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Deep Learning-Powered Electrical Brain Signals
Analysis: Advancing Neurological Diagnostics

Jiahe Li, Xin Chen, Fanqi Shen, Junru Chen, Yuxin Liu, Daoze Zhang, Zhizhang Yuan, Fang Zhao, Meng
Li and Yang Yang

Abstract— Neurological disorders pose major global
health challenges, driving advances in brain signal analy-
sis. Scalp electroencephalography (EEG) and intracranial
EEG (iEEG) are widely used for diagnosis and monitoring.
However, dataset heterogeneity and task variations hinder
the development of robust deep learning solutions. This
review systematically examines recent advances in deep
learning approaches for EEG/iEEG-based neurological di-
agnostics, focusing on applications across 7 neurological
conditions using 46 datasets. For each condition, we re-
view representative methods and their quantitative results,
integrating performance comparisons with analyses of data
usage, model design, and task-specific adaptations, while
highlighting the role of pre-trained multi-task models in
achieving scalable, generalizable solutions. Finally, we pro-
pose a standardized benchmark to evaluate models across
diverse datasets and improve reproducibility, emphasizing
how recent innovations are transforming neurological diag-
nostics toward intelligent, adaptable healthcare systems.

Index Terms— Deep learning, Neural Signal Analysis,
Electroencephalography, Neurological Disorder Diagnosis

I. INTRODUCTION

NEUROLOGICAL disorders are among the most significant
global health challenges, with profound consequences

for healthcare systems. According to the World Health Organi-
zation (WHO), neurological disorders affect over one-third of
the global population, making them a leading cause of illness
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and disability worldwide [1]. Dementia, affecting 57 million
people, is a primary concern, with Alzheimer’s disease being
the most common form [2]. Seizures impact more than 50
million individuals [3], while sleep disorders are widespread
yet underdiagnosed [4]. Other significant disorders, including
Parkinson’s disease [5], schizophrenia [6], depression [7], and
ADHD [8], further exacerbate the burden, placing strain on
healthcare systems. In low-income countries, where resources
limit access to care, the situation is particularly dire.

Practical diagnostic tools are essential to alleviate growing
global burden of neurological disorders, and electrical brain
signals are indispensable. Specifically, electroencephalography
is critical for understanding and diagnosing neurological dis-
orders. Electroencephalography evaluates electrical activity in
the brain and is categorized into scalp electroencephalography
(EEG) and intracranial electroencephalography (iEEG). EEG
is non-invasive, recording brain activity from electrodes on
the scalp [9]. iEEG places electrodes into the brain (stereo-
electroencephalography, SEEG) or onto brain’s surface (elec-
trocorticography, ECoG), providing localized information [10].

The analysis of EEG/iEEG signals poses significant chal-
lenges for traditional machine learning (ML) approaches.
These methods typically rely on manually engineered features
that may not fully capture complex patterns in neurophysi-
ological data, while their performance is often compromised
by inherent noise and artifacts in raw recordings [11], [12].
Deep learning (DL) addresses these limitations by automati-
cally extracting features, modeling temporal dependencies, and
improving robustness against signal variability [13], [14]. The
ability of DL to detect and classify neurological disorders with
high accuracy has driven widespread adoption in brain signal
analysis [15], [16]. This survey systematically examines the
workflow of DL models in brain signal analysis, focusing on
applications in diagnosing neurological disorders.

A. General Workflow

The general workflow of EEG/iEEG analysis in neurological
diagnostics is shown in Fig. 1, including three stages: signal
collection, signal preprocessing, and analysis and diagnosis.

In the signal collection stage (Fig. 1.a), electrical brain
activity is recorded using EEG/iEEG systems, typically across
multiple channels at specific sampling rates with task-related
labels. In the preprocessing stage (Fig. 1.b), techniques includ-
ing denoising, filtering and normalization reduce noise and
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Fig. 1: General Workflow of Electrical Brain Signals Analysis in Neurological Diagnostics.
a. Signal Collection: Acquisition of EEG/iEEG signals from patients, capturing brain electrical activity for clinical purposes.

b. Signal Preprocessing: A feasible workflow to process raw signals, ensuring their suitability for subsequent analysis.
c. Analysis and Diagnosis: Feature extraction and deep learning-based training for neurological classification.

d. Statistical Information: Statistical summary of resources for neurological conditions, including related work and datasets.

structure the data for feature extraction. In the analysis and
diagnosis stage (Fig.1.c), preprocessed signals undergo feature
extraction and classification. Traditional methods rely on man-
ually designed features, whereas DL automatically learns diag-
nostically relevant patterns. Finally, the extracted features are
applied to downstream tasks. Fig. 1.d highlights the distribu-
tion of related research efforts and publicly available datasets
across various neurological conditions, including seizure, sleep
disorders, major depressive disorder (MDD), schizophrenia
(SZ), Alzheimer’s disease (AD), Parkinson’s disease (PD), and
attention deficit hyperactivity disorder (ADHD).

B. Related Studies and Our Contributions
Existing brain signal analysis surveys exhibit diverse scopes

and focuses. Some focus on EEG, emphasizing their wide
availability [17], [18]. Others broaden the scope to include
brain signals like magnetic resonance imaging (MRI) [19],
[20], which differ from EEG/iEEG in temporal resolution and
preprocessing requirements. From a task perspective, some re-
views focus specifically on diseases such as seizure [21], [22],
providing in-depth insights into disease-specific applications.
Others take a broader view, covering brain-computer interface
(BCI) applications [23], [24], which focus on interaction and
control, differing from neurological diagnostic tasks.

To provide a systematic perspective, we conducted a struc-
tured literature search in PubMed, Science Direct, and Google
Scholar over the past ten years. Combinations of the terms
EEG/iEEG, deep learning, and disease-related tasks were
used. Studies focusing on clinically relevant diagnostics were
retained, while those relying on traditional ML or non-
healthcare applications were excluded. This process resulted in
450 manuscripts, from which information on publicly available
datasets was extracted and cross-checked against repositories

like PhysioNet, Zenodo, and OpenNeuro, yielding 46 open
datasets that form the empirical foundation of this survey.

Building on this systematic basis, our work establishes
three contributions to advance deep learning–driven neurodi-
agnosis: First, we curate and analyze 46 public EEG/iEEG
datasets across seven neurological conditions, establishing the
most comprehensive data landscape to date while unifying
fragmented methodologies by standardizing data processing,
model architectures, and evaluation protocols. Besides, we
identify self-supervised learning as the optimal paradigm for
developing multi-task diagnostic frameworks, offering a com-
prehensive overview of pre-trained multi-task frameworks and
their advancements. Additionally, we propose a benchmarking
methodology to evaluate brain signal models across tasks,
providing a foundation for scalable and versatile solutions in
EEG/iEEG-based neurological diagnostics.

II. METHODS

A. Problem Definition
In this survey, we classify neurological diagnostic tasks

into sample-level and event-level classification, both under
the broader framework of classification problems. Sample-
level classification involves assigning a single label to an
entire signal, typically representing a specific subject or sample
(e.g., Alzheimer’s disease diagnosis). Event-level classification
focuses on identifying and classifying distinct temporal seg-
ments within a longer signal, thereby introducing an implicit
segmentation process by associating each segment with a
specific event or state (e.g., seizure detection or sleep staging).

