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Abstract

Automated seizure detection (ASD) using intracranial electroencephalography
(iEEG) is critical for effective epilepsy treatment. However, the significant do-
main shift of iEEG signals across subjects poses a major challenge, limiting their
applicability in real-world clinical scenarios. In this paper, we address this issue
by analyzing the primary cause behind the failure of existing iEEG models for
subject-independent seizure detection, and identify a critical universal seizure
pattern: seizure events consistently exhibit higher average amplitude compared to
adjacent normal events. To mitigate the domain shifts and preserve the universal
seizure patterns, we propose a novel self-comparison mechanism. This mechanism
effectively aligns iEEG signals across subjects and time intervals. Based on these
findings, we propose Difference Matrix-based Neural Network (DMNet), a subject-
independent seizure detection model, which leverages self-comparison based on
two constructed (contextual, channel-level) references to mitigate shifts of iEEG,
and utilize a simple yet effective difference matrix to encode the universal seizure
patterns. Extensive experiments show that DMNet significantly outperforms previ-
ous SOTAs while maintaining high efficiency on a real-world clinical dataset that
we collected, as well as two public datasets for subject-independent seizure detec-
tion. Moreover, the visualization results demonstrate that the generated difference
matrix can effectively capture the seizure activity changes throughout the seizure
evolution process. Additionally, we deploy our method in an online diagnosis
system to illustrate its effectiveness in real clinical applications.

1 Introduction

Epilepsy, a chronic neurological disorder, affects more than 65 million people around the world. Up
to 70% of people with epilepsy can be free from seizure only if the seizure onset zone (SOZ) can
be located and surgically removed [26]. To diagnose epilepsy, doctors rely on the assessment of
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electrical activities that reflect the state and function of the subject’s brain. Electroencephalography
(EEG) is a widely employed and cost-effective method to record these electrical activities by placing
sensors on the scalp. However, as a non-invasive method, it is unable to accurately locate SOZ in the
deep structures of the brain.

Nowadays, iEEG is widely employed to identify and locate SOZ. Stereo-EEG, one representative
iEEG technique, involves the deep implantation of electrodes within the brain to record electrical
activities. These electrodes contain multiple recording contacts, called channels, and are placed
across different regions of the brain, which provide stereoscopic recordings of the brain from both
cortical and subcortical structures simultaneously [30]. This fully developed technique has been
proven to be both effective and safe [5].

Given a substantial volume of iEEG data, we present a pipeline tailored to real-world application
scenarios for automated seizure detection (ASD), as depicted in Fig. 1 (g). Firstly, the ASD model is
trained using data from accessible subjects. Subsequently, the trained model is applied to identify
seizures in iEEG recordings from previously unseen subjects. Doctors can refer to the prediction
results, allowing for a more accurate diagnosis and facilitating more effective treatment decisions.

However, most existing ASD methods are built on non-invasive EEG with a subject-specific set-
ting [38, 31] and subject-independent setting [2, 44, 11]. However, these EEG-based methods are
prone to failure when applied to iEEG data. This is primarily due to the significantly higher complex-
ity of iEEG signals compared to EEG signals. iEEG signals exhibit a greater level of intricacy as
a result of the structural and functional disparities in brain neural activities. Furthermore, there are
variations in the number and placement of invasive electrodes (Fig. 1 (a,b)), leading to significant
domain shifts across different subjects. However, Existing methods that employ domain adversarial
training for subject-independent seizure detection on iEEG signals may encounter negative transfer
effects [23, 27]. Although [41] proposed a method that utilizes a series of intricate pre-training
strategies to learn the general pattern across subjects, it lacks efficiency. Consequently, developing an
effective and efficient subject-independent ASD method using iEEG is crucial for clinical diagnosis.
Here, we discuss the primary challenges associated with iEEG in ASD.
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Figure 1: (a, b) Locations of iEEG depth electrode
contacts (red circle) for subjects P2 and P4. (c, d, e, f)
Examples of seizure and normal iEEG recording activ-
ities of subjects P2 and P4. (g) Application of our
proposed method in real-world clinical scenarios.

