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ABSTRACT
Network embedding, a graph representation learning method illus-

trating network topology by mapping nodes into lower-dimension

vectors, is challenging to accommodate the ever-changing dynamic

graphs in practice. Existing research is mainly based on node-by-

node embedding modifications, which falls into the dilemma of

efficient calculation and accuracy. Observing that the embedding

dimensions are usually much smaller than the number of nodes, we

break this dilemma with a novel dynamic network embedding para-

digm that rotates and scales the axes of embedding space instead of

a node-by-node update. Specifically, we propose the Dynamic Adja-

cency Matrix Factorization (DAMF
1
) algorithm, which achieves an

efficient and accurate dynamic network embedding by rotating and

scaling the coordinate system where the network embedding re-

sides with no more than the number of edge modifications changes

of node embeddings. Moreover, a dynamic Personalized PageRank

is applied to the obtained network embeddings to enhance node

embeddings and capture higher-order neighbor information dy-

namically. Experiments of node classification, link prediction, and

graph reconstruction on different-sized dynamic graphs suggest

that DAMF advances dynamic network embedding. Further, we un-

precedentedly expand dynamic network embedding experiments to

billion-edge graphs, where DAMF updates billion-level parameters

in less than 10ms.
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1 INTRODUCTION
Network embedding is an advanced graph representation learn-

ing method that maps each node in a graph to a vector in a low-

dimensional space while preserving the graph’s topological in-

formation [2]. It is a versatile approach with successful practical

applications in a wide range of fields, such as recommendation

systems and bioinformatics [6, 7, 24, 32, 34, 41].

In practice, however, changes in graph structure are frequent and

inevitable. For instance, in a social network, the nodes representing

the new members are added in connection to the original network

over time, forming new edges. On such dynamic graphs, the net-

work embeddings should be updated with the transformation of the

graphs to empower the model to capture crucial insights, such as

which groups are more active or which members are more likely to

be influencers. Moreover, the temporal evolution contributes to the

portrait of the new members. Unfortunately, the frequent evolving

patterns and the extensive network scale require enormous time

and space to retrain the network embedding to model the dynamic

network effectively.

Recent research has encountered a dilemma in efficiency and

effectiveness. That is, precisely modifying the network embeddings

leads to excessive inefficiencies. Some methods [5, 50, 54] choose to

adjust the embedding of nearly every node (also known as global

updates), resulting in high time complexity. On the other hand,

some works [8, 15, 19, 21] make trade-offs by updating only the

more affected nodes in the graph (also known as local updates) to

ensure good efficiency, but constantly bringing errors and, conse-

quently, leading to performance degradation. Moreover, existing

applications like short video instant recommendations require high

instantaneity, which indicates it is inappropriate to use delayed re-

training methods, like gathering multiple modifications for a single

update.

We break the dilemma by rotating and scaling the coordinate

axes of the embedding space instead of updating individually from

the nodes’ perspective. By calculating the space projection matrices,

the newly added edge is captured while retaining the semantics of

the embedding from the previous step. By means of an embedding
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space projection matrix and a small number of modifications of

the node embedding, each node vector embedding in the graph

will be relocated at the updated position in the embedding space.

This approach is efficient since the number of coordinate axes (i.e.,

the dimension of the embedding) is significantly fewer than the

number of nodes while retaining a high accuracy level compared

to local updates.

In light of the preceding ideas, we propose the Dynamic Adja-

cency Matrix Factorization (DAMF) algorithm. The corresponding

space projection matrix is solved based on Zha-Simon’s t-SVD up-
date formula [46], with additional modification at most Δ𝑚 nodes’

embedding, where Δ𝑚 is the number of edge changes in the graph.

Further, inspired by the great success of the application of Person-

alized PageRank (PPR) to static network embeddings [38, 42, 43]

and graph neural networks [9], we use a dynamic PPR to enhance

the network embedding in order to capture high-order neighbors’

information.

With the above design and ideas, DAMF also provides theoretical

guarantees of effectiveness and efficiency. For effectiveness specifi-

cally, let Ã be the low-rank approximation of the adjacency matrix

represented by current network embedding, the unenhanced DAMF

achieves the matrix factorization of the updated Ã with node or

edge change (Theorem 1 & 2 ). Moreover, the dynamic embedding

enhancement converges into accurate PPR propagation. For effi-

ciency, the time complexity of the DAMF algorithm is proved to be

𝑂 (Δ𝑚) when hyperparameters are considered constants.

In addition, we are the first to extend dynamic network embed-

ding experiments to billion-edge graphs, which is a breakthrough

in the scale of massive graphs. We conduct our experiment on

Twitter, a real-world graph dataset with 41 million nodes and 1.4
billion edges, and map each node to a 128-dimensional vector with

the number of learnable parameters more than 10 times that the

BERT-Large’s [16]. We add nodes to the graph and updated the

network embeddings individually, starting from 1000 nodes. The

total updating time of DAMF is 110 hours, illustrating that DAMF

achieves billion-level parameter updates in less than 10ms. In addi-

tion, we have conducted experiments on node classification, link

prediction, and graph reconstruction on graphs of different sizes.

The experimental results show that DAMF reaches a new state of

the art in dynamic network embedding.

To summarize, we make the following contributions:

• We present the DAMF algorithm, a novel dynamic network em-

bedding method based on embedding space projections, and aug-

ment the embedding with dynamic PPR to capture higher-order

neighbourhood information.

• We theoretically illustrate the efficiency and effectiveness of

DAMF.

• To the best of our knowledge, we are the first to extend dynamic

network embedding to a dataset with billions of edges. Exper-

imental results show that our proposed methods use only an

average of 10𝑚𝑠 to complete global parameter updates. We also

conduct experiments on five other actual network data, and the

results show that the proposed methods reach a new state of the

art in dynamic network embedding.

Table 1: Notations

Notation Description

G(V, E) the graph with node setV and edge set E
𝑛,𝑚 the number of nodes and the number of edges

Δ𝑚 the number of edges change in graph

𝑑𝑒𝑔(𝑢) the degree (in-degree or out-degree) of node 𝑢

A, D the adjacency matrix and degree matrix

B, C the low-rank representation of the updated matrix.

X, Y the context embedding and content embedding

Z the enhanced context embedding

F,G the space projection matrix for X and Y
ΔX,ΔY the node vectors that are directly modified

𝑑 the dimension of the embedding space

𝛼 the damping factor in Personalized PageRank
𝜖 the error tolerance in Personalized PageRank

2 PRELIMINARIES
Consider a graph G = (V, E), where V denotes the node set of

𝑛 nodes and E denotes the edge set of 𝑚 edges. Dynamic graph
scenario is a sequential update events {𝐸𝑣𝑒𝑛𝑡1, ..., 𝐸𝑣𝑒𝑛𝑡𝑇 } with
an initial graph G0. Each event is one of either node change or

edge change. Let A ∈ R𝑛×𝑛 be the adjacency matrix of G, and
D = 𝑑𝑖𝑎𝑔{𝑑𝑒𝑔[1], 𝑑𝑒𝑔[2], ..., 𝑑𝑒𝑔[𝑛]} be the diagonal degree matrix

where deg[𝑖] = ∑
𝑗 A[𝑖, 𝑗] is the out-degree of 𝑖-th node. Network

embedding aims at mapping each node in graph G to one or two

low-dimensional vectors, which capture each node’s structural in-

formation in the graph. In this paper, for a given dimension 𝑑 ≪ 𝑛,

the 𝑖-th node in graph G is mapped to two vectors X[𝑖],Y[𝑖] ∈ R
𝑑
2

with equal dimension, which capture the structural information.