Electrical brain signals, which capture the brain’s electrical
activity over time, can be modeled as multivariate time series.
Specifically, let X ∈ RC×T represent the EEG/iEEG time
series, where C is the number of channels, and T is the number
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TABLE I: Signal Preprocessing Techniques

Techniques Details Reference

Noise Reduction &
Filtering

FIR Filter [26]
IIR Filter [27]
Adaptive Filters [28]
Manual & Custom [29]

Artifact Removal
Blind Source Separation [30]
Artifact Correction [31]

Baseline Correction &
Detrending

Baseline Correction [32]
Baseline Removal [33]
Detrending [34]

Channel Processing
Channel Selection [35]
Channel Mapping [16]
Re-Referencing [33]

Normalization &
Scaling

Z-Normalization [11]
Quantile Normalization [36]
Scaling & Shifting [16]

Sampling Adjustment

Downsampling [37]
Resampling [38]
Interpolation [39]
Imputation [40]

Segmentation Windowing [41]
Signal Alignment &
Synchronization

Time Synchronization [42]
Temporal Alignment [42]

of sampling points. Each channel xc = {xc
1, x

c
2, . . . , x

c
T }

corresponds to the measurements from a specific source, such
as an EEG electrode or a contact of an iEEG electrode.

1) Sample-Level Classification: In sample-level classifica-
tion, the objective is to assign a single label y ∈ Y to the
entire signal X. This can be formulated as:

y = Φsample(X;θ), y ∈ Y,

where Φsample represents the DL model parameterized by θ,
and Y denotes the set of classes. X is treated as a unified
entity, capturing sample-level or subject-level characteristics.

2) Event-Level Classification: In event-level classification,
the goal is to classify smaller temporal segments of the signal.
The signal X is divided into K segments X1,X2, . . . ,XK ,
where Xk ∈ RC×Tk and Tk is the duration of the k-th
segment. A classification model is applied to each segment to
produce a sequence of labels Y = {y1, y2, . . . , yK}, yk ∈ Y:

yk = Φsegment(Xk;θ), Y =

K⋃
k=1

{yk},

where Φsegment denotes the DL model parameterized by θ. This
process associates each segment Xk a label yk, allowing the
temporal localization of events within the signal. Event-level
classification captures natural temporal dependencies between
consecutive segments, reflecting the continuity of events [25].

B. Signal Collection

EEG has evolved significantly since Hans Berger first
recorded signals from the human scalp in 1924 [9]. While
EEG is typically collected non-invasively with scalp elec-
trodes placed according to the 10-20 system [43], recent
studies employ higher-density configurations for enhanced

TABLE II: Feature Extraction Techniques

Techniques Details Reference

Data Augmentation
Oversampling [38]
ELM-AE [46]

Signal Decomposition
& Transformation

Time-Frequency Analysis [47]
Empirical Decomposition [48]

Spectral & Power
Analysis

Power Spectrum [49]
Spectral Density [50]
Partial Directed Coherence [51]

Time-Domain Features
Extraction

Statistical Measures [52]
Amplitude & Range [53]
Hjorth Parameters [54]

Frequency-Domain
Features Extraction

Band Power Features [55]
Spectral Measures [56]

Time-Frequency
Features Extraction

Wavelet Coefficients [57]
STFT Features [58]
Multitaper Spectral [59]

Other Features
Extraction

Nonlinear Features [60]
Spatial Features [61]
Transform-Based Features [62]

Source Imaging
Conventional Methods [63]
Deep Learning-based [64]

Graph Analysis
Clustering Coefficient [65]
Other Graph Metrics [66]

spatial resolution. EEG captures oscillations across frequency
bands linked to neural states: delta (deep sleep), theta (light
sleep), alpha (relaxation), beta (focus), and gamma (higher
cognition) [44]. Depending on the study, participants may
perform tasks or rest to elicit relevant brain activity. Resting-
state EEG evaluates baseline activity, while specific tasks can
highlight disease-related abnormalities [45].

iEEG involves implanting electrodes within deep or super-
ficial structures via burr holes (SEEG) or placing grids on
the cortical surface (ECoG). Compared to EEG, iEEG offers
higher spatial resolution and reduced susceptibility to artifacts
from scalp and eye movements. SEEG allows recording from
deep and distributed regions with minimal invasiveness, while
ECoG provides detailed cortical surface mapping with dense
grids. However, iEEG remains affected by cardiac artifacts,
electrode shifts, and other noise, making rigorous preprocess-
ing essential for reliable clinical and research use.

C. Signal Preprocessing

EEG/iEEG signals require low-level preprocessing to ad-
dress challenges such as noise and artifact removal, normal-
ization for consistency, and segmentation into analyzable time
windows. These steps refine raw data, ensuring it accurately
reflects brain activity and provides a robust foundation for
analysis. Representative methods are summarized in Table I.

Noise reduction is central to this process: classical FIR/IIR
filtering [26], [27] efficiently removes narrow-band artifacts
like power-line interference, whereas Blind Source Separation
(e.g., ICA, PCA [67]) targets ocular and muscular noise but
may also suppress neural components if applied indiscrim-
inately. Wavelet decomposition [68] offers multiscale han-
dling of nonstationary noise, though at higher computational
cost. Normalization techniques such as Z-score scaling [18]
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TABLE III: Summary of subject-level data partitioning strategies for EEG/iEEG.

Strategy Formal Definition Advantages Limitations
Subject-Specific Xtr ∪ Xval ∪ Xte = {X(i)

k }K(i)

k=1 Rapid prototyping
Useful for personalization

Restricted clinical applicability
Poor transferability across individuals

Mixed-Subject Xset ⊂
⋃

i∈P
⋃K(i)

k=1 {X(i)
k }

|Xset| = αset
∑N

i=1 K
(i)

Maximizes training data
Robust to variability

Potential risk of data leakage
Reduced clinical relevance

Cross-Subject
P = Ptr ∪ Pval ∪ Pte

Xset =
⋃

i∈Pset

⋃K(i)

k=1 {X(i)
k }

Clinically relevant
Realistic deployment

High data demand
Computational burden

standardize channel amplitudes, improving model stability but
potentially masking inter-individual variability. Segmentation
and resampling further balance efficiency and fidelity: down-
sampling can reduce computational load [37], while shorter
epochs facilitate localized analysis but risk fragmenting long-
range dependencies. Finally, baseline correction [18], channel
selection [35], and alignment [42] enhance interpretability and
multimodal synchronization, though each relies on assump-
tions that may not hold uniformly across datasets.

D. Feature Extraction
Feature extraction techniques transform raw signals into

structured representations by isolating salient features or re-
constructing core components essential for modeling. Repre-
sentative methods are summarized in Table II.

Time-domain features are straightforward and interpretable
(e.g., statistical moments, Hjorth parameters [69]), but in-
sufficient to capture complex spectral dynamics. Frequency-
domain features such as power spectral density and band
power [49] reveal oscillatory activity, yet assume stationarity.
Time–frequency approaches address this by linking temporal
and spectral information, making them effective for transient,
nonstationary patterns in seizure detection and cognitive mon-
itoring [58], [68], though at higher computational cost.

At a higher level, electrophysiological source imaging (ESI)
improves spatial specificity by projecting EEG into corti-
cal source space [63], but depends on accurate head mod-
els. Graph analysis instead quantifies network-level organi-
zation [61], offering system-wide insights while remaining
sensitive to noise and thresholding. Together, these methods
extend analysis from local dynamics to global connectivity,
supporting applications from seizure focus localization to
network alterations in Alzheimer’s disease.