Challenges. The factors mentioned above cause
a significant domain shift between subjects, pos-
ing an open question regarding the generaliza-
tion of subject-independent epilepsy seizure de-
tection using iEEG. This issue gives rise to chal-
lenges at both the subject level and the channel
level:

(1) How to capture the general distinguishable
representation for normal and seizures between
different subjects and time intervals? Due to
individual differences that exist among subjects,
the inherent properties of iEEG recordings, such
as amplitude, frequency, and others, are person-
alized to each subject. Even within the same
individual, brain activities vary over time.

(2) How to reduce the inconsistency of the
seizure patterns of different channels? The chan-
nels exhibit diverse patterns due to the iEEG
records of various regions of the brain, poten-
tially leading to conflicting patterns between
subjects. For example, normal and seizure
waves are indistinguishable between subjects
or channels. As shown in Fig. 1, the normal
wave in (e) is difficult to distinguish from the
seizure waves in (c) and (d), while the seizure
event in (f) is often mistaken for the normal one. Therefore, the second challenge is to personalize
the representations of brain activity independent of channels, allowing the model to adapt to different
subjects.
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Solution. To address these challenges, we first propose the mechanism of self-comparison: comparing
the target segment with adjacent normal segments. Subsequently, we conduct a comprehensive
observation study (Sec. 3) to demonstrate the effectiveness of self-comparison. Our findings indicate
that self-comparison can obtain a general distinguishable representation of normal ones and seizures.

Drawing on these inspirations, we argue that the self-comparison mechanism is the key to easily and
effectively capture subject-invariant patterns between subjects. To this end, we propose a novel model,
namely Difference Matrix based neural Network (DMNet), for subject-independent seizure detection.
Specifically, considering that different seizure events would present different neural activities (local
bias) within different recording channels (global bias), we therefore introduce two reference objects
(i.e., contextual reference and channel-level reference). These references ensure that we can capture
both local and global dependencies within data, which are the primary contributors of distribution
shift and can be effectively mitigated through the self-comparison mechanism. Subsequently, we
utilize a simple yet effective fully differencing operation to generate the difference matrix, which
compares the target segment with its reference objects for self-comparison implementation. To
effectively extract semantics from the difference matrix, we design a difference matrix encoder based
on convolutional neural network (CNN) blocks to obtain the final representation of the detection
segment. Our primary contributions are listed as follows:

• We investigate the problem of subject-independent ASD based on the iEEG. Through
comprehensive analysis, we identify the self-comparison mechanism as a simple yet effective
way to capture the general representation.

• We propose a novel model named DMNet for subject-independent ASD. The fully differenc-
ing operation based on contextual reference and channel-level reference for self-comparison
can mitigate the local and global biases among subjects and channels, improving the gener-
alizability of learned representations.

• Extensive experiments on clinical and public iEEG datasets show DMNet outperforms
existing SOTAs. Moreover, the generated difference matrix effectively captures seizure
activity changes during the seizure evolution process. Furthermore, DMNet outperforms
existing SOTAs while maintaining the high efficiency. Building on these strengths, we
deploy our method in an online system, enhancing clinical applications by assisting medical
professionals in the diagnosis of epilepsy and by facilitating the provision of more effective
treatment options for patients.

2 Problem Formulation

In this work, the iEEG recording is regarded as a set of time series X = {x(i)}Ci=1, where C refers
to the total number of channels. Each x(i) ∈ RT corresponds to a channel, and T refers to the total
timestamp. We sequentially test the channels one after another. Specifically, given one channel of
iEEG time series x(i) = {x(i)

1 , · · · , x(i)
T } from a subject, we first divide the original recording data

into segments for detection. For simplicity, we omit the channel index i in subsequent steps:

{s0, s1, ..., sm−1} (1)

where sk = {xℓ×k+1, · · · , xℓ×(k+1)}, 0 ≤ k ≤ m − 1, ℓ is the number of timestamp for each
segment, m is the total number of segments. Each segment sk has a corresponding label yk ∈ {0, 1},
indicating whether the segment contains a seizure event. In this work, our aim is to predict yk on
each segment sk for different subjects.

We define our problem as an innovative study of Domain Generalization (DG) [45] in the context of
epileptic diagnosis. In this study, we treat each subject’s data as a domain, and our goal is to utilize
the data of available labeled subjects (source domains) to train a model that can be directly adopted
to the subjects with unseen data (target domains).

3 Empirical Analysis

In this section, we first analyze the primary cause behind the failure of existing models for subject-
independent seizure detection of the iEEG and the reasons of occurrence. Then we explore the
possibility of a domain-consistent seizure pattern existing within iEEG data, taking into account the
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domain shift issue. Finally, we validate whether self-comparison mechanism can mitigate distribution
shifts in iEEG data and capture the potential domain consistent seizure patterns.
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Figure 2: Observation results of the clinical iEEG dataset. (a) Overall distribution of raw iEEG signals
(all subjects and channels), where normal and seizure events are indistinguishable. (b) Distribution of raw iEEG
signals across different time intervals and subjects, where substantial domain shifts are evident in both distinct
time intervals and among different subjects (red dashed line at 0 serves as reference line for domain shift). (c)
Overall distribution of raw iEEG data after the self-comparison process. (d) Distribution of raw iEEG data
across different time intervals and subjects after the self-comparison process. The self-comparison mechanism
effectively mitigates distribution shifts across time intervals and subjects, thus enhancing the model’s ability to
distinguish between seizure and normal events.

3.1 iEEG Domain Shift Issue and Domain Consistent Seizure Pattern

Most previous studies [10, 16] assert that vanilla detection models trained independently by each
subject are prone to failure when applied to other subjects. To analyze the direct cause of failure, we
merge raw iEEG signals from all subjects and channels in a clinical iEEG dataset (details in App. C),
and analyze the distributions of seizure and normal events. As depicted in Fig. 2 (a), the results reveal
nearly identical means and close variances for both seizure and normal signals in the merged data.
This similarity leads to the indistinguishability between normal and seizure signals across subjects,
which becomes a direct factor to the failure of subject-dependent models.

For a detailed analysis, we partition the iEEG signals into multiple intervals, each comprising 250
timestamps, for each subject. We then compute the distributions of seizure and normal events within
each interval. Through empirical analysis, we observe significant domain shifts both across different
subjects (inter-subject) and different time intervals for the same subject (intra-subject). Fig. 2 (b)
presents the normal and seizure distributions within four intervals randomly sampled from subjects
P1 and P2, where the distribution patterns of normal and seizure exhibit substantial variation across
different time intervals and subjects. This observation aligns with findings from previous studies
in neural science and medicine, which have consistently reported that brain signals exhibit high
variability between subjects and sessions due to inherent background neural activities [33], seizure
patterns [14], electrode locations [9], etc.

Despite the pronounced domain shift observed in iEEG signals across subjects and time intervals,
there is a notable commonality among subjects. Specifically, seizure events consistently demonstrate
a higher average amplitude in the frequency domain compared to their background signal (adjacent
normal events), indicating more intense neural oscillatory activities. This finding is consistent with
previous studies in the field [34, 21].

3.2 Self-Comparison can Help

Based on the commonality above, we propose a novel self-comparison mechanism, which compares
the target segment with its adjacent normal segment, to mitigate domain shifts between subjects and
time intervals. To verify the effectiveness of this mechanism, we conduct an empirical study. First,
for each subject, we partition the contiguous iEEG data into small segments. Considering that the
spectral signal of brain data can effectively track transient changes before and during seizures [6], we
proceed to transform these segments into the frequency domain using Discrete Fourier Transform
(DFT). Subsequently, we calculate the spectrum differences by subtracting the spectrum of the target
segment from those of adjacent segments on both sides of the target segment. We then sum up the
absolute values of these differences, generating a single value D for each target segment.
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Figure 3: Overview of the proposed DMNet.

The overall distributions of D values for all seizure and normal segments are depicted in Figure 3 (c).
Notably, the distribution of the normal and seizure segments becomes distinctly separated after the
adoption of the self-comparison mechanism. Additionally, we analyze the distribution of D values
for target segments within the same four intervals from P1 and P2, which is discussed in Section 3.1.
The results are shown in Figure 3 (d). It is evident that the distribution of normal or seizures segments
is well aligned across different subjects and time intervals, and the patterns of normal and seizure
become more distinguishable. These results signify that our proposed self-comparison mechanism
effectively mitigates the domain shift issue and preserves a domain consistent and distinguishable
representation for normal and seizure segments.

4 Methodology

Inspired by the above observations, we propose a subject-independent seizure detection framework
called DMNet, which leverages self-comparison to alleviate the distribution shift and preserve the
domain consistency while distinguishing seizure patterns.

Overview. The overall framework is illustrated in Fig. 3. First, for each detection segment sk , we
construct two reference segments (contextual reference : Lc(sk) / Rc(sk), channel-level reference

: Lcℓ(sk) / Rcℓ(sk)) to compare with the target segment (Fig. 3, left). Then we use a simple
yet effective fully differencing operation with signed-min-max normalization for self-comparison
implementation, and the compared information is encoded by a difference matrix (DM) (Fig. 3,
middle). Then we employ a CNN-based difference matrix encoder to learn the latent representation
of DM, and use a classifier for seizure detection (Fig. 3, right).

4.1 References for Self-Comparison

Contextual Reference. The structural and functional differences in brain neural activity lead to
distribution shifts between subjects, and even across different time intervals within the same subject.
Based on the insights from observation studies in Section 3.2, we propose to compare the seizure
wave with its adjacent contexts for the identification of seizure activities, as it significantly mitigates
the domain shifts between subjects and preserves a domain-consistent and distinguishable pattern of
seizure events.

However, capturing the long dependencies between seizure events and their contexts is challenging
with a single contextual segment. This is because a typical epileptic seizure phase consists of pre-
seizure aura, seizure onset, and post-seizure periods, with varying duration (ranging from seconds to
minutes or longer in the case of status epilepticus) [12]. To this end, we first extract 2×N temporal
segments {si}k−N≤i≤k−1 and {si}k+1≤i≤k+N from both sides of sk (each contains L = N × ℓ
timestamps in total, with each segment consisting of ℓ timestamps), ensuring that the context contain
abundant normal information for comparison. Subsequently, we apply DFT to convert these segments
into the frequency domain representation ∈ Rd. Finally, the frequency domain segments obtained
from the left and right sides are referred as the contextual references of sk, denoted as Lc(sk) ∈ RN×d

and Rc(sk) ∈ RN×d ( ) respectively.

Channel-level Reference. Different physiological brain regions have variations in neural activi-
ties [37], leading to distribution shifts between channels, even within the same subject. Although
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contextual reference can reduce local bias, it fails to address global bias. Moreover, for prolonged
epileptic seizures, solely considering the adjacent contextual reference segments may not provide
sufficient normal information as background for comparison. To address these issues, we introduce
channel-level reference as representative features of channels. The aim is to personalize channels,
alleviate global bias, and provide comprehensive global background information of normal events.

Specifically, we adopt the K-Means [24] algorithm to identify the most representative patterns within
a channel. First, we divide the entire time series of each channel into segments with length ℓ. Then,
similar with contextual reference, we use DFT to obtain the frequency domain representation ∈ Rd

of all segments. Next, the K-Means clustering algorithm is applied to group all frequency domain
representations into K clusters. Finally, we arrange the clusters in descending order according to the
number of elements they contain (denoted as C1, C2, · · · , CK , where |C1| ≥ |C2| ≥ · · · ≥ |CK |).
The arrangement indicates that the higher the index of the cluster, the lower the frequency of
occurrence of the corresponding general pattern in the respective channel.

To obtain the general patterns of the channel, we use the centroid of each cluster, resulting in the final
representation denoted as µk ∈ Rd, k = 1, ...,K. These µk values are then concatenated to construct
the left side channel-level reference Lcℓ(sk) ∈ RK×d. Empirically, the right side Rcℓ(sk) is formed
by reversing the order of Lcℓ(sk).

4.2 Difference Matrix

In this subsection, we present the self-comparison implementation based on the constructed references
and target segments through a simple yet effective approach of fully differencing operation. The
comparison information is encoded using a difference matrix (DM).

We first obtain the frequency domain representation xf
k ( ) of target segment sk via DFT, and then

concatenate xf
k with the constructed contextual ( ) and channel-level ( ) references to form the

augmented segment x̃f
k (as shown in Figure 3, bottom-left):

x̃f
k = Lcℓ(sk) ||Lc(sk)|| xf

k ||Rc(sk)|| Rcℓ(sk), (2)

where || is a concatenate operation and x̃f
k ∈ R(2N+2K+1)×d.

Fully Differencing Operation. To implement self-comparison of target segment and references,
we introduce a fully differencing operation. Unlike traditional first-order differencing [13] that
considers only adjacent points, the fully differencing operation makes a pairwise comparison across
all segments in x̃f

k (described in Equation 3 and Fig. 3, middle), which can more effectively capture
the essential seizure patterns of brain activities. Moreover, since there are inherent scale differences
in the vanilla difference matrix Dk caused by varying magnitudes between seizure and normal iEEG
signals across subjects, channels and time intervals, min-max normalization is adopted to address the
scale difference issue. After these two operations, a synthetic difference matrix D̂k can be obtained:

Dk[i, j] = x̃f
k [i]− x̃f

k [j], 1 ≤ i, j ≤ 2N + 2K + 1, (3)

D̂k = Min-Max-Norm(Dk) ∈ R(2N+2K+1)×(2N+2K+1)×d (4)

The generated difference matrix D̂k contains rich semantic information about the evolution of
seizures. We provide a more detailed discussion on each component of the difference matrix D̂k and
the corresponding semantic properties in App B.

Difference Matrix Encoder. To well capture and learn these essential differences, we adopt the CNNs
as the DM encoder (Fig. 3,right), which have been proven to be powerful in learning representations
from 2D matrices [35, 42]. The output of the CNNs will be concatenated as a representation Ẑ of the
DM. Finally, Ẑ will be fed into a linear classifier to obtain the detection result.

5 Experiments

In this section, we conduct extensive experiments on public and clinical iEEG datasets to address
three primary research questions: RQ1. How does the proposed DMNet model perform in subject-
independent seizure detection compared to other methods? RQ2. Do the proposed contextual
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Table 1: Average performance of subject-independent seizure detection tasks on clinical & public
datasets. The v indicates the first rank in a column and v indicates the second. The performance with
standard deviation is given in App. G.

Model
Dataset Clinical MAYO FNUSA

Pre. Rec. F1 F2 Pre. Rec. F1 F2 Pre. Rec. F1 F2

SelfReg 51.60 48.74 51.24 48.63 60.40 32.13 36.13 32.12 62.54 48.19 49.20 47.73
GroupDRO 47.60 44.74 45.15 46.33 48.31 35.00 27.82 28.04 53.48 71.44 60.47 66.38
MTL 20.46 52.33 28.59 39.13 46.87 22.08 15.68 16.31 60.04 52.64 53.90 52.83
CORAL 38.70 49.20 42.01 47.66 62.17 29.86 20.41 22.01 65.13 53.23 55.93 53.88
CDANN 33.43 40.41 35.72 37.58 36.79 79.55 45.49 56.60 64.37 54.85 54.35 53.86
SD 18.69 54.40 28.78 40.81 47.73 55.59 46.97 50.35 56.99 57.97 55.42 56.45
IB-IRM 29.19 49.75 37.91 42.64 47.57 57.17 46.86 50.71 54.22 63.26 55.96 59.47
VREx 44.80 32.45 36.33 35.34 51.21 59.95 51.19 54.85 54.74 60.15 54.64 57.12
IB-ERM 40.30 37.40 37.59 37.19 46.29 57.36 47.21 51.44 54.64 55.26 52.68 53.70
TRM 34.03 42.74 38.93 41.58 47.55 58.97 43.96 47.87 60.68 58.46 56.00 56.74

Abou-Abbas et al. 43.24 45.84 43.15 46.95 48.47 51.40 50.69 48.86 49.83 56.90 52.33 57.53
Zhao et al. 30.17 49.44 36.16 42.65 37.07 56.06 26.17 38.48 41.64 44.20 40.62 42.12
Dissanayake et al. 40.12 39.29 38.30 40.82 50.39 68.99 57.69 64.82 63.85 76.01 63.75 67.94
SICR 46.27 43.91 45.65 43.86 79.01 63.29 69.88 66.17 63.78 66.77 64.25 65.10
SEEGNet 44.89 47.70 46.25 47.11 71.82 60.50 64.87 63.15 62.23 72.35 66.81 68.12
PPi 51.72 49.70 49.78 51.12 74.49 70.21 72.28 71.02 59.53 75.42 65.83 71.59

DMNet 59.58 55.24 54.49 55.93 68.82 90.06 73.08 81.54 62.30 85.39 67.80 75.15
DMNet w/o Lcℓ 48.25 53.30 49.62 51.20 47.10 89.15 62.63 76.43 52.57 78.49 60.99 70.75
DMNet w/o Lc 51.39 47.43 47.32 47.15 58.34 76.73 64.28 71.79 49.28 73.48 58.12 65.23
DMNet w/o DM 43.58 45.79 46.72 43.42 49.67 71.54 60.63 66.57 46.98 66.89 56.21 62.18

reference, channel-level reference and difference matrix contribute to seizure detection? RQ3. How
does the difference matrix reflect seizure activity changes during seizure evolution process?

5.1 Experimental Setup

Datasets. To evaluate the performance of our DMNet model, we conduct experiments on both the
public benchmark dataset, which includes MAYO and FNUSA [25], and the private clinical dataset
(details refer to App. C).

Evaluation Metrics. For fair comparison, we use precision, recall, F1-score and F2-score as
evaluation metrics. Typically, F2-score is particularly emphasized in practical clinical studies [15, 43]
since overlooking any seizure can be costly in terms of diagnosis. Therefore, in our study, the
F2-score serves as the primary metric for comparison.

Settings. To conduct the experiment under the domain generalization settings, we divide the subjects
in the datasets into multiple groups and assign different groups as source and target domains for
model training, validation and testing. A more detailed description of experimental setup that includes
DMNet hyperparameters and setup on clinical and public datasets, can be found in App. D.

Baselines. We compare the proposed DMNet with state-of-the-art subject-independent seizure detec-
tion algorithms for both iEEG-based methods and EEG-based methods. For iEEG-based methods, we
compared against SICR [17], SEEG-Net [39], and PPi [41]. For EEG-based methods, we compared
against Abou-Abbas et al. [2], Zhao et al. [44], and Dissanayake et al. [11]. Additionally, we
compare the performance with the domain generalization (DG) algorithms in other areas like Self-
Reg [18], GroupDRO [32], MTL [7], CORAL [36], CDANN [22], SD [28], IB-IRM [3], VREx [19],
IB-ERM [4], TRM [40]. More details of the baselines are shown in App. A.

5.2 Overall Performance Comparison (RQ1)

The overall performance of our proposed model DMNet and other baselines for subject-independent
seizure detection are presented in Tab. 1. From the results, we can see that our proposed DMNet
significantly outperforms other SOTA subject-independent seizure detection algorithms and the latest
domain generalization methods, with an average improvement of 9.41%, 14.81% and 4.97% in terms
of F2 score on clinical and public datasets (MAYO and FNUSA) respectively. These results highlight
the superior generalization ability of DMNet. Compared to DG baselines, our model exhibits a
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substantial margin in all evaluation metrics, suggesting that general DG baselines fail to capture
the diverse and evolving distribution patterns of iEEG over time. Furthermore, the EEG-based
methods proposed by [2], [44] and [11] may not be adept at handling complex iEEG signals,
which lead to subpar performance. Although the iEEG-based methods [41], SEEG-Net [39] and
SICR [17] outperform most EEG-based methods and DG methods on F2-score, they still fall short of
the performance compared to our model. This may be attributed to the fact that they do not explicitly
capture the general pattern of difference between normal and seizure signals. In contrast, we utilize a
difference matrix to achieve a distinguishable representation of normal and seizure.

5.3 Ablation Study of DMNet (RQ2)

To validate the contribution of each component of our proposed DMNet, we conduct ablation studies
on key components (w/o means without and w/ means with). The results of the ablation evaluation
can be seen in Tab. 1, from which we can see full DMNet significantly outperforms other ablated
models on F2-score. These results of the ablation experiment highlight the effectiveness of the
following components:

Channel-level Reference. Removing channel-level reference causes poorer results compared to the
full version. It indicates that utilizing the channel-level reference with representative characteristics
of each channel for global dependencies modeling can improve the performance.

Contextual Reference. Removing contextual reference results in a noticeable performance drop.
It illustrates that introducing the informative contextual reference for self-comparison to capture
long-term dependencies