Dynamic Network Embedding updates the result of the embedding

for the 𝑡-th event, and the snapshot of the updated embedding is

noted as X𝑡 , Y𝑡 .

In this paper, matrices are denoted in bold uppercase letters. Let

M be arbitrary matrix, M[𝑖] is the 𝑖-th row vector of M, M[:, 𝑗]
is the 𝑗-th column vector of M, and M[𝑖, 𝑗] is the element on the

𝑖-th row 𝑗-th column of M. In addition, we use M[: 𝑙] to denote

the submatrix consisting of the first 𝑙 rows of M, and use M[𝑙 :] to
denote the submatrix consisting of the remaining part of M.

3 RELATEDWORK
3.1 Network Embedding
Network embedding aims to reflect the structural information of

nodes in a graph by mapping each node into a low-dimensional

vector [14]. Compared to another popular graph learning method,

Graph Neural Networks (GNNs), it has no requirement for any

features or attributes of nodes.

Studies on network embedding can simply be classified into

gradient-based methods and matrix factorization-based methods.

Gradient-based methods like DeepWalk [28], node2vec [12], and

LINE [35] learn a skip-gram with negative sampling from random-

walk on the graph, while GraphGAN [40], GA [1], DNGR [4] use

deep learning method to learn network embedding. For matrix

factorization-basedmethods, AROPE [51], NetMF [31], NetSMF [30],
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and LightNE [29] construct a matrix that reflects the properties of

the graph and factorizes it to obtain the network embedding, while

ProNE [48] and NRP [42] obtain network embedding by propagates

the embedding on the graph after the factorization.

Among the network embedding methods, those who use PageR-

ank [26], such as VERSE [38], STRAP [44], and NRP [42], have

achieved an ideal result since they better capture the information

of high-order neighbors.

3.2 Dynamic Network Embedding
Numerous graphs in the industry are dynamic with frequent node

or edge modifications, which leads to the emergence of network em-

bedding methods on dynamic graphs. Methods for dynamic graph

embedding can be categorized as node-selection-based, matrix-

factorization-based, and others.

Node-selection-based methods. Node-selection-based meth-

ods choose to update only a limited number of embeddings node-

by-node, resulting in poor performance. DNE [8] updates the em-

bedding of nodes by adapting the skip-gram to the dynamic graph;

Dynnode2vec [21] fine-tunes the previous result with the newly

sampled data; GloDyNE [15] improves the node selection strategy

to guarantee a global topological relationship; LocalAction [19]

achieves an efficient and dynamic network but with poor perfor-

mance by randomly selecting a small number of neighbors around

the updated nodes and modifying their embedding.

Matrix-Factorization-based methods.Matrix-factorization-

based methods prefer global updates that adjust the embedding of

almost every node, which leads to high time complexity. TRIP [5]

efficiently updates the top eigen-pairs of the graph, but leads to a

significant accumulation of errors; TIMERS [50] uses recalculation

to mitigate the errors caused by TRIP; RandNE [49] uses a random

projection method to update the factorization of the adjacency

matrix; DHEP [54] modifies the most affected eigenvectors using

the matrix perturbation theory. Unfortunately, regardless of the

amount of changes, the time complexity of these methods except

RandNE for a graph with 𝑛 nodes is at least 𝑂 (𝑛).
Other methods. DynGEM [11] and NetWalk [45] use an auto-

encoder to continuously train the model with parameters inherited

from the last time step with a regularization term. DepthLGP [20]

considers adding nodes to the dynamic graph as if they were out-

of-sample and interpolating their embedding. However, the above

methods are difficult to adapt to frequently changed graphs or cold

start scenarios.

As a distinction, the dynamic network embedding in this paper

tries to adapt embedding updates to dynamically changing graphs

instead of mining the graph for temporal information(e.g., Dynam-

icTraid [53], CTDNE [25], DTINE [10], tNE[33]), and the nodes

have no attributes or features(e.g., EvolveGCN [27], DANE [18]).

4 METHODOLOGY
In this section, we develop the Dynamic Adjacency Matrix Fac-

torization (DAMF) algorithm. Figure 1 shows an overview of the

proposed DAMF algorithm. In what follows, Section 4.1 introduces

the concept of dynamic network embeddings based on space pro-

jections. Section 4.2 and Section 4.3 demonstrate how to modify

the space projection matrix and the node embedding for node and

edge changes, respectively. Section 4.4 presents an enhanced ap-

proach for dynamic network embedding using dynamic Personal-

ized PageRank. Section 4.5 gives the detailed steps of the DAMF.

Section 4.6 analyzes the time and space complexity of DAMF.

4.1 Dynamic Embedding via Space Projection
The truncated singular value decomposition(t-SVD) of the adja-

cency matrix of a graph provides an ideal network embedding. For

a graph G with adjacency matrix A ∈ R𝑛×𝑛 , this method provides

a network embedding X,Y ∈ R𝑛×𝑑 with dimension 𝑑 by

U,Σ,V← t-SVD(A, 𝑑), X← U
√

Σ, Y← V
√

Σ, (1)

In the scenario of a dynamic graph, the adjacency matrix changes

over time, causing its t-SVD to change as well. However, the instan-

taneous recalculation of t-SVD is time-consuming, especially for

large-scale adjacency matrices.

To cope with this problem, we propose a novel paradigm for

updating network embedding by rotating and scaling (i.e., space

projection) the space coordinate axes of embedding, with only a

small number of nodes to update additionally. Specifically, we take

the network embedding X,Y at time 𝑡 − 1, rotate and scale its

coordinate axis by the space projection matrices F,G ∈ R𝑑×𝑑 , then
addΔ𝑋 andΔ𝑌 respectively to get the updated network embeddings

X𝑡 and Y𝑡 at time 𝑡 in the new coordinate system by

X𝑡 ← X𝑡−1 · F + ΔX𝑡 , Y𝑡 ← Y𝑡−1 · G + ΔY𝑡 (2)

where the number of non-zero rows in ΔX𝑡 and ΔY𝑡 is the

number of nodes that need to be modified for embedding.

Nevertheless, the complexity of computing X𝑡−1 · F and Y𝑡−1 ·G
is very high. To address this issue, we map all graph modifications

to a base space that stores network embeddings at any given times-

tamp. By matrix multiplication, successive space projections can be

merged. To improve efficiency, we apply a “lazy” query optimiza-

tion that keeps the accumulated modifications until a query of new

embedding appears.