E. Data Partitioning Strategies
Building on the definition of X(i) ∈ RC×T in Section II-A,

where X(i) represents the EEG/iEEG signal of subject i, we
define notations to formalize data partitioning strategies:

• P = {1, 2, . . . , N}: The set of N subjects in the dataset.
• Xtrain,Xval,Xtest: The training, validation, and testing sets.
• αtrain, αval, αtext ∈ (0, 1): The proportion of data used for

training, validation and test, and αtrain + αval + αtest = 1.
• K(i): The total number of temporal segments or events

derived from subject i’s data.
Previous studies have examined data partitioning strategies;

for instance, Zancanaro et al. [70] compared leave-one-subject-

out, fixed splits, and pooled training in motor imagery clas-
sification. Building on these insights, we introduce a taxon-
omy encompassing subject-specific, mixed-subject, and cross-
subject strategies, with mathematical definitions mapped to
practical EEG/iEEG applications (Table III). Subject-specific
methods are typically adopted in personalized or closed-loop
systems where individual calibration is critical. Mixed-subject
methods are common in early studies for efficient training,
though they risk data leakage across sets. Cross-subject
methods are clinically most relevant, ensuring evaluation on
unseen patients and reflecting real-world deployment.

Extending subject-level partitioning strategies, dataset-level
partitioning includes three approaches: dataset-specific (in-
dependent partitioning per dataset), mixed-dataset (pooling
data across datasets), and cross-dataset (disjoint datasets for
training, validation, and testing). While subject-based parti-
tions remain the standard for evaluating patient-level rele-
vance, dataset-based strategies are increasingly adopted in self-
supervised learning to mitigate data scarcity and in multi-
domain models to demonstrate cross-dataset transferability. In
practice, studies combine both paradigms, using subject-based
partitioning to assess patient-level performance and dataset-
based partitioning to evaluate generalization, testing whether
methods can achieve specialization and generalizability.

F. Deep Learning Architectures

Neurological data processing relies on several key architec-
tures: Convolutional Neural Networks (CNNs) [13] excel at
extracting spatial/spectral features through hierarchical convo-
lutions. Recurrent Neural Networks (RNNs) [71] capture
temporal dependencies via recurrent connections. Transform-
ers [14] model long-range spatiotemporal relationships using
self-attention. Graph Neural Networks (GNNs) [72] ana-
lyze functional connectivity in graph-structured data. Autoen-
coders (AEs) [73] learn compressed representations through
encoder-decoder structures. Generative Adversarial Net-
works (GANs) [74] synthesize signals through adversarial
training. Spiking Neural Networks (SNNs) [75] leverage
spike-based computation for temporal dynamics.

G. Deep Learning Paradigms

Deep learning applications in neurological diagnostics fall
into four paradigms: supervised, self-supervised, unsupervised,
and semi-supervised learning. Each paradigm addresses spe-
cific challenges in processing brain signals by leveraging
architectures tailored to data availability and task requirements.
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TABLE IV: Public EEG/iEEG datasets for seizure detection, with Seizures indicating the number of episodes, Length the
duration of each record, and Size the total duration of recording.

Dataset Type Subjects Seizures Length Size Frequency (Hz) Channels
Bonn [76] EEG 10 - 23.6 sec ≈ 3.3 hours 173.61 1
Freiburg [77] iEEG 21 87 4 sec ≈ 504 hours 256 128
Mayo-UPenn [78] iEEG 2 48 1 sec 583 min 500-5000 16-76
CHB-MIT [79]–[81] EEG 22 198 1 hour ≈ 686 hours 256 23 / 24 / 26
Bern-Barcelona [82] iEEG 5 3750 20 sec 57 hours 512 64
Hauz Khas [83] EEG 10 - 5.12 sec 87 min 200 50
Melbourne [84] iEEG 3 - 10 min 81.25 hours 400 184
TUSZ [85] EEG 642 3050 - 700 hours 250 19
SWEC-ETHZ [86], [87] iEEG 18 / 16 244 / 100 1 hour / 3 min 2656 hours / 48 min 512 / 1024 24-128 / 36-100
Zenodo [88] EEG 79 1379 74 min ≈ 97 hours 256 21
Mayo-Clinic [89] iEEG 25 - 3 sec 50 hours 5000 1
FNUSA [89] iEEG 14 - 3 sec 7 hours 5000 1
Siena [90] EEG 14 47 145-1408 min ≈ 128 hours 512 27
Beirut [91] EEG 6 35 1 sec 130 min 512 19
HUP [92] iEEG 58 208 300 sec ≈ 27 hours 500 52-232
CCEP [93] iEEG 74 - - 89 hours 2048 48-116

1) Supervised Learning: Supervised learning is the dom-
inant paradigm for neurological diagnostics tasks, training
models to map signals X ∈ RC×T to labels y ∈ Y .

2) Unsupervised Learning: Unsupervised learning is essen-
tial for uncovering intrinsic data structures in signals X,
enabling representation learning without relying on labels.

3) Semi-Supervised Learning: Semi-supervised learning
combines a small set of labeled examples {(xi, ŷi)}li=1, where
ŷi denotes the provided labels, with a larger set of unlabeled
examples {xj}l+u

j=l+1 to learn a mapping from X to Y .
4) Self-Supervised Learning: Self-supervised learning

(SSL) leverages unlabeled EEG/iEEG data by constructing
pretext tasks that generate pseudo-labels ŷ from intrinsic
properties of raw signals X. SSL methods fall into three
main categories: contrastive, predictive, and reconstruction-
based learning. Contrastive-based methods, such as
Contrastive Predictive Coding (CPC) [26] and Transformation
Contrastive Learning [94], learns by maximizing similarity
between related views while minimizing it between unrelated
ones, capturing distinguishing signal features. Predictive-
based learning employs pretext tasks such as Relative
Positioning and Temporal Shuffling to extract structural
patterns across temporal, frequency, and spatial domains [95],
[96]. By predicting transformations applied to the data, it
enhances domain-specific feature learning. Reconstruction-
based learning trains models to reconstruct masked
signal segments. Methods like Masked Autoencoders (MAE)
reconstruct temporal or spectral components, learning intrinsic
patterns in the process [16], [97]. Studies have also explored
hybrid methods, which combine elements from contrastive,
predictive, and reconstruction-based approaches [26], [98].

III. APPLICATIONS

This section reviews neurological disease diagnosis method-
ologies. Each subsection introduces the disease, its diagnostic
tasks, and related public datasets, followed by representative
studies highlighting key deep learning aspects such as data
types, frequency bands, and brain regions. Summary tables

report representative studies with their reported metrics (e.g.,
accuracy, AUC) and dataset chance levels. These metrics are
for reference only, as evaluation protocols and data selection
vary across studies, which may also cause slight differences
in chance levels. Technical details on preprocessing, network
architectures, and training are compiled in the Appendix,
covering all 450 reviewed studies.

A. Seizure Disorder

1) Task Description: Epilepsy, a neurological disorder af-
fecting 50 million people, is characterized by recurrent
seizures caused by abnormal brain activity. Seizures range
from brief confusion or blanking out to severe convulsions and
loss of consciousness. According to WHO, up to 70% of cases
can be effectively treated with proper care. However, in low-
income regions, limited resources and stigma hinder access to
treatment, increasing the risk of premature death [3].

Seizure detection primarily relies on standardized
EEG/iEEG datasets, summarized in Table IV. The key
challenge is distinguishing seizure events from background
activity, typically framed as binary classification where
yk ∈ {0, 1}. Most approaches segment EEG sequences into
short windows for classification, then aggregate predictions to
form event-level outcomes as Y =

⋃K
k=1{yk} [108], [109].

Alternatively, some methods detect cut points in continuous
recordings to define segment boundaries {Xk}Kk=1, each
classified independently [65]. Final event-level predictions are
obtained by combining labels Y =

⋃K
k=1{Φsegment(Xk;θ)}.

