fea-
ture output by the network from the current time point. Then
the output of the domain discriminator is D(Hv(x)). To dis-
tinguish the source data from the target data, we should min-
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Figure 3: Illustration of the coupled interactive networks.

imize the following objective in discriminator:

Ldis = −(Exs∼P̂ log(D(Hv(xs)))

+ Ext∼Q̂ log(1−D(Hv(xt)))).
(2)

On the contrary, the interactive networks are trying to make
the domain-invariant features indistinguishable. It has the op-
posite objective from the discriminator, i.e.,

Lnet = −(Exs∼P̂ log(1−D(Hv(xs)))

+ Ext∼Q̂ log(D(Hv(xt)))).
(3)

Besides, for a source data instance xs, its domain-invariant
feature Hv(xs) is also put into the task classifier to predict
the task label T (Hv(xs)). Given the ground truth label ys,
we optimize the classifier by:

Ltask = E(xs,ys)∼P̂ ℓ(T (Hv(xs)), ys), (4)

where ℓ is the loss function which is usually instantiated as
the cross-entropy loss.

By iteratively optimizing the domain discriminator and
the interactive networks, we can obtain inseparable domain-
invariant representations. However, the classification margin
of the task classifier may be decreased by the discrimina-
tor. The task classifier forces the data instances with different
classes in the source domain to be separated from each other,
expecting to make the correct decision boundary. On the
contrary, the discriminator favors tightening the distances be-
tween all the instances regardless of their classes so that their
domains cannot be distinguished. Extremely, when all the
instances are collapsed to the same embedding, the discrimi-
nator thoroughly loses its discrimination ability. [Koltchinskii
and Panchenko, 2002].
Class-wise Hyperspheres. To address the above issue
of the existing adversarial learning, we propose to inject a
class-wise hyperspheres constraint into the adversarial learn-
ing. The general idea is to restrict source instances of the
same class being projected into the same hyphersphere in the
domain-invariant feature space, so that the adversarial learn-
ing cannot narrow the gaps between different classes. The
class-wise hyperspheres constraint is applied to the labeled
source data. As for the target data, once the source data
are restricted in several hyperspheres (Fig. 2(b)), each tar-
get data will be placed into one of the hyperspheres in or-
der to confuse the discriminator (Fig. 2(c)). Eventually, all
the source data and target data are projected into the hyper-
spheres with a large margin (Fig. 2(d)). This approach helps



S T CNN RNN DDNN MultiRocket RDANN VRADA SASA CoDATS DAF CLUDA CADT

CHARGE
1 2 44.46±4.7 47.40±4.0 33.19±2.7 36.57±1.6 34.39±4.9 51.10±6.4 21.10±6.9 50.24±0.7 24.45±0.1 39.04±3.1 52.29±1.3
1 3 42.43±3.9 38.67±4.2 26.03±2.1 26.66±2.0 23.93±3.4 57.48±3.6 17.86±2.9 43.98±1.8 20.32±0.1 31.48±3.2 49.72±2.9
2 3 52.27±3.5 55.19±1.9 30.32±1.6 44.52±1.0 26.17±4.5 50.23±1.8 17.16±0.9 47.57±6.6 20.30±0.1 57.79±8.2 60.86±6.7
2 1 65.56±13 72.93±3.6 38.56±2.9 53.54±4.5 33.11±8.9 70.53±10 16.60±5.2 68.43±4.1 28.06±0.1 40.04±1.2 73.36±1.3
3 2 54.70±3.9 54.60±4.7 36.48±1.8 39.81±1.5 52.47±5.0 51.62±11 25.64±0.4 52.60±3.3 24.44±0.1 45.92±8.0 54.77±2.1
3 1 34.84±21 54.79±11 34.19±4.4 49.71±7.5 38.21±7.0 77.65±8.7 25.79±4.2 54.65±3.8 28.46±1.2 44.19±1.3 58.49±2.3