Specifically, X0 and Y0 are the initialized network embeddings

of Xb,Yb ∈ R𝑛×𝑑 at timestamp 0, while the space projection ma-

trix PX, PY ∈ R𝑑×𝑑 are initialized with the identity matrix. The

operation in Eq. (2) can be transformed into

PX,𝑡 ← PX,𝑡−1 · F, X𝑏,𝑡 ← X𝑏,𝑡−1 + ΔX𝑡 · P−1X,𝑡

PY,𝑡 ← PY,𝑡−1 · G, Y𝑏,𝑡 ← Y𝑏,𝑡−1 + ΔY𝑡 · P−1Y,𝑡
(3)

Then, the space projection matrix and node embedding will be

modified for each change to the graph.

4.2 Node Change
Adding nodes to a graph is equivalent to adding an equal number of

rows and columns to its adjacencymatrix.Without losing generality,

we consider the newly added node is in the last column and row

of adjacency matrix, and we treat the column and row addition as

two individual steps, that is,

A′ ← [A𝑡−1,B1
], A𝑡 ← [A′⊤,B2

]⊤ (4)

Because adding a row and adding a column are symmetrical,

we describe our method in terms of adding a column to reduce

redundant statements, and we use B to denote B1 and B2 above.
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t-SVD of 

Figure 1: Overview of DAMF

The procedure for adding a row is the same, with all matrices are

simply transposed.

In DAMF, without loss of generality, we consider the single node

or edge update, that is, B (and B, C in the Section 4.3) is 𝑛-by-1

matrix (or vector)

Due to the connectivity of graphs, adding nodes is often accom-

panied by adding edges. Let Δ𝑚 be the number of edges added to

the graph. Since B is a part of the adjacency matrix, we give the

following property without proof.

Property 1. B has at most Δ𝑚 non-zero elements.

For the matrix’s expanded part B, we use a space projection idea

on the embedding space with a small number of modifications for

node embeddings to fit the updated graph.

Lemma 1. For arbitrary matrices B ∈ R𝑛×𝑞,C ∈ R𝑞×𝑝 , if B has 𝑡
non-zero rows, then BC has at most 𝑡 non-zero rows.

Theorem 1 (Space Projection for Node Change). Assuming
B is a matrix ∈ R𝑛1×1 with at most Δ𝑚 non-zero elements. Let X1 ∈
R𝑛1×𝑑 ,Y1 ∈ R𝑛2×𝑑 be arbitrary network embedding with

X
1
Y⊤
1
= U1𝚺1V⊤

1
= Ã, (5)

where Ã ∈ R𝑛1×𝑛2 ,
then there exists space projection matrices F ∈ R𝑑×𝑑 ,G ∈ R𝑑×𝑑 ,

and embedding modification matrices ΔX ∈ R𝑛1×𝑑 , ΔY ∈ R(𝑛2+1)×𝑑

with at most Δ𝑚 non-zero rows , such that

X2 = X1F + ΔX, Y2 = Y1G + ΔY, (6)

where X2 ∈ R𝑛1×𝑑 ,Y2 ∈ R(𝑛2+1)×𝑑 is a network embedding from a
rank-𝑑 t-SVD of [Ã,B], i.e.,

(U2, 𝚺2,V2) ← t-SVD( [Ã,B], 𝑑) (7)

X2 = U2

√︁
𝚺2, Y2 = V2

√︁
𝚺2 (8)

Proof. Let WB = U⊤
1

B, and the normalized (I − U1U⊤
1
)B be

𝑅B = ∥(I − U1U⊤
1
)B∥2, QB = (I − U1U⊤

1
)B/𝑅B (9)

It can be proved that such a QB is orthogonal to all column vectors

of U1.

According to Zha-Simon’s formula [46], we have[
X
1
Y⊤
1

B
]
=
[
U1𝚺1V⊤

1
B
]

=
[
U1 QB

] [Σ1 WB
𝑅B

] [
V⊤
1

I

]
≈ (

[
U1 QB

]
E)𝚯(

[
V1

I

]
H)⊤

= U2𝚺2V⊤
2

(10)

with

U2 = [U1 Q𝐵]E, Σ2 = 𝚯, V2 = (
[
V1

I

]
H) (11)

where the matrix product E𝚯H denotes a compact rank-𝑑 t-SVD

with

E,𝚯,H← t-SVD(
[
𝚺1 WB

𝑅B

]
, 𝑑) (12)

What is mentioned above is Zha-Simon’s t-SVD update scheme.

The following will show how to obtain the space projection matrix

and embedding modification vectors.

The central idea of the proof is to express the update of U,V
in Eq.(11) as a space projection onto U,V plus a matrix with
at most Δ𝑚 non-zero rows. This is because in the update of U in

Eq.(11), QB can be written as

QB = 𝑅−1B (I − U1U⊤
1
)B = 𝑅−1B B − U1 (𝑅−1B U⊤

1
B) (13)

Notice that 𝑅B is a scalar, so 𝑅−1B B is a sparse matrix with at most

Δ𝑚 non-zero rows. Moreover, U1 (𝑅−1B U⊤
1

B) is a space projection
onto U1 (which can be further merged).
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Specifically, we split the matrix multiplication in Eq.(11) for𝑈

with

U2 = [U1 Q𝐵]E
= U1E[: 𝑑] + QBE[𝑑 :]
= U1E[: 𝑑] + (𝑅−1B B − U1 (𝑅−1B U⊤

1
B)E[𝑑 :]

= U1 (E[: 𝑑] − (𝑅−1B U⊤
1

B)E[𝑑 :]) + 𝑅−1B BE[𝑑 :]

(14)

which is clearly a space projection on the columns of U1 plus a

sparse matrix with at most Δ𝑚 non-zero rows. And, similarly, for

the update on V in Eq.(11) we have

V2 = (
[
V1

I

]
H) =

[
V1

]
H[: d] +

[
I1×1

]
H[d :] (15)

Since X1 = U1

√
Σ1, Y1 = V1

√
Σ1 and X2 = U2

√
Σ2, Y2 = V2

√
Σ2,

we have

X2 =X1𝚺
−1/2
1
(E[: 𝑑] − 𝑅−1B WBE[𝑑 :])𝚺1/2

2

+ 𝑅−1B BE[𝑑 :]𝚺1/2
2

Y2 =Y1𝚺
−1/2
1

H[: 𝑑]𝚺1/2
2

+
[
I1×1

]
H[𝑑 :]𝚺1/2

2

(16)

and we take

F = 𝚺
−1/2
1
(E[: 𝑑] − 𝑅−1B WBE[𝑑 :])𝚺1/2

2
(17)

G = 𝚺
−1/2
1

H[: 𝑑]𝚺1/2
2

(18)

ΔX = 𝑅−1B BE[𝑑 :]𝚺1/2
2

(19)

ΔY =

[
I1×1

]
H[𝑑 :]𝚺1/2

2
(20)

Since B has at most Δ𝑚 non-zero rows (as stated in Lemma 1),

ΔX has at most Δ𝑚 non-zero rows, and it is clear that ΔY has only

one non-zero row. □

The above proof provides the space projection matrices F,G to

use in the embedding space, and shows that ΔX and ΔY require at

most Δ𝑚 nodes’ embedding to be modified additionally in a node

change process.