Beyond binary tasks, more fine-grained classification has
been explored. Three-class settings distinguish interictal (A,
between seizures), preictal (D, before onset), and ictal (E,
seizure) states [101], while five-class tasks further subdivide
the preictal phase into early, middle, and late stages [15].
The Temple University Seizure Corpus (TUSZ) [85] supports
such studies, providing detailed annotations of pathological
events (e.g., epileptiform discharges, seizure types) and non-
pathological signals (e.g., background activity, artifacts).

https://www.ukbonn.de/epileptologie/arbeitsgruppen/ag-lehnertz-neurophysik/downloads/
https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database
https://www.kaggle.com/c/seizure-detection
https://physionet.org/content/chbmit/1.0.0/
https://www.upf.edu/web/ntsa/downloads/-/asset_publisher/xvT6E4pczrBw/content/2012-nonrandomness-nonlinear-dependence-and-nonstationarity-of-electroencephalographic-recordings-from-epilepsy-patients
https://www.researchgate.net/publication/308719109_EEG_Epilepsy_Datasets
https://www.epilepsyecosystem.org/
https://isip.piconepress.com/projects/nedc/html/tuh_eeg/#c_tusz
http://ieeg-swez.ethz.ch/
https://zenodo.org/records/2547147#.Y7eU5uxBwlI
https://www.kaggle.com/datasets/nejedlypetr/multicenter-intracranial-eeg-dataset
https://www.kaggle.com/datasets/nejedlypetr/multicenter-intracranial-eeg-dataset
https://physionet.org/content/siena-scalp-eeg/1.0.0/
https://data.mendeley.com/datasets/5pc2j46cbc/1
https://openneuro.org/datasets/ds004100/versions/1.1.1
https://openneuro.org/datasets/ds004080/versions/1.2.4
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TABLE V: Summary of related studies on EEG-based seizure detection with different learning paradigms, feature extraction
methods, and backbones. The chance level is omitted due to inconsistent data selection criteria across studies on TUSZ.

Dataset Task Paradigm Feature Backbone Splitting Accuracy AUC

Bonn ternary
Supervised Learning

raw CNN generalized 0.8867 - [11]
raw CNN generalized 0.9900 - [99]

Wavelet Coefficients CNN generalized 0.9940 - [68]
Scalograms 2D-CNN generalized 0.9900 - [15]

Unsupervised Learning AE-based CNN cross-subject 0.9933 - [100]
chance level 0.4000

CHB-MIT binary
Supervised Learning

Spectrogram 2D-CNN subject-specific 0.9750 - [101]
raw CNN-LSTM cross-subject 0.9771 - [102]

Correlation Matrix GAT-Transformer cross-subject 0.7315 0.72 [103]

Self-supervised Learning
raw Transformer cross-subject 0.9707 0.97 [104]
raw CNN cross-subject - 0.88 [105]

chance level 0.5000

TUSZ

8-class Supervised Learning Spectrogram 2D-CNN cross-subject 0.8890 - [106]
binary

Self-supervised Learning

Correlation Matrix GNN cross-subject - 0.88 [107]
4-class Correlation Matrix GNN cross-subject - 0.75 [107]
4-class Wavelets Transformer cross-subject 0.7300 - [108]
binary raw CNN-GCN cross-subject - 0.78 [98]

In addition, epileptic focus localization identifies the cor-
tical origin of pathological discharges, formulated as classi-
fying iEEG contacts inside versus outside the epileptogenic
zone [110], or reconstructing source-level activity from scalp
EEG via ESI [63]. This task is clinically critical, as accurate lo-
calization guides surgical resection in drug-resistant epilepsy.

2) Supervised Methods: Supervised seizure detection has
advanced with public datasets and progress in deep learning.
Early studies relied on subject-specific or mixed-subject evalu-
ations using short, pre-segmented EEG clips. For instance, the
Bonn dataset [76] contains manually labeled seizure and non-
seizure segments, enabling models to operate on fixed-length
inputs. Approaches based on raw signals employ CNNs or
RNNs to learn spatiotemporal features from these standardized
segments [11], [99], while feature-based methods transform
signals into handcrafted or derived representations, such as
scalograms [15] and wavelet-based features [68], which are
then used by shallow classifiers. These techniques inherently
assume limited temporal context and circumvent the chal-
lenges of segmenting continuous EEG. As shown in Table V,
the Bonn dataset is relatively simple and prone to overfitting,
making it insufficient to represent real-world clinical scenarios.

With the adoption of long-term recordings like CHB-
MIT [80], the focus shifts toward cross-subject paradigms.
Unlike Bonn, CHB-MIT provides continuous recordings with
multiple seizure episodes per patient, requiring models to
handle variable-length inputs and detect seizure onsets in un-
segmented streams. Approaches integrate temporal modeling
through sliding windows [109], sequence-aware architectures
such as Transformers [111], or hybrid fusion techniques [102].
Cross-subject validation becomes standard, reflecting clinical
requirements that generalize across diverse conditions.

The necessity of cross-subject modeling in seizure detec-
tion stems from its critical role in ensuring clinical gen-
eralization. The invasive nature of iEEG differentiates its
modeling requirements from EEG through distinct acquisition
paradigms and neurophysiological characteristics, its patient-

specific recording conditions and electrode configurations lead
to substantial inter-subject heterogeneity in temporal features
and spatial sampling, unlike EEG’s standardized scalp place-
ment [112]. Balancing high-resolution spatiotemporal capture
with robustness across patients, iEEG requires specialized
methodologies to enhance generalizability while addressing its
inherent complexities. Spatial modeling is essential for captur-
ing 3D epileptogenic networks with depth electrodes. Graph-
based methods model inter-channel dependencies via neu-
roanatomical [113] or dynamic functional connections [114],
while Transformers use attention mechanisms to adapt to
varying electrode configurations [115]. DMNet [116] improves
domain generalization through self-comparison mechanisms.

3) Semi- and Unsupervised Methods: Semi-supervised and
unsupervised techniques are increasingly applied in deep
learning for seizure detection, particularly when labeled data is
limited. A common approach incorporates clustering for event-
level segmentation, allowing the model to identify and segment
seizure events [65]. Another application involves using models
such as Autoencoders, DBNs and GANs to automatically ex-
tract relevant features or augment datasets, thereby enhancing
the model’s robustness and generalizability [100], [117].

4) Self-supervised Methods: Self-supervised learning has
emerged as an effective approach for seizure detection. Con-
trastive learning methods form positive and negative pairs to
capture seizure-related patterns. For instance, SLAM [104]
pairs an anchor with a window from a distant time point as a
negative sample, while SPP-EEGNET [118] uses the absolute
difference between two windows to determine pair similarity.
Predictive-based methods design pretext tasks to simulate
epileptic features, such as augmenting signals with ampli-
tude or frequency changes [105] or predicting the next seg-
ment using graph-based modeling [107]. Reconstruction-based
methods focus on preserving context during learning. Epilep-
syNet [111] uses Pearson Correlation Coefficients to capture
spatial-temporal embeddings, while Wavelet2Vec [108] recon-
structs wavelet-transformed EEG patches to exploit seizure-
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TABLE VI: Public Sleep EEG Datasets, where Recordings
denotes the number of whole-night PSG recordings.

Dataset Recordings Frequency (Hz) Channels
Sleep-EDF [81], [121] 197 100 2
MASS [122] 200 256 4-20
SHHS [123], [124] 8362 125 2
SVUH UCD [81], [125] 25 128 3
HMC [81], [126] 151 256 4
PC18 [81], [127] 1985 200 6
MIT-BIH [81], [128] 16 250 1
DOD-O [129] 55 250 8
DOD-H [129] 25 250 12
ISRUC [130] 126 200 6
MGH [131] 25941 200 6
Piryatinska [132] 37 64 1
DRM-SUB [133] 20 200 3
SD-71 [134] 142 500 61

TABLE VII: Reported accuracies on Sleep-EDF datasets
using representative models (grouped by learning paradigm).