ELEC
D C 62.24±0.7 63.33±0.3 63.06±0.4 62.90±0.3 62.66±0.1 59.19±4.7 69.39±3.1 72.79±2.5 82.67±16 66.54±0.4 93.81±1.2
C D 54.60±1.7 53.49±0.3 53.45±0.2 54.24±0.8 52.88±0.2 79.02±13 63.16±1.2 62.86±4.6 75.39±20 60.36±1.0 90.08±1.3
D B 53.17±5.0 47.23±0.2 48.43±0.8 48.23±0.7 46.93±0.1 56.84±3.5 44.04±2.7 63.38±3.8 90.71±14 57.36±2.2 85.79±3.7
B D 55.77±1.0 53.98±0.3 55.24±1.2 54.91±0.4 53.46±0.2 71.86±17 59.43±4.2 65.23±3.9 69.81±22 67.232±2.5 80.20±3.0
A E 57.58±0.6 57.21±0.1 58.79±0.5 56.73±0.2 56.95±0.2 51.85±2.1 60.04±1.6 61.15±1.2 83.44±11 65.06±1.5 75.83±2.5
E A 56.16±1.1 53.81±0.4 56.40±1.3 53.60±0.8 53.56±0.7 50.20±4.6 55.60±2.3 61.57±3.0 89.26±12 66.97±0.8 81.61±2.8

UCIHAR
2 4 53.08±5.0 48.08±1.8 56.17±5.8 80.43±2.3 39.25±3.1 46.25±5.6 51.78±2.3 77.65±2.7 30.15±7.8 63.19±2.2 88.67±1.1
26 3 45.65±7.6 45.03±4.3 61.78±4.8 13.06±3.5 37.53±5.4 53.56±6.2 46.93±1.6 74.62±2.5 27.50±9.0 76.16±1.8 84.31±1.1
7 25 37.73±6.4 34.29±3.1 63.82±6.6 37.58±5.5 28.28±1.0 40.70±6.6 54.72±2.9 57.60±6.1 29.08±7.2 61.29±3.5 82.23±2.0
16 9 49.21±7.0 56.91±3.7 54.25±8.6 70.03±2.0 37.96±6.4 41.09±5.3 50.65±1.2 78.12±2.4 28.86±7.4 63.75±1.9 82.65±3.5
6 23 51.0±5.5 46.25±7.0 74.53±4.4 73.04±0.5 37.62±3.1 50.00±3.5 59.38±2.7 70.49±5.5 32.99±5.4 70.54±1.9 90.93±2.8
7 8 53.86±7.0 58.32±4.3 76.99±4.4 10.76±1.8 46.79±6.0 47.22±6.6 65.42±3.9 79.37±3.3 39.14±6.0 74.53±1.6 85.39±3.4
13 7 66.56±7.4 69.29±2.7 78.51±7.3 21.17±4.4 68.47±5.5 49.37±6.2 71.59±2.8 88.12±1.3 43.82±13 74.99±3.5 91.40±2.4
13 29 51.34±7.2 56.43±4.7 71.87±5.8 44.95±7.6 46.90±3.9 49.81±11 62.73±5.6 81.87±1.3 37.68±9.5 77.42±1.6 88.62±5.1

WISDM
9 18 61.99±3.4 65.97±2.0 56.75±12 75.94±2.9 55.50±7.4 40.42±7.3 41.70±2.9 75.31±2.8 33.75±3.3 50.07±4.1 72.65±2.2
31 11 45.82±11 41.67±4.0 59.60±13 57.85±3.0 40.23±1.6 42.73±6.9 38.09±2.5 60.70±6.5 38.16±0.6 57.42±2.1 73.28±0.3
2 6 66.53±1.1 50.12±4.7 69.40±2.9 69.03±3.3 50.43±4.2 65.15±7.1 60.32±1.1 82.12±2.0 48.65±7.0 71.32±1.4 81.81±5.1
7 25 49.72±12 59.49±7.1 64.60±1.9 39.73±5.3 47.46±7.0 48.04±7.3 34.41±0.9 71.56±4.6 39.84±5.6 47.97±2.0 89.53±1.2
3 27 55.68±12 63.28±3.1 46.15±4.5 53.97±8.2 56.06±7.4 48.12±8.6 38.10±4.5 76.87±1.2 40.43±0.7 64.84±3.5 70.87±7.7
22 8 75.57±5.5 46.56±3.2 64.53±9.2 14.81±1.0 43.48±2.9 49.11±10 38.64±3.7 59.63±2.3 46.30±6.1 61.87±2.0 87.29±1.3
6 23 61.05±3.8 46.40±5.5 70.19±4.2 72.23±0.4 51.09±5.7 67.14±3.8 57.98±3.9 73.24±2.5 49.45±12 69.06±0.7 78.90±7.3
27 20 62.23±7.9 63.33±4.6 71.66±5.3 72.50±0.7 54.89±2.6 56.92±12 53.65±4.1 91.92±0.7 51.30±17 62.03±3.1 95.72±1.4