4.3 Edge Change
Considering adding a directed edge (𝑢, 𝑣) to the graph, the change

in the adjacency matrix can be expressed as a low-rank update by

A𝑡 ← A𝑡−1 + ΔA𝑡 , ΔA𝑡−1 = BC⊤ (21)

with

B = 𝑒𝑢 , C = 𝑒𝑣 (22)

where 𝑒𝑖 denotes the standard basis (i.e., a vector whose components

are all zero, except the 𝑖-th element is 1).

Theorem 2 (Space Projection for Edge Change). Assuming
B and C are matrices ∈ R𝑛×1 with at most Δ𝑚 non-zero elements.
Let X1 ∈ R𝑛×𝑑 ,Y1 ∈ R𝑛×𝑑 be arbitrary network embedding with

X
1
Y⊤
1
= U1𝚺1V⊤

1
= Ã, (23)

where Ã ∈ R𝑛×𝑛 ,

then there exists space projection matrices F ∈ R𝑑×𝑑 ,G ∈ R𝑑×𝑑 ,
and embedding modification vectors ΔX ∈ R𝑛×𝑑 and ΔY ∈ R𝑛×𝑑
with at most Δ𝑚 non-zero rows , such that

X2 = X1F + ΔX, Y2 = Y1G + ΔY, (24)

where X2 ∈ R𝑛×𝑑 ,Y2 ∈ R𝑛×𝑑 is a network embedding from a rank-𝑑
t-SVD of Ã + BC⊤, i.e.,

(U2, 𝚺2,V2) ← t-SVD(Ã + BC⊤, 𝑑) (25)

X2 = U2

√︁
𝚺2, Y2 = V2

√︁
𝚺2 (26)

Proof. Similar to the proof of Theorem 1, firstly, let WB = U⊤
1
𝐵

and WC = V⊤
1

C. And the normalized (I − U1U⊤
1
)B, (I − V1V⊤

1
)C

can be calculated by

𝑅B = ∥(I − U1U⊤
1
)B∥2, QB = (I − U1U⊤

1
)B/𝑅B (27)

𝑅C = ∥(I − V1V⊤
1
)C∥2, QC = (I − V1V⊤

1
)C/𝑅C (28)

Then let

E,Σ2,H← t-SVD(
[
Σ1 0
0 0

]
+
[
WB
𝑅B

] [
WC
𝑅C

]⊤
, 𝑑) (29)

We can get the space projection matrices F,G and embedding mod-

ification vectors ΔX, ΔY by

F = 𝚺
−1/2
1
(E[: 𝑑] − 𝑅−1B WBE[𝑑 :])𝚺1/2

2
(30)

G = 𝚺
−1/2
1
(H[: 𝑑] − 𝑅−1C WCH[𝑑 :])𝚺1/2

2
(31)

ΔX = 𝑅−1B BE[𝑑 :]𝚺1/2
2

(32)

ΔY = 𝑅−1C CH[𝑑 :]𝚺1/2
2

(33)

Since B,C have at most Δ𝑚 non-zero rows, by Lemma 1, ΔX,ΔY
have at most Δ𝑚 non-zero rows. □

The above proof provides the space projection matrices F,G to

use in the embedding space, and shows that ΔX and ΔY require at

most Δ𝑚 nodes’ embedding to be modified additionally in an edge

change process.

4.4 Dynamic Embedding Enhancement via PPR
In order to capture higher-order neighbors’s information, an en-

hancement is applied to the dynamic network embedding. Specifi-

cally, we apply a dynamic Personalized PageRank (PPR)[26] to the

updated context embedding X to get the enhanced context embed-

ding Z.
PPR Enhancement in Static Network Embedding. To better

capture higher-order neighborhood information, a mainstream ap-

proach on static network embeddings is to use Personalized PageR-
ank (PPR) [26] to enhance the network embeddings (e.g., APP,

Lemane, STRAP, VERSE, and NRP).

Specifically, for a graph with adjacency matrix A and graph

signal X ∈ R𝑛×𝑑 , the principles of PPR can be formulated as

PPR(X) =
∞∑︁
𝑖=0

𝛼 (1 − 𝛼)𝑖 (D−1A)𝑖X (34)

where D ∈ R𝑛×𝑛 is the diagonal out-degree matrix and 𝛼 is the

damping factor for PageRank.

Since solving the PPR is an infinite process, the truncated version

of PPR is commonly used in practice. Moreover, to better control er-

rors and balance efficiency, existing PageRank-based static network
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embedding methods (e.g., all methods mentioned above) typically

introduce an error tolerance 𝜖 and require PPR to converge to that

error.

Dynamic Embedding Enhancement via Dynamic PPR. Un-
fortunately, despite the success of PageRank enhancements in static

network embeddings, their methods cannot be directly migrated

to dynamic scenarios. In this work, following [3, 39, 47, 52], we

approximate the PPR based on graph propagation under a given

error limit 𝜖 .

Specifically, we use an InstantGNN [52] to enhance the embed-

ding obtained in Section 4.2 and Section 4.3. InstantGNN is an

efficient dynamic PPR method suitable for graph structure changes

and node signals (attributes). In Dynamic Embedding Enhancement,

we use the embedding obtained from dynamic truncated singular

value decomposition as the graph signal input to InstantGNN. More-

over, as the network changes, according to Theorem 1 and Theorem

2, at most Δ𝑚 nodes’ signals need to be changed. The InstantGNN

updates the result, which converges to an error tolerance 𝜖 accord-

ing to the graph structure and node signal change to achieve the

Dynamic Embedding Enhancement.

4.5 the Proposed DAMF Algorithm
In this section, we propose the Dynamic Adjacency Matrix Factor-

ization (DAMF) algorithm, consisting of four steps: Orthogonaliza-

tion, Rediagonalization, Space Projection, and Dynamic Embedding

Enhancement. Algorithm 1 and Algorithm 2 is the pseudo-code for

the DAMF algorithm.

Step 1: Orthogonalization. According to the equations X =

U
√
Σ and X𝑡 = X𝑏PX, we know that U = X𝑏PXΣ

−1/2
. Then, with

WB = U⊤B (and WC = V⊤C for edge change), we can get that 𝑅𝐵 =√︃
∥B∥2

2
− ∥WB∥2

2
, (and 𝑅𝐶 =

√︃
∥C∥2

2
− ∥WC∥2

2
for edge change) by

Eq. (9) and Eq. (28) and Proposition 1.

Proposition 1. Let U ∈ R𝑛×𝑑 be an arbitrary orthonormal ma-
trix with U⊤U = I. and ®𝑥 ∈ R𝑛 be an arbitrary vector, then

∥(I − UU⊤) ®𝑥 ∥2 =
√︃
∥ ®𝑥 ∥2

2
− ∥U⊤ ®𝑥 ∥2

2

Step 2: Rediagonalization. In this step, follow Eq. (12) for node

change, and Eq. (29) for edge change to get the t-SVD.

Step 3: Space Rotation. For node change, get F,G,ΔX,ΔY by

Eq. (17), Eq. (18), Eq. (19), Eq. (20), respectively. And for edge change,

get F,G,ΔX,ΔY by Eq. (30), Eq. (31), Eq. (32), Eq. (33), respectively.