Learning
Paradigm Modality CL Strategy Sleep-

EDF
Sleep-
EDFx

SL EEG – 0.8440 0.8130 [135]
EEG+EOG – – 0.8390 [136]

SSL

EEG Global Reference – 0.8690 [137]

EEG Time–spectrogram
Multi-view – 0.7806 [138]

EEG Time–frequency
Multi-view 0.7160 – [139]

EEG+EOG Contrastive
Alignment 0.8458 0.8284 [140]

Chance Level 0.4207 0.3537

specific discharge patterns across frequency bands. EEG-CGS
[66] adopts a hybrid graph-based approach, framing seizure
detection as anomaly detection and integrating subgraph sam-
pling with contrastive and reconstruction learning. As shown
in Table V, SSL methods exhibit considerable performance
variations across datasets. On more challenging datasets like
TUSZ, performance approaches that of supervised methods,
underscoring the need for larger-scale pretraining and stronger
representation learning. Furthermore, four-class seizure type
classification remains more difficult than detection, highlight-
ing persistent bottlenecks in distinguishing subtypes.

SSL paradigm is also common in iEEG-based modeling.
BrainNet [119] employs bidirectional contrastive predictive
coding to capture temporal correlation in SEEG signals.
MBrain [98] models time-varying propagation patterns and
inter-channel phase delays of epileptic activity through a mul-
tivariant contrastive-predictive learning framework, leveraging
graph-based representations for spatial-temporal correlations
across EEG and SEEG channels. PPi [120] accounts for re-
gional seizure variability, employing a channel discrimination
task to ensure the model captures distinct pathological patterns
across brain regions rather than treating all channels uniformly.

B. Sleep Staging

1) Task Description: Sleep staging is critical to understand-
ing sleep disorders like insomnia and sleep apnea, as well as

TABLE VIII: Public EEG Datasets for Depression Detection,
where Exp (n) represents the number of depressed

individuals and Ctrl (n) represents the healthy control group.

Dataset Exp (n) Ctrl (n) Frequency (Hz) Channels
HUSM [143] 34 30 256 22
PRED+CT [144] 46 75 500 64
EDRA [145] 26 24 500 63

MODMA [146]
24
26

29
29

250
128
3

TABLE IX: Reported accuracies on three MDD datasets
using representative backbone architectures.

Backbone Architecture HUSM PRED+CT MODMA
CNN 0.9832 [147] 0.9393 [148] 0.7400 [149]

CNN-RNN 0.9597 [147] 0.9907 [150] 0.9756 [151]
GCN 0.9844 [152] 0.8317 [153] 0.9968 [152]
SNN - 0.9800 [154] -

Chance Level 0.5313 0.6198 0.5472

the impact on overall health. It is estimated that 20% to 41% of
the global population is affected by sleep disorders, which are
linked to an increased risk of obesity, cardiovascular diseases,
and mental health issues [141]. Therefore, accurately identi-
fying sleep stages is essential for addressing these concerns.

Sleep staging involves segmenting signals into 30-second
epochs and classifying them into stages: awake (W), rapid eye
movement (REM), and three non-REM (NREM) stages (N1,
N2, N3). Wake is characterized by high-frequency β and α
waves. In N1, the transition to sleep, low-amplitude θ waves
appear. N2, light sleep, is marked by sleep spindles and K-
complexes associated with sensory processing and memory
consolidation. N3, or deep sleep, features slow-wave δ activity.
REM sleep, essential for emotional regulation and dreaming,
is characterized by rapid, low-voltage brain activities.

Multimodal modeling is fundamental for sleep analysis,
as polysomnography (PSG) integrates EEG (e.g., Fpz-Cz,
Pz-Oz), Electrooculography (EOG), and Electromyography
(EMG) to enhance staging accuracy. The public datasets in
Table VI provide a comprehensive view of resourcess.

2) Supervised methods: Selecting biosignal modalities
is critical for designing supervised learning frameworks
in PSG-based sleep staging. Two primary paradigms are
widely used. Single-channel EEG methods, preferred in
resource-constrained settings, offer hardware simplicity, re-
duced cross-modal interference, and enhanced computational
efficiency [142]. However, relying solely on EEG limits
the detection of complementary cues—such as ocular and
muscular activities—essential for identifying ambiguous sleep
stages. Hybrid EEG-EOG models provide a balance between
diagnostic accuracy and computational efficiency, while full
multimodal designs integrating EEG, EOG, and EMG most
closely emulate clinical scoring protocols [136].

3) Self-supervised methods: Self-supervised contrastive
methods are gradually replacing traditional supervised learn-
ing, especially on large-scale EEG datasets where they demon-
strate stronger generalization and robustness (Table VII). Early
works explore tasks like relative positioning and temporal

http://www.physionet.org/physiobank/ database/sleep-edfx/
http://ceams-carsm.ca/en/MASS/
https://sleepdata.org/datasets/shhs
https://physionet.org/content/ucddb/1.0.0/
https://physionet.org/content/hmc-sleep-staging/1.1/
https://physionet.org/content/challenge-2018/1.0.0/#files
https://physionet.org/content/slpdb/1.0.0/
https://zenodo.org/records/15900394
https://zenodo.org/records/15900394
https://sleeptight.isr.uc.pt/
https://bdsp.io/content/hsp/2.0/
http://stat.case.edu/ayp2/EEGdat
https://zenodo.org/records/2650142
https://openneuro.org/datasets/ds004902/versions/1.0.5
https://figshare.com/articles/dataset/EEG_Data_New/4244171
http://predict.cs.unm.edu/downloads.php
https://github.com/EllieYLJ/EEG-GA-LASSO
https://modma.lzu.edu.cn/data/index/
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TABLE X: Public EEG Datasets for Schizophrenia, where
Exp (n) represents the number of schizophrenia patients and

Ctrl (n) represents the control group.

Dataset Exp (n) Ctrl (n) Frequency (Hz) Channels
CeonRepod [155] 14 14 250 19
NIMH [156] 49 32 1024 64
MHRC [157] 45 39 128 16

TABLE XI: Reported accuracies on three SZ datasets using
representative learning strategies.

Modeling Strategy CeonRepod [155] NIMH [156] MHRC [157]
Timeseries-based 0.9807 [158] 0.9200 [159] 0.9800 [160]

2D Representation 0.9974 [161] 0.9635 [161] 0.9740 [161]
Transfer Learning 0.9900 [162] 0.9336 [163] 0.9773 [46]

Chance Level 0.5492 0.5962 0.5357

shuffling to extract temporal structures from multivariate
signals [95], [96]. ContraWR [137] constructs contrastive
pairs from distinct time windows to capture temporal de-
pendencies, reporting notably high accuracy on Sleep-EDFx.
mulEEG [138] and CoSleep [139] introduce multi-view con-
trastive strategies, with mulEEG focusing on cross-view con-
sistency and CoSleep capturing temporal and spectral patterns
through a dual time-frequency framework. Multimodal mod-
eling enhances sleep staging by integrating complementary
EEG, EOG, and EMG signals. Brant-X [140] tackles align-
ment challenges with EEG foundation models and contrastive
learning, aligning EEG and EOG at local and global levels to
bridge modality gaps and achieve superior performance.