Sleep-EDF
0 17 64.28±0.2 62.54±0.7 61.98±0.5 61.92±0.1 62.47±0.4 41.45±9.5 48.04±1.5 63.43±0.2 36.65±0.3 54.34±0.3 64.47±0.3
16 15 75.22±0.1 74.09±0.6 74.01±0.1 71.32±0.1 71.18±0.6 35.49±2.0 38.69±1.5 73.56±1.6 29.88±2.0 59.83±0.9 73.49±1.1
1 6 53.85±0.5 59.45±1.4 57.26±0.5 56.09±0.4 54.19±1.5 48.62±1.3 45.88±0.2 52.37±1.1 42.81±8.5 49.10±0.8 61.19±0.5
6 8 61.45±0.3 61.26±0.4 60.32±0.3 58.69±0.2 58.85±1.1 45.18±3.8 43.99±0.6 60.43±0.3 30.18±7.6 47.12±0.6 62.55±0.7
18 1 60.66±0.3 61.41±0.8 58.24±0.7 56.15±0.1 58.81±0.3 50.89±1.1 50.37±0.8 61.84±0.6 45.46±15 50.43±0.6 62.58±0.5
12 14 49.99±1.4 52.42±0.8 49.87±0.8 40.47±0.4 40.02±2.1 34.3±8.2 41.66±1.3 49.71±2.9 39.77±7.6 42.83±0.6 61.07±0.7
15 19 69.38±0.1 67.53±0.2 67.12±0.1 66.69±0.1 66.3±0.3 61.48±0.9 43.0±0.7 69.21±0.1 25.09±10 57.19±0.1 68.32±0.2
18 14 54.84±0.5 53.59±0.7 53.65±0.8 49.71±0.6 54.79±1.8 39.93±3.9 41.0±2.8 54.49±0.5 36.09±8.6 46.32±0.7 58.75±0.3

Table 1: Accuracy of different models on WISDM, UCIHAR, HHAR and SleepEDF. The best result is in bold. S and T represent source and
target.

to reduce the distribution discrepancy between the source and
target domains in the domain-invariant representation space,
thereby improving the model’s generalization ability. More-
over, by increasing the distances among hyperspheres rep-
resenting different categories, we can enlarge the margin of
classification boundaries among different categories of data.
This allows the model to make more precise distinctions on
the target data, rather than ambiguous classifications, leading
to improved classification performance.

Formally, given a source dataset P̂ with k classes of la-
beled data, our goal is to minimize the radius of the hyper-
sphere for each class in domain-invariant feature space. The
hyperspheres center of j-th class is cj and the corresponding
radius is Rj . For simplicity, we use P̂ j to denote the source
instances whose label y is j. Then the objective of class-wise

hypersphere with penalty is as follows:

Lsphere =
∑k

j=1
[R2

j + σExs∈P̂ j max{0,

∥Hv(xs)− cj∥2 −R2
j}].

(5)

The first term Rj minimizes the radius directly, while the
second term is a soft penalty to restrict source data inside the
sphere. Specifically, we calculate the distance of each source
domain-invariant feature Hv(xs) to its class center cys , then
penalize features with distance larger than Rj by measuring
max{0, ∥Hv(xs)− cys∥2 −R2

j}, and σ is a hyper-parameter
controlling the trade-off between the penalty term and radius.