Then update the network embedding with space projection matrix

F,G,ΔX,ΔY by Eq. (3).

Step 4: Dynamic Embedding Enhancement. In this step, the

PPR-enhanced embedding is updated by InstantGNN [52]. Specifi-

cally, InstantGNN can estimate the PPR values for dynamic graph

structures and dynamic node attributes. Here, we treat the changes

in the graph as the dynamic graph structure, and the updates of

few nodes’ embedding as the dynamic node attributes. InstantGNN

will update the embedding so that the results converge to the given

error tolerance.

Initialization of DAMF. Initially, X𝑏 ,Y𝑏 is set by a t-SVD of

the adjacency matrix A of the initial graph, and PX, Py is set to

the identity matrix. Then, use the basic propagation of PPR in

InstantGNN [52] to enhance the initial network embedding.

Algorithm 1: Update embedding via space projection

1 Procedure UpdateEmbeddingN(X,Y, PX, PY,Σ1,B, 𝑑)
/* Step 1: Orthogonalization */

2 WB ← (B⊤XPXΣ1/2
1
)⊤ ;

3 𝑅B ←
√︃
∥B∥2

2
− ∥WB∥2

2
;

/* Step 2: Rediagonalization */

4 M←
[
Σ1 WB

𝑅B

]
; // M ∈ R𝑑+1,𝑑+1

5 E, Σ2,H← t-SVD(M, 𝑑) ;
/* Step 3: Space Projection */

6 F← 𝚺
−1/2
1
(E[: 𝑑] − 𝑅−1B WBE[𝑑 :])𝚺1/2

2
;

7 G← 𝚺
−1/2
1

H[: 𝑑]𝚺1/2
2

;

8 ΔX = 𝑅−1B BE[𝑑 :]𝚺1/2
2

;

9 ΔY =

[
I1×1

]
H[𝑑 :]𝚺1/2

2
;

10 return F,G,ΔX,ΔY, Σ2;
11 Procedure UpdateEmbeddingE(X,Y, PX, PY,Σ1,B,C, 𝑑)

/* Step 1: Orthogonalization */

12 WB ← (B⊤XPXΣ1/2
1
)⊤ ;

13 WC ← (C⊤YPYΣ1/2
1
)⊤ ;

14 𝑅B ←
√︃
∥B∥2

2
− ∥WB∥2

2
;

15 𝑅C ←
√︃
∥C∥2

2
− ∥WC∥2

2
;

/* Step 2: Rediagonalization */

16 M←
[
Σ1 0
0 0

]
+
[
WB
RB

] [
WC
RC

]⊤
;

17 E, Σ2,H← t-SVD(M, 𝑑) ;
/* Step 3: Space Projection */

18 F← 𝚺
−1/2
1
(E[: 𝑑] − 𝑅−1B WBE[𝑑 :])𝚺

1

2

2
;

19 G← 𝚺
−1/2
1
(H[: 𝑑] − 𝑅−1C WCH[𝑑 :])𝚺1/2

2
;

20 ΔX← 𝑅−1B BE[𝑑 :]𝚺1/2
2

;

21 ΔY← 𝑅−1C CH[𝑑 :]𝚺1/2
2

;

22 return F,G,ΔX,ΔY, Σ2;

4.6 Complexity Analysis
In this section, we analyze the DAMF algorithm in terms of time

and space complexity. Note that the time complexity we analysis

here is only for a single graph change.

DAMF is very efficient due to the fact that the large-scale matrix

multiplications involved in DAMF are mainly of two kinds showed

in Figure 2. And Lemma 2 (Figure 2(a)) and Lemma 3 ((Figure 2(b)))

demonstrate how to use sparsity of these two special matrix multi-

plications and how they can be efficiently computed. The proofs of

these two lemmas are in the Appendix B.3 and Appendix B.4.

Lemma 2. Let A ∈ R𝑛×𝑝 ,B ∈ R𝑛×𝑞 be arbitrary matrices with B
has 𝑡 non-zero rows, the time complexity to calculate B⊤A is 𝑂 (𝑡𝑝𝑞).

Lemma 3. Let B ∈ R𝑛×𝑞,C ∈ R𝑞×𝑝 be arbitrary matrices with B
has 𝑡 non-zero rows, the time complexity to calculate BC is 𝑂 (𝑡𝑝𝑞).
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Algorithm 2: DAMF

Input: Network embedding X𝑏 ,Y𝑏 in the base space;

enhanced embedding Z𝑏 ; space projection matrix

PX, PY; singular values 𝚺; the Changes occurring in

the network 𝐸𝑣𝑒𝑛𝑡𝑡 residual vector r; PageRank
damping factor 𝛼 ; error tolerance 𝜖 ; Graph G;

Output: Updated X𝑏 ,Y𝑏 ,Z𝑏 , PX, PY, 𝚺
1 if 𝐸𝑣𝑒𝑛𝑡𝑡 is node change then
2 Convert 𝐸𝑣𝑒𝑛𝑡𝑡 to B1,B2 by Eq. (4) ;

3 F,G,ΔX,ΔY, Σ← UpdateEmebddingN(X,Y,Σ,B1) ;

4 Update X𝑏 ,Y𝑏 , PX, PY by Eq. (3) ;

5 F,G,ΔX,ΔY, Σ← UpdateEmebddingN(Y,X,Σ,B2) ;

6 Update X𝑏 ,Y𝑏 , PX, PY by Eq. (3) ;

7 else
8 Convert 𝐸𝑣𝑒𝑛𝑡𝑡 to B,C by Eq. (22) ;

9 F,G,ΔX,ΔY, Σ← UpdateEmbeddingM(X,Y,Σ,B,C);
10 Update X𝑏 ,Y𝑏 , PX, PY by Eq. (3) ;

11 end
12 Z𝑏 , r← DynamicEnhancement(Z𝑏 , r, 𝐸𝑣𝑒𝑛𝑡𝑡 ,G,ΔX, 𝛼, 𝜖));
13 return X𝑏 ,Y𝑏 ,Z𝑏 , PX, PY, 𝚺

n

q

p

(a)

n

q p

(b)

Figure 2: Two special matrix multiplications that can be effi-
ciently computed as proved by Lemma 2 and Lemma 3 (the
white color indicates zero elements in matrices)

Time Complexity of Orthogonalization (Step 1). According
to Lemma 2, the time complexity of calculating B⊤X (or C⊤Y) is
𝑂 ((Δ𝑚)𝑑2) since B (and C) has at most Δ𝑚 non-zero rows. Next,

since PX and Σ
1/2
1

are 𝑑-by-𝑑 matrices, the complexity of calculat-

ing WB (or WC, Line 2, 12, 13 in Algorithm 1) is 𝑂 ((Δ𝑚)𝑑2). At
last, the time complexity of calculating 𝑅B(or 𝑅C, Line 3, 14, 15 in
Algorithm 1) is 𝑂 (Δ𝑚 + 𝑑). Thus, the overall time complexity of

the Orthogonalization step is 𝑂 ((Δ𝑚)𝑑2).
Time Complexity of Rediagonalization (Step 2). The time

complexity of the Rediagonalization step is 𝑂 (𝑑3) by directly ap-

plying a t-SVD on a (𝑑 + 1)-by-(𝑑 + 1) matrix (Line 4, 5, 16, 17 in

Algorithm 1).