C. Depression Identification

1) Task Description: Depression, particularly Major Depres-
sive Disorder (MDD), is a psychological condition affecting
5% of individuals worldwide, with a higher prevalence among
women. In low- and middle-income countries, up to 75% of
individuals lack adequate care due to limited resources and
stigma, despite effective treatments being available [7].

Depression severity is quantified using standardized scales
like the Beck Depression Inventory (BDI) to differentiate
clinical depression from normal mood variations. Existing
studies adopt heterogeneous classification criteria: some focus
on binary discrimination (e.g., patients vs. healthy controls),
while others stratify cohorts by treatment status (medicated vs.
non-medicated) or severity levels (mild vs. moderate/severe).
Table VIII summarizes datasets used in MDD research.

2) Approach overview: Depression impacts both superficial
and deeper brain structures, challenging traditional handcrafted
features. Acharya introduced the first end-to-end DL model for
EEG-based depression detection, showing right-hemisphere
signals to be more distinctive than left, consistent with clinical
findings [12]. Sun et al. [152] further reported that with
increasing granularity, MDD patients exhibited weakened con-
nectivity between RF–RT and LT–LP regions; by embedding
these patterns into the Multi-Granularity Graph Convolutional
Network (MGGCN), clinically relevant disruptions were cap-
tured, yielding superior accuracy (Table IX).

TABLE XII: Public EEG Datasets for Alzheimer’s Diagnosis,
where AD (n) and MCI (n) represent the experimental

groups, and Ctrl (n) represents the control group.

Dataset AD
(n)

MCI
(n)

Ctrl
(n)

Frequency
(Hz)

Channels

FSA [166] 160 - 24 128 21
AD-65 [167] 36 - 29 250 19
Fiscon [168] 49 37 14 1024 19
AD-59 [169] 59 7 102 128-256 21

TABLE XIII: Reported accuracies on private AD datasets
with feature representations (chance level in parentheses).

Feature Representation Accuracy
Pearson correlation 1.0000 (0.5000) [170]
Wavelet Coherence 0.9230 (0.5128) [171]

PSD image 0.9295 (0.5000) [172]

Spiking neural networks (SNNs) offer another direction:
Shah et al. [164] used the NeuCube SNN to map EEG
into a 3D reservoir aligned with the Talairach atlas, mod-
eling spatiotemporal dynamics via STDP with interpretable
connectivity visualization Sam et al. [154] integrates a 3D
brain-inspired SNN with an LSTM, leveraging SNN’s energy
efficiency with LSTM’s temporal modeling capabilities.

D. Schizophrenia Identification

1) Task Description: Schizophrenia (SZ) is a psychiatric
disorder affecting 24 million people worldwide, characterized
by cognitive deficits, delusions, and hallucinations [6]. SZ is
associated with disruptions in structural and functional brain
connectivity, marked by decreased global efficiency, weakened
strength, and increased clustering [165]. These abnormalities
manifest in EEG signals, enabling reliable binary classification
of SZ patients versus healthy controls. Publicly available
datasets supporting this task are summarized in Table X.

2) Approach overview: EEG-based SZ diagnosis has been
studied through three main strategies (Table XI). Time-series
models work directly on raw EEG, capturing temporal dy-
namics with relatively simple architectures but limited spec-
tral–spatial representation [158], [160]. 2D image-based ap-
proaches transform EEG into spectrograms or scalograms, al-
lowing CNNs to exploit richer spectral–spatial patterns [161].
Transfer learning builds on this idea by adapting pre-trained
vision backbones (e.g., VGG, ResNet), whose hierarchi-
cal convolutional filters are well suited for capturing local
and global patterns in spectrogram-like EEG representations,
thereby achieving robust feature extraction even with limited
data [162]. Reported results across representative studies show
accuracies typically above 0.9 for all three strategies, suggest-
ing that different modeling approaches can support reliable SZ
classification under varied settings.

E. Alzheimer’s Disease Diagnosis

1) Task Description: Alzheimer’s disease (AD) is a progres-
sive neurodegenerative disorder that starts with mild memory
loss and advances to severe cognitive impairment, affecting

https://repod.icm.edu.pl/dataset.xhtml?persistentId=doi:10.18150/repod.0107441  
https://www.kaggle.com/datasets/broach/button-tone-sz
http://brain.bio.msu.ru/eeg_schizophrenia.htm
https://osf.io/2v5md/
https://openneuro.org/datasets/ds004504/versions/1.0.2
https://github.com/tsyoshihara/Alzheimer-s-Classification-EEG
https://figshare.com/articles/dataset/dataset_zip/5450293?file=9423433
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TABLE XIV: Public EEG Datasets for Parkinson’s Disease
Diagnosis, where Exp (n) represents the number of patients

and Ctrl (n) represents the healthy control group.

Dataset Exp (n) Ctrl (n) Frequency (Hz) Channels
UCSD [174] 15 16 512 32
UNM [175] 27 27 500 64
UI [176] 14 14 500 59

TABLE XV: Reported accuracies on the UCSD dataset with
representative preprocessing and feature representations.

Preprocessing Feature Representation Accuracy (UCSD)
/ Raw segments 0.9800 [177]

Gabor Transform Spectrograms 0.9946 [47]
CWT Scalograms 0.9960 [178]

SPWVD TFR 0.9997 [179]
Chance Level – 0.6522

daily life. While medical interventions can improve quality
of life, a definitive cure remains elusive [2]. Alzheimer’s
disease (AD) progresses through three stages: preclinical,
mild cognitive impairment (MCI), and Alzheimer’s dementia.
Classification tasks typically distinguish MCI or Alzheimer’s
dementia from healthy controls. EEG abnormalities, such
as slowed brain rhythms and desynchronization, serve as
biomarkers for AD-related neurodegeneration [173]. Table XII
summarizes publicly available datasets.

2) Approach overview: EEG abnormalities in Alzheimer’s
disease, such as disrupted functional connectivity and altered
brain rhythms, provide critical insights into the neurological
changes. Representative strategies are summarized in Ta-
ble XIII, noting that results on private datasets are not strictly
comparable. For instance, Alves et al. [170] employed Pearson
correlation to construct connectivity matrices, achieving near-
perfect discrimination between AD and healthy controls. Shan
et al. [171] explored six functional connectivity measures
for constructing adjacency matrices, reporting that wavelet
coherence yielded the best performance for capturing spa-
tial–temporal dependencies. Beyond connectivity, 2D spectral
representations—such as PSD-based images—have been em-
ployed to enable feature learning for AD classification [172].

F. Parkinson’s Disease Diagnosis
1) Task Description: Parkinson’s disease (PD) is a progres-

sive neurodegenerative disorder marked by motor (tremors,
rigidity, bradykinesia) and non-motor symptoms (depression,
sleep disturbances, cognitive decline). In 2019, over 8.5 mil-
lion people lived with PD [5]. EEG is used in PD research for
noise resistance and sensitivity to neurological changes, such
as slowed cortical oscillations and increased low-frequency
power [180]. Most studies focus on supervised learning for
binary classification, with some incorporating transfer learn-
ing. Table XIV summarizes publicly available datasets.

2) Approach overview: Transforming raw EEG signals into
2D representations is a well-established approach for PD clas-
sification (Table XV). Time–frequency transformations such as
Gabor Transform and CWT have been widely adopted: spec-
trograms [47] and scalograms [178] capture temporal–spectral

TABLE XVI: Public EEG Datasets for ADHD Identification,
where Exp (n) represents the number of ADHD patients and

Ctrl (n) represents the healthy control group.