3.4 Domain-specific Representations Learning
In our framework, the domain-specific features are learned
through the objective of predicting the data from either the
source or the target. For simplicity, we use Hc(x) to denote
the domain-specific feature output by the network. The out-
put of the domain classifier is C(Hc(x)). Then the objective



of the domain classifier is to minimize:
Ldomain = −(Exs∼P̂ log(C(Hc(xs)))

+ Ext∼Q̂ log(1− C(Hc(xt)))).
(6)

Optimizing this objective alone cannot ensure that the
model captures the domain-specific features fully, since there
are usually several domain characteristics, not just one. But
once the model learns a particular characteristic that is totally
different between source and target, the model stops learn-
ing other domain knowledge because it has already made a
distinction between the two domains.

Intuitively, this issue can be solved by encouraging the
model to learn features from different observation data each
time. To be specific, we design the following domain-
preserving data augmentation methods on domain classifier:
• Time-series window cropping: We randomly crop several

slices from the original temporal data and paste them all as
a new instance. This method tend to capture local domain
characteristics existing in some segments like oscillation.

• Shuffling: We split time series data into some segments and
then perform re-ordering to generate a synthetic time series.
This method tends to capture local domain knowledge.

• Adding noise: We add noises like Gaussian noise and white
noise to avoid our network capturing local noise as the
domain-specific pattern considering that time series data is
long-lasting and may contain noisy patterns like impulses.

• Segment reversing: We randomly perform reversing on
some segments along the time-axis of data. This method
aims to eliminate the temporal information and preserve the
frequency information which is invariant to reversing, such
as amplification and phase spectrum.

Overall Objective. We review all parts of our model and
give an overall learning objective. Our model is optimized
by adversarial learning. In the first stage, we optimize the
model components except for the domain discriminator, the
objective is to minimize:

Lall = Ltask + αLdomain + βLnet + γLsphere. (7)

In the second stage, we optimize the discriminator and fix
other components, the objective is to minimize Ldis. The
two stages are optimized iteratively. The whole learning al-
gorithm of CADT is presented in the appendix.

4 Experiments
In this section, we conduct sufficient experiments to validate
the effectiveness of the proposed model.

4.1 Experimental Setup
Datasets In our experiments, we utilize five datasets:
CHARGE and ELEC from industrial practice, and UCI-
HAR [Reyes-Ortiz et al., 2016], WISDM [Kwapisz et al.,
2011], SleepEDF [Ragab and Eldele, 2022] from publicly
available datasets. Details of datasets will be provided in the
supplementary materials1.

1The code and supplementary materials are available at https:
//github.com/IJCAI-CADT/cadt

Dataset CNN w/o CH w/o CIN CADT

CHARGE 49.04 49.61 56.99 56.50

UCIHAR 48.83 76.81 85.04 85.17

WISDM 71.10 77.00 76.99 78.59

Table 2: The performance of not using domain adaptation (CNN),
coupled interactive networks (w/o CIN), class-wise hyperspheres
(w/o CH)

Baselines We compare our proposed method with five
types of baselines. The first category comprises deep learn-
ing networks with no adaptation, including CNN, RNN,
DDNN [Qian et al., 2019], and MultiRocket [Tan et al.,
2022]. MultiRocket is a fast time series classification (TSC)
algorithm known for achieving state-of-the-art accuracy. We
design these baselines to serve as a lower bound, revealing
the gap of data distribution between source domain and tar-
get domain. The second type is RNN-based domain adap-
tation methods including R-DANN [Tonutti et al., 2019],
VRADA [Purushotham et al., 2017] SASA [Cai et al., 2021].
Other types are CNN-based (CoDATS [Wilson et al., 2020]),
attention-based (DAF [Jin et al., 2022]) domain adaptation
methods and TCN-based (CLUDA [Ozyurt et al., 2023]).
The implementation detailed will be presented in the supple-
mentary materials.

4.2 Performance Comparison
We compare the performance of CADT with other baselines
on public and industrial datasets. Tab. 1 shows that on the
CHARGE dataset, our method achieves the best accuracy. es-
pecially in challenging scenarios.