Time Complexity of Space Rotation (Step 3). The time

complexity of calculating F and G (Line 6, 7, 18, 19 in Algorithm 1)

is𝑂 (𝑑3). According to Lemma 3, the time complexity of calculating

ΔX and ΔY (Line 8, 9, 20, 21 in Algorithm 1) is 𝑂 ((Δ𝑚)𝑑2).
Moreover, the time complexity of space projection (Line 4, 6,

10 in Algorithm 2) is 𝑂 ((Δ𝑚)𝑑2 + 𝑑3) by the following steps: (1)

computing the update of PX by a 𝑑-by-𝑑 matrix multiplication;

(2) computing the inverse of PX; (3) computing BP−1X . The time

complexity of both the matrix multiplication and the inverse is

Table 2: Time Complexity of DAMF

Name Time Complexity
Step 1 Orthogonalization 𝑂 ((Δ𝑚)𝑑2)
Step 2 Rediagonalization 𝑂 (𝑑3)
Step 3 Space Rotation 𝑂 ((Δ𝑚)𝑑2 + 𝑑3)

Step 4 Dynamic Embedding

𝑂 ( (Δ𝑚)𝑐𝑑
𝛼2𝜖

)
Enhancement

𝑂 (𝑑3), while the time complexity of BP−1X is𝑂 ((Δ𝑚)𝑑2) according
to Lemma 3.

Time Complexity of Dynamic Embedding Enhancement
(Step 4). Let 𝑐 = max𝑢∈V ∥𝑑𝑒𝑔(𝑢)X(𝑢)∥∞ where X[𝑢] is the node
𝑢’s context embedding. Since the number of edges changed by the

graph structure is Δ𝑚, and at most Δ𝑚 nodes’ context embedding

that need to be updated in the previous step, according to Theo-

rem 3 and Theorem 4 in [52], the time complexity of this step is

𝑂 ( (Δ𝑚)𝑐𝑑
𝛼2𝜖

).
Overall, if we consider embedding dimension 𝑑 , Personalized

PageRank damping factor 𝛼 , error tolerance 𝜖 and 𝑐 as constant, the

purposed DAMF algorithm achieves a dynamic network embedding

for a single graph change with time complexity 𝑂 (Δ𝑚).
Time Complexity of Query Node’s Embedding The node

embedding query at any moment can be obtained by multiplying

the embedding X𝑏 ,Y𝑏 of that node in the initial space by the space

projection matrix PX, Py with time complexity of 𝑂 (𝑑2), while the
direct query in the static embedding method has a time complexity

of 𝑂 (𝑑). When we consider dimensionality a constant, the query

complexity is 𝑂 (1).
Space Complexity. The largest matrices in the DAMF method

is an 𝑛-by-𝑑 matrix, so the space complexity is 𝑂 (𝑛𝑑). Due to the
additional need to store the structure of the graph, the total space

complexity is 𝑂 (𝑛𝑑 +𝑚).

Table 3: Statistics of Datasets

Dataset |V| |E | #labels

small

Wiki 4,777 184,812 40

Cora 12,022 45,421 10

Flickr 80,513 11,799,764 195

large

YouTube 1,138,499 2,990,443 47

Orkut 3,072,441 117,185,083 100

massive Twitter 41,652,230 1,468,365,182 -

5 EXPERIMENT
In this section, we experimentally compare DAMF to six existing

methods on six datasets of varying sizes for three popular analytic

tasks: node classification, link prediction, and graph reconstruction.

Section 5.1 and Section 5.2 introduce the experimental settings and

tasks. In Section 5.3, Section 5.3, and Section 5.3, we present our

experimental results on small, large, and massive graphs respec-

tively. Finally, we compare the runtime of DAMF with baselines in

Section 5.4 and analyze the results of the ablation study on dynamic

embedding enhancement in Section 5.5.
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Figure 3: Node classification’s predictive performance w.r.t. the ratio of training data

5.1 Experimental Settings
Baseline. We evaluate DAMF against six existing methods, includ-

ing LocalAction [19], GloDyNE [15], Dynnode2vec [21], RandNE [49],

DynGEM [11] and DNE [8].

Datasets. We conduct experiments on 6 publicly available graph

datasets and divide the datasets into small, large, and massive scales.

As shown in Table 3, small ones includeWiki [22], Cora [15] and
Flickr [36], large ones include YouTube [37] and Orkut [23], and
Twitter [17] is considered as a massive dataset. A short description

of each dataset is given in Appendix C.3.

Setting of Dynamicity. We follow GloDyNE’s setup for the real

dataset Cora [15], a widely accepted dataset whose dynamic graph

has 11 snapshots. For other datasets, following the setting in Lo-

calAction [19] and DNE [8], we start with a small number of nodes

and gradually add the remaining ones to the graph individually

(streaming scenario); for the discrete methods GloDyNE [15], dyn-

GEM [11], Dynnode2vec [21], the continuous streaming modifica-

tions are split into 100 discrete modifications. To reflect the reality

of the recent exponential rise in social network users, we utilize a

considerably lower initial setting of 1000 nodes compared with the

methods above.

Time Limits. For small and large datasets, methods that have

not produced results for more than 3 days (72 hours) will not be

included in the results. For massive datasets, methods that have

not produced results for more than 7 days (168 hours) will not be

included in the results.

Paramater Settings. The embedding dimension 𝑑 of all methods

is set to 128 for a fair comparison. For DAMF, the damping factor 𝛼

for PPR is set to 0.3 (except for the node classification task on Cora
where it is set to 0.03) and the error tolerance 𝜖 is set to 10

−5
.

5.2 Experimental Tasks
Dynamic network embedding is tested on three tasks: node classifi-

cation, link prediction and graph reconstruction.

Node Classification is a common model training task to obtain

the labels based on the embedding of each node by training a simple

classifier. Following previous work [38, 42], we randomly select a

subset of nodes to train a one-vs-all logistic regression classifier,

and then use the classifier to predict the labels of the remaining

nodes. For each node 𝑣 , we first concatenate the normalized context

and content vectors as the feature representation of 𝑣 and then feed

it to the classifier.

Link Prediction is the method of predicting the possibility of

a link between two graph nodes. Based on earlier research, we

first generate the modified graph G′ by removing 30% of randomly

selected edges from the input graph G, and then construct embed-

dings on G′. Then, we build the testing set E𝑡𝑒𝑠𝑡 by selecting the

node pairs connected by the removed edges and an equal number

of unconnected node pairs in G.
The inner product of node’s embedding are used to make predic-

tions. Results are evaluated by Area Under Curve (AUC) and Average
Precision(AP).

Graph Reconstruction is a basic objective of network embed-

ding. According to earlier work, we begin by selecting a set S of

node pairs from the input graph G. Afterward, we apply the same

method used in link prediction to generate a score for each pair.