Dataset Exp (n) Ctrl (n) Frequency (Hz) Channels
ADHD-79 [181] 37 42 256 2
ADHD-121 [182] 61 60 128 19

TABLE XVII: Reported accuracies across frequency bands on
the ADHD-121 dataset [183].

Theta Alpha Beta Gamma Full chance level
0.9374 0.9724 0.9825 0.9725 0.9975 0.5825

dynamics more effectively than raw waveforms. More re-
cently, advanced representations such as the Smoothed Pseudo
Wigner–Ville Distribution (SPWVD) [179] generate high-
resolution time–frequency maps, allowing CNNs to exploit
fine-grained signal structure. Collectively, these approaches
illustrate a methodological shift from direct time-series analy-
sis to progressively richer 2D representations, each achieving
performance substantially above chance level.

G. ADHD Identification
1) Task Description: Attention-deficit/hyperactivity disorder

(ADHD) is a neurodevelopmental disorder affecting around
3.1% of individuals aged 10–14 and 2.4% of those aged
15–19 [8]. It is categorized into three subtypes: Inattentive
(ADHD-I), Hyperactive-Impulsive (ADHD-H), and Combined
(ADHD-C) [184]. EEG is widely used alongside neuroimaging
and physiological measures for ADHD diagnosis. However,
deep learning remains underexplored, with most existing ap-
proaches relying on supervised learning and feature-based
classification. Research focuses on binary classification tasks,
and Table XVI lists two publicly available datasets.

2) Approach overview: Studies on ADHD diagnosis report
elevated θ and reduced β in children with ADHD, aligning
with medical findings [185]. More recent work compared
models trained on individual bands with those using the full
denoised range, showing that integrated inputs achieved the
best results (Table XVII). This indicates that although θ and
β remain the most consistent group-level markers, combining
multiband better captures individual variability and cross-band
interactions, providing richer features for DL models [183].

IV. UNIVERSAL PRE-TRAINED MODELS

In recent years, SSL has revolutionized EEG/iEEG analysis
in neurological diagnosis. Emerging methods focus on general-
izable SSL frameworks that integrate heterogeneous datasets
during pre-training, overcoming the limitations of task- and
dataset-specific models and enabling seamless adaptation to
multiple downstream tasks. These innovations bring us closer
to the development of universal neurodiagnostic models capa-
ble of addressing challenges across diverse clinical settings.

Table XVIII summarizes pre-trained SSL frameworks for
multi-task neurodiagnosis, organized by the SSL paradigms to
align with their technical evolution analyzed in this section.
While some frameworks extend to broader time-series data,

https://openneuro.org/datasets/ds002778/versions/1.0.5
http://www.predictsite.com/
https://narayanan.lab.uiowa.edu/
https://data.mendeley.com/datasets/6k4g25fhzg/1
https://ieee-dataport.org/open-access/eeg-data-adhd-control-children
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TABLE XVIII: Summary of pre-trained SSL frameworks for multi-task neurodiagnosis, highlighting datasets and tasks, with
paradigms such as Contrastive Learning (CL), Contrastive Predictive Coding (CPC), and Masked Autoencoding (MAE)

Work SSL Paradigm Backbone Data Type Partitioning pre-training Dataset Downstream Tasks
Banville et al. [26] CPC CNN EEG dataset-specific TUSZ, PC18 Seizure, Sleep
MBrain [98] CPC CNN+LSTM+GNN EEG, iEEG dataset-specific TUSZ, private Seizure, etc.
TS-TCC [186] CPC CNN+Transformer EEG cross-dataset Bonn, Sleep-EDF, etc. Seizure, Sleep, etc.
SeqCLR [94] CL CNN+GRU EEG mixed-dataset TUSZ, Sleep-EDF, ISRUC, etc. Seizure, Sleep, etc.
TF-C [187] CL CNN EEG cross-dataset Sleep-EDF, etc. Seizure, Sleep, etc.
BIOT [188] CL Transformer EEG, etc. cross-dataset SHHS, etc. Seizure, etc
Jo et al. [189] Predictive CNN EEG mixed-dataset CHB-MIT, Sleep-EDF Seizure, Sleep
neuro2vec [97] MAE CNN+Transformer EEG cross-dataset Bonn, Sleep-EDF, etc. Seizure, Sleep
CRT [190] MAE Transformer EEG dataset-specific Sleep-EDF, etc. Sleep, etc.
NeuroBERT [191] MAE Transformer EEG, etc. dataset-specific Bonn, SleepEDF, etc, Seizure, Sleep,etc.
BENDR [16] CPC+MAE CNN+Transformer EEG cross-dataset TUEG Sleep, etc.
CBRAMOD [192] MAE Transformer EEG cross-dataset TUEG Seizure, Sleep, MDD
Brant [112] MAE Transformer iEEG cross-dataset private Seizure, etc.
Brainwave [193] MAE Transformer EEG, iEEG cross-dataset TUEG, Siena, CCEP, Sleep-

EDF, NIMH, FSA, private, etc.
Seizure, Sleep, MDD,
SZ, AD, ADHD

EEGFormer [194] VQ+MAE Transformer EEG cross-dataset TUEG Seizure, etc.
LaBraM [195] VQ+MAE Transformer EEG cross-dataset TUEG, Siena, etc. Seizure, etc.
NeuroLM [196] VQ+MAE

+Predictive
Transformer EEG cross-dataset TUEG, Siena, etc. Seizure, Sleep, etc.

such as BCI signals and motion sensor data, we focus on
datasets and tasks directly relevant to neurological applica-
tions. Below, we explore these frameworks, examining their
contributions to unified pre-training strategies, multitask adapt-
ability, and their potential to impact real-world applications.

A. Contrastive- and Predictive- Based Learning

a) Contrastive Predictive Coding: Early SSL approaches
in EEG/iEEG analysis primarily followed the Contrastive
Predictive Coding (CPC) paradigm [98], which learns repre-
sentations by predicting signal segments through contrastive
learning. While models employed generic architectures across
neurophysiological tasks, they fail to achieve true cross-task
generalization and were thus trained separately on task-specific
datasets, limiting their clinical applicability. CPC variants
like TS-TCC [186] introduce a one-to-one feature transfer,
enabling feature migration across tasks such as human activity
recognition, sleep staging, and seizure detection, paving the
way for broader multi-domain generalization.

Building on the foundational principles of CPC, two dis-
tinct approaches have emerged: contrastive learning (CL)
and predictive-based variants. CL retains CPC’s contrastive
framework but emphasizes explicit instance-level discrimina-
tion through hand-crafted augmentations for positive/negative
pairs, instead of CPC’s autoregressive future state prediction.
Predictive variants inherit CPC’s structure but replace its auto-
learned latent contexts with manually defined features.

b) Contrastive-Based learning: SeqCLR [94], inspired by
SimCLR, employs contrastive learning to EEG data, enhancing
similarity between augmented views of the same channel
through domain-specific transformations. Adopting a mixed-
dataset training approach, it unifies diverse EEG datasets for
robust representation learning. TF-C [187] incorporates dual
time-frequency contrastive learning with a cross-domain con-
sistency loss to align embeddings across temporal and spectral

representations. It further examines cross-dataset generaliza-
tion, training on a source dataset and evaluating transferability
to multiple targets, highlighting the potential of cross-task
feature sharing for universal neural signal models. BIOT [188]
integrates contrastive learning, unifying multimodal biosignals
(e.g., EEG, ECG) via tokenization and linear attention to learn
invariant physiological patterns for cross-task generalization.

c) Predictive-Based Learning: Jo et al. [189] proposes a
channel-aware predictive-based framework, which leverages
stopped band prediction for spectral feature learning and
employs temporal trend identification to capture dynamic
patterns. By integrating mix-dataset pretraining, it enhances
generalization through cross-domain feature fusion. However,
the pretraining scale remains limited.