The ELEC dataset includes 5 cities with varying eco-
nomic conditions and regulatory intensities related to elec-
tricity theft. Our model outperforms all baseline methods,
achieving the highest acc score . This demonstrates its adapt-
ability to domains with different economic situations and ge-
ographical locations.

We use two common human activity recognition. From
Tab. 1 , we find that CoDATS outperforms RNN-based meth-
ods, and our CADT outperforms all other baselines, showcas-
ing the superiority of our disentangled CADT model. Addi-
tionally, we observe that CNN-based networks without adap-
tation can sometimes perform well, especially when partici-
pants have very similar health conditions.

The Sleep-EDF dataset is particularly unique; we ob-
served that it is highly susceptible to negative transfer, re-
sulting in suboptimal performance for transfer models other
than CADT and CoDATS. However, overall, our model still
achieves optimal performance.

4.3 Ablation Study
In this section, we validate the effectiveness of our method
by demonstrating the performance influence of several com-
ponents contributing to our method. Additionally, we provide
an intuitive understanding of our learned hidden representa-
tions by projecting them into two-dimensional embeddings.
Effectiveness of coupled interactive networks. We inves-
tigate the effectiveness of our coupled interactive networks

https://github.com/IJCAI-CADT/cadt
https://github.com/IJCAI-CADT/cadt


Source

a) Domain-invariant w/o CIN b) Domain-invariant with CIN

Target Walking Walking Upstair Sitting LyingStandingWalking Downstair

c) Domain-specific w/o CIN d) Domain-specific with CIN

Figure 4: Domain-invariant and domain-specific features with and w/o the coupled interactive networks.

b) Domain-invariant with CHa) Domain-invariant w/o CH

Source Target Walking Walking Upstair
Sitting LyingStandingWalking Downstair

Figure 5: Effectiveness of class-wise hypersphere.

Figure 6: Convergence analysis for training and testing.

(CIN) for learning domain-specific and domain-invariant fea-
tures. Initially, we compare the performance by removing the
domain-specific component (“w/o CIN”). Results in Tab. ??
show reduced precisions in both datasets. We further give
an intuition in Fig. 4 by projecting learned features linearly
into a 2-dimensional space. By comparing Fig. 4(a) and
Fig. 4(b), we find that CIN reduces the domain-invariant gap
between the source and target domain. However, leverag-
ing CIN helps to pull in the distance between them. We
also drop the domain-invariant component of our model and
compare the learned domain-specific features in Fig. 4(c) and
Fig. 4(d). Additionally, the learned domain-specific features
contain less class information in Fig. 4(d) since the distance
among different categories is closer.
Effectiveness of class-wise hypersphere. We explore the
effectiveness of class-wise hyperspheres (CH). ”w/o CH”
refers to without the class-wise hyperspheres constraint (CH).
Results in Tab. ?? show that CH significantly improves our
ability to predict target labels. In Fig. 5(a), without CH,
domain-invariant features are dense and hard to distinguish.

Fig. 5(b) shows that features of each class are restricted into
a very compact cluster and features from different classes are
far away in the latent space. Furthermore, we also display
the process of convergence with and without CH. Fig. 6(a)
shows that leveraging class-wise hyperspheres makes the
curve more stable and achieves a better performance. In con-
trast, the performances without hyperspheres are very unsta-
ble, because the classification margin is small and the classi-
fier learned in the source data is easy to make wrong predic-
tions on the target data.
Effectiveness of temporal data augmentation. Temporal
data augmentation methods are designed for better learning
of domain information. We hope that the augmented data can
help the model learn plentiful domain-specific features. We
compare the performance and convergence of using data aug-
mentation or not. Fig. 6(b) displays that temporal data aug-
mentation helps the model learn better domain-specific fea-
tures for domain classification,

5 Conclusion
In this paper, we propose CADT, a time-series domain adap-
tation framework that disentangles domain-invariant repre-
sentations from domain-specific ones using coupled interac-
tive networks. We employ adversarial learning with a novel
class-wise hypersphere constraint to learn domain-invariant
representations, and introduce domain-preserving data aug-
mentation methods. Our extensive experiments on two pub-
lic datasets and three real-world applications demonstrate the
effectiveness of CADT compared to several state-of-the-art
baselines.
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