Then, we calculate the precision@K, the proportion of the top-K

node pairings that match edges in G.

Table 4: Link prediction results on small graphs
TLE: Time Limit Exceeded, ×: No Legal Output

Method
Dataset AUC AP

Wiki Cora Flickr Wiki Cora Flickr

LocalAction 0.5083 0.5562 0.4995 0.5812 0.5923 0.5833

GloDyNE 0.6386 0.9296 0.8511 0.6844 0.9383 0.8639

Dynnode2vec 0.5904 0.8242 0.8187 0.6639 0.8975 0.8476

RandNE 0.1092 0.8324 TLE 0.3208 0.8435 TLE

DynGEM × 0.8340 TLE × 0.8568 TLE

DNE 0.1845 0.8407 0.5361 0.3391 0.8662 0.5287

DAMF(𝛼 = 1) 0.6618 0.8555 0.9269 0.7541 0.8853 0.9474

DAMF 0.7543 0.9010 0.9550 0.7840 0.9168 0.9615

5.3 Experiment
Experiment on Small Graphs.We conduct experiments on small

graphsWiki, Cora and Flickr with all three tasks of Node Classifi-

cation, Link Prediction, and Graph Reconstruction.

The results of node classification, link prediction and graph

reconstruction are displayed in Figure 3, Table 4 and Figure 4 re-

spectively. On the node classification task, DAMF outperforms all

other competitors significantly atWiki, is comparable to other meth-

ods on other datasets, and had better performance when the ratio

of training data was smaller. For link prediction, we can see that

DAMF outperforms the baselines on almost all datasets based on

both AUC and AP values, except on the Cora dataset where it is

slightly inferior compared to GloDyNE. In terms of the result of
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graph reconstruction, DAMF is significantly better than the other

baselines. Overall, the DAMF method performs well and is stable

across different data sets.

Table 5: Link prediction results on large and massive graphs

Method
Dataset AUC AP

Youtube Orkut Twitter Youtube Orkut Twitter

LocalAction 0.4849 0.4978 0.5006 0.5548 0.5355 0.5923

DAMF(𝛼 = 1) 0.7648 0.8662 0.8732 0.8290 0.8828 0.9018

DAMF 0.7946 0.8724 0.9055 0.8510 0.8882 0.9353

Experiment on Large Graphs. Our extensive graph includes

YouTube and Orkut datasets. Unlike small graphs, we only conduct

Node Classification and Link Prediction. Due to the high number

of potential

(𝑛
2

)
pairs, we discard the Graph Reconstruction task.

It is worth noting that only LocalAction reaches the set time limit

among all competitors.

The results of node classification presented in Figure 3 indicate

that DAMF performs significantly better in comparison to LocalAc-

tion on both large graphs. The AUC and AP results for the link

prediction task are shown in Table 5. In both indicators, DAMF has

a significant advantage over the only competitor that can complete

the work within the allotted time on large graphs.

Experiment on the Massive Graphs. Massive graphs with

billion-level edges such as large-scale social networks are widely

available in the industry. However, to the best of our knowledge, dy-

namic network embedding studies on massive graphs with billion-

level edges are unprecedented. We conduct the first dynamic net-

work embedding experiments on a billion-level edge dataset Twitter
with 41 million nodes and 1.4 billion edges, and mapping each

node as a 128-dimensional vector which is more than 10 times as

many learnable parameters as BERT-Large [16].

We conduct a link prediction task to determine the nodes’ con-

nection probability. Notably, we reduce the ratio of edges deleted

in the first stage from 30% to 0.5% to ensure graph connectivity

when there are only a few nodes. We discard node classification and

graph reconstruction tasks since the Twitter dataset lacks labels

to build a classifier and the excessive number of potential pairings

makes reconstruction unattainable.

Table 5 shows the AUC and AP values. Overall, DAMF performs

well on both evaluation indicators, obtaining an AUC value of

0.9055 and an AP of 0.9353. Moreover, DAMF’s overall updating

time of 110 hours demonstrates that DAMF is capable of changing

parameters at the billion level in under 10 milliseconds.

Figure 4: Graph Reconstruction (precision@K)

Table 6: Running time

Method
Size Small Large

Wiki Cora Flickr Youtube Orkut

LocalAction 7s 6s 5m28s 5m10s 1h43m
GloDyNE 10m45s 1m5s 18h38m >3days >3days

Dynnode2vec 1m58s 1m40s 5h10m >3days >3days

RandNE 3m 5s >3days >3days >3days

DynGEM 17h4m 6h20m >3days >3days >3days

DNE 22m38s 8m57s 8h11m >3days >3days

DAMF(𝛼 = 1) 36s 1m19s 33m13s 3h10m 8h15m
DAMF 2m47s 2m6s 1h33m 3h39m 14h7m

All baseline methods except LocalAction [19] exceed the set time

limit (7 days) and are therefore excluded. However, LocalAction

seems to fail to converge on this dataset since its AUC on link

prediction is only 0.5006.

5.4 Efficency Study
Table 6 shows the running time of each method on small and large

datasets. The experimental results show that the speed of DAMF

increases more consistently as the size of the dataset expands. Ac-

cording to Table 4 and Table 5, although LocalAction is faster, its

AUC is only slightly greater than 0.5, indicating that LocalAction

makes unbearable tread-offs to obtain speed, whereas DAMF main-

tains stable effectiveness.

5.5 Ablation Study
To investigate whether the dynamic embedding enhancement bet-

ter captures the information of higher-order neighbors and thus

improves the quality of dynamic network embedding, we obtain

unenhanced embeddings by setting the PageRank damping factor 𝛼

to 1. The experimental results in Figure 3 ,Table 4, Table 5 and Fig-

ure 4 show that the enhanced embeddings are significantly better

in node classification, link prediction and graph reconstruction on

Wiki, demonstrating the effectiveness of the dynamic embedding

enhancement.

6 CONCLUSION
In this work, we propose the Dynamic Adjacency Matrix Factor-

ization (DAMF) algorithm, which utilizes a projection onto the

embedding space and modifies a few node embeddings to achieve

an efficient adjacency matrix decomposition method. In addition,

we use dynamic Personalized PageRank to enhance the embed-

ding to capture high-order neighbors’ information dynamically.

Experimental results show that our proposed method performs

well in node classification, link prediction, and graph reconstruc-

tion, achieving an average dynamic network embedding update

time of 10ms on billion-edge graphs.
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APPENDIX
A INITIALIZATION OF DAMF

Algorithm 3: Initialization of DAMF

Input: A graph G with adjacency matrix A, embedding

dimension 𝑑 , PageRank damping factor 𝛼 , error

tolerance 𝜖 .

Output: X𝑏 ,Y𝑏 ,Z𝑏 , PX, PY, r
1 U,Σ,V← t-SVD(A, 𝑑);
2 X𝑏 ← UΣ1/2, Y𝑏 ← VΣ1/2

;

3 PX ← I, PY ← I;
4 r← X𝑏 , Z𝑏 ← O;

5 Z𝑏 , r← Propagation(Z𝑏 , r,G, 𝛼, 𝜖);
6 return X𝑏 ,Y𝑏 ,Z𝑏 , PX, PY, r;

Algorithm 3 gives a detailed pseudo-code for the initialization of

the DAMF. The random projection-based truncated SVD algorithm

[13] is able to complete the t-SVD in 𝑂 (𝑛𝑑2 +𝑚𝑑) time, while the

time complexity of the PPR enhancement that follows the initializa-

tion is O(
𝑛𝑐𝑑
𝛼𝜖 ) [52]. Overall, the time complexity of the initialization

step is 𝑂 (𝑛𝑑2 +𝑚𝑑 + 𝑛𝑐𝑑
𝛼𝜖 ).

B PROOF
B.1 Proof of Lemma 1

Proof of Lemma 1. The 𝑖-th row of the result matrix of the ma-

trix multiplication of BC can be considered as the 𝑖-th row of B
multiplied by the matrix C. Therefore, if the 𝑖-th row of B is all-zero,

the 𝑖-th row of the result matrix will also be all-zero. Since B has

only t non-zero rows, BC has at most 𝑡 non-zero rows. □

B.2 Proof of Proposition 1
Proof of Proposition 1.

(I − UU⊤) ®𝑥




2
=
√︁
((I − UU⊤) ®𝑥)⊤ (I − UU⊤) ®𝑥

=
√︁
®𝑥⊤ (I − UU⊤)⊤ (I − UU⊤) ®𝑥

=
√︁
®𝑥⊤ (I − 2UU⊤ + UU⊤UU⊤) ®𝑥

=
√︁
®𝑥⊤ (I − UU⊤) ®𝑥

=
√︁
®𝑥⊤ ®𝑥 − ®𝑥⊤UU⊤ ®𝑥

=

√︃
∥ ®𝑥 ∥2

2
− ∥U⊤ ®𝑥 ∥2

2

(35)

□

B.3 Proof of Lemma 2
Proof. When performing the matrix multiplication of B⊤A, the

element on the 𝑖-th row and 𝑗-th column of the result matrix can

be obtained by the product of the 𝑖-th row of B⊤ and the 𝑗-th row

of A with

(B⊤A) [𝑖, 𝑗] = B⊤ [𝑖] · A[:, 𝑗] (36)

Because B has at most 𝑡 non-zero rows, B⊤ [𝑖] has at most 𝑡

non-zero elements. By skipping zeros in calculating the product,

the above equation can be calculated with the time complexity of

𝑂 (𝑡). And since B⊤A is a 𝑞-by-𝑝 matrix, the time complexity of

calculating B⊤A is 𝑂 (𝑡𝑝𝑞).
Algorithm 4 is a pseudo-code for the above scheme.

□

Algorithm 4: Algorithm for Lemma 2

Input: A ∈ R𝑛×𝑝 ,B ∈ R𝑛×𝑞 and B has 𝑡 non-zero rows.

Output: B⊤A
1 C← O𝑞×𝑝 ;
2 foreach l with B[𝑙] is non-zero do
3 for 𝑖 ← 1 to 𝑞 do
4 for 𝑗 ← 1 to 𝑝 do
5 C[𝑖, 𝑗] ← C[𝑖, 𝑗] + A[𝑙, 𝑗] × B[𝑙, 𝑖];
6 end
7 end
8 end
9 return C

B.4 Proof of Lemma 3
Proof. From Lemma 1, there are only at most 𝑡 non-zero rows

in the result of BC. So, by skipping the calculation of all-zero rows,

the time complexity of of calculating BC is 𝑂 (𝑡𝑝𝑞).
Algorithm 5 is a pseudo-code for the above scheme. □

Algorithm 5: Algorithm for Lemma 3

Input: B ∈ R𝑛×𝑞 and B has 𝑡 non-zero rows, C ∈ R𝑞×𝑝
Output: BC

1 D← O𝑛×𝑝 ;
2 foreach l with B[𝑙] is non-zero do
3 for 𝑖 ← 1 to 𝑞 do
4 for 𝑗 ← 1 to 𝑝 do
5 D[𝑙, 𝑗] ← D[𝑙, 𝑗] + B[𝑙, 𝑖] × C[𝑖, 𝑗];
6 end
7 end
8 end
9 return D
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C DETAILED EXPERIMENTAL SETTINGS
All experiments are conducted using 8 threads on a Linux ma-

chine powered by an AMD Epyc 7H12@3.2GHz and 768GB RAM.

For baselines that require a GPU, we used an additional NVIDIA

GeForce RTX 3090 with 24G memory. The experimental results for

each task are the average of the results of five experiments.

C.1 Additional Details of Link Prediction
The objective of link prediction is, for the directed node pair (𝑢, 𝑣),
to predict whether there is a directed edge from 𝑢 to 𝑣 . For each

pair of nodes (𝑢, 𝑣) in the test set, we determine a score by taking

the inner product of 𝑢’s context vector and 𝑣 ’s content vector. For

methods that do not distinguish between context embedding and

content embedding, we set both their context embedding and con-

tent embedding to be node embeddings. For undirected graphs, we

calculate link prediction scores for both directions separately, and

then select the larger value as the score.

C.2 Additional Details of Graph Reconstruction
For Wiki and Cora datasets, we define set S as the collection of

all conceivable node pairs. On Flickr, we construct S by taking

a 1% sample of all possible pairs of nodes. Figure 4 depicts the

performance of all methods in the graph reconstruction task with

𝐾 values ranging from 10
1
to 10

6
. DAMF performs better than its

competitors on all the datasets and for nearly every 𝐾 value. The

remarkable accuracy of DAMF is especially noticeable on the Wiki
and Cora datasets as 𝐾 increases.

C.3 Dataset
Wiki [22] is a hyperlinked network of Wikipedia. Each node

in the directed graph represents a page, and the edges represent

hyperlinks.

Cora [15] is a dynamic citation undirected network where each

node represents a paper, the edges represent citations, and each

article is labeled with the domain to which the article belongs.

Flickr [36] is an undirected network of user links on Flickr,

where nodes represent users and labels are groups of interest to the

user.

YouTube [37] is a video-sharing website where users can upload
and watch videos, and share, comment and rate them. Each user is

labeled with their favorite video genre.

Orkut [23] is an undirected social network where nodes repre-

sent users and edges represent user interactions. Users are labeled

with the community they are in.

Twitter [17] is a massive-scale directed social network where

nodes represent users and edges represent the following relation-

ship.

C.4 Code
We use the following code as our baseline:

Dynnode2vec [21]: https://github.com/pedugnat/dynnode2vec

GloDyNE [15]: https://github.com/houchengbin/GloDyNE

DynGEM [11]: https://github.com/palash1992/DynamicGEM

DNE [8]: https://github.com/lundu28/DynamicNetworkEmbedding

RandNE [49]: https://github.com/ZW-ZHANG/RandNE

As we could not find the code for LocalAction [19], we re-

implemented the pseudo-code from the paper in Python and made

our implementation available along with our experimental code.

Our code for experiments is available on:

https://github.com/zjunet/DAMF
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