B. Reconstruction-Based Learning
a) Masked Autoencoding: The paradigm shift from CPC

to masked reconstruction in SSL aims for higher data effi-
ciency and scalability, inspired by cross-domain advances like
masked language modeling in NLP (e.g., BERT [197]), with
MAE’s generative approach enhancing classification perfor-
mance while avoiding complex negative sampling.

Neuro2vec [97] extends masked reconstruction by integrat-
ing EEG-specific spatiotemporal recovery and spectral compo-
nent prediction into a unified framework, utilizing a CNN-ViT
hybrid architecture for patch embedding and reconstruction.
CRT [190] further introduces multi-domain reconstruction
through cross-domain synchronization of temporal and spec-
tral features, replacing conventional masking with adaptive
input dropping to preserve data distribution integrity, thereby
improving robustness in physiological signal modeling. Neuro-
BERT [191] introduces Fourier Inversion Prediction (FIP),
reconstructing masked signals by predicting their Fourier am-
plitude and phase, then applying an inverse Fourier transform.
The spectral-based prediction framework inherently matches
the physiological nature of EEG signals.
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b) Large-Scale Continuous-Reconstruction Models: Trans-
former architectures are increasingly applied in neurodiagnos-
tics, leveraging their scalability and attention mechanisms to
capture global dependencies in irregular neural signals. BERT-
style pretraining, particularly masked reconstruction, enhances
neurodiagnostic classification by enforcing robust contextual
learning of latent bioelectrical patterns, which is crucial for
distinguishing subtle neurological signatures. Their paralleliz-
able training and tokenized time-frequency representations
pave the way for scalable foundation models, driving large-
scale pretraining in neural signal analysis.

Inspired by Bert, BENDR [16] integrates CPC with MAE-
inspired reconstruction for temporal feature learning. Pre-
trained on the Temple University Hospital EEG Corpus—a
diverse dataset containing 1.5 TB of raw clinical EEG from
over 10,000 subjects—BENDR represents the emergence of
large-scale pretraining for neurodiagnostics, showcasing the
cross-subject scalability of transformers. It demonstrates how
foundation models can unify heterogeneous neural signal
paradigms, advancing generalized, scalable EEG analysis.
CBRAMOD [192] introduces a criss-cross transformer frame-
work to explicitly model EEG’s spatial-temporal heterogene-
ity. Using patch-based masked reconstruction, it separately
processes spatial and temporal patches through parallel atten-
tion, preserving the structural dependencies to EEG.

Brant [112] and Brainwave [193] represent a unified effort
to establish foundation models for neural signal analysis. Brant
focuses on SEEG signals, employing a masked autoencoding
framework with dual Transformer encoders to capture tem-
poral dependencies and spatial correlations, enabling seizure
detection and signal forecasting. Brainwave pioneers large-
scale pretraining with an unprecedented multimodal corpus of
over 40,000 hours of EEG/iEEG data from 16,000 subjects,
marking a significant milestone in neural signal foundation
models. Its pre-training strategy follows a masked modeling
paradigm that randomly masks time-frequency patches of
neural signals, and the model is trained to reconstruct the
missing regions. To enhance generalizability across neural data
types, Brainwave employs a shared encoder for both EEG and
iEEG, coupled with modality-specific reconstruction decoders.
These innovations position Brainwave as the first compre-
hensive foundation model unifying EEG/iEEG analysis, with
transformative implications for neuroscience research.

c) Large-Scale Discrete-Reconstruction Models: Vector
Quantized Variational Autoencoder (VQ-VAE) is a powerful
framework for learning discrete representations of continuous
data by mapping inputs to a predefined codebook, which
has been widely adopted in domains like speech and image
processing [198]. By tokenizing raw data into discrete codes,
this approach enhances cross-subject generalization while
preserving interpretable spatiotemporal patterns.

LaBraM [195] trains its discrete codebook by reconstructing
spectral magnitudes and phases of EEG segments, then pre-
trains with a symmetric masking task that predicts masked
code indices bidirectionally. NeuroLM [196] extends this
approach by introducing VQ Temporal-Frequency Prediction,
aligning EEG tokens with textual representations through ad-
versarial training. After tokenization, it employs autoregressive

modeling, enabling an LLM to predict the next EEG token
analogous to language modeling. EEGFormer [194] focuses
on reconstructing raw waveforms for codebook training, fol-
lowed by BERT-style masked signal reconstruction pretrain-
ing. These methods demonstrate how VQ-based tokenization
adapts to EEG modeling—whether prioritizing spectral syn-
chrony (LaBraM), fusing time-frequency features (NeuroLM),
or preserving temporal fidelity (EEGFormer).

C. BrainBenchmark
The development of universal pre-trained frameworks repre-

sents a transformative advancement in healthcare, enabling the
integration of heterogeneous datasets and generalization across
diverse diagnostic tasks. However, existing studies—whether
supervised or self-supervised—often adopt inconsistent dataset
usage, validation splits, and evaluation metrics. These in-
consistencies make it difficult to fairly compare different
paradigms and accurately assess progress in the field. To
address this issue, we have established an open benchmark
that provides a unified evaluation standard and toolset for
the community. It currently includes 8 representative mod-
els and 9 public datasets, with support for flexible model
integration and dataset expansion. Our goal is to encourage
researchers to adopt this common framework for consistent,
reproducible benchmarking and to lower the barrier for inte-
grating new methods. The implementation is publicly available
at https://github.com/ZJU-BrainNet/BrainBenchmark, and we
hope it will serve as a foundation for advancing universal pre-
trained frameworks in EEG/iEEG analysis.

V. CONCLUSION

This survey systematically reviews 448 studies and 46
public datasets to advance deep learning-driven analysis of
EEG/iEEG signals across seven neurological diagnostic tasks:
seizure detection, sleep staging and disorder, major depres-
sive disorder, schizophrenia, Alzheimer’s disease, Parkinson’s
disease, and ADHD. Our work establishes three founda-
tional contributions: First, we unify fragmented methodologies
across neurological conditions by standardizing data process-
ing, model architectures, and evaluation protocols. Second,
we identify self-supervised learning as the most promising
paradigm for multi-task neurodiagnosis, providing a compre-
hensive overview of pre-trained SSL frameworks and their
advancements. Third, we introduce BrainBenchmark, a unified
platform that standardizes evaluations and integrates neu-
rological datasets with diverse models, aiming to improve
comparability and reproducibility across studies.

Looking back, the pursuit of universal models capable of
learning from diverse, multimodal data reflects the field’s
growing ambition, laying the groundwork for a new era of
intelligent and adaptable healthcare systems. Over the past
decades, significant progress has established a strong foun-
dation for neurological diagnostics based on electrical brain
signals. Key contributions include advances in signal pre-
processing, curating large-scale, well-annotated datasets, and
developing deep learning architectures for specific tasks. The
integration of self-supervised pretraining marks a paradigm

https://github.com/ZJU-BrainNet/BrainBenchmark
https://github.com/ZJU-BrainNet/BrainBenchmark
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shift, enabling models to extract rich and meaningful represen-
tations from vast amounts of unlabeled, heterogeneous data.

Looking forward, the ultimate goal is to develop genuinely
universal and adaptable frameworks capable of transcending
individual tasks and datasets to address a broader range of neu-
rological disorders. These advancements will pave the way for
intelligent diagnostic tools that deliver precise, efficient, and
accessible healthcare solutions globally, driving transformative
progress in biomedical research and clinical applications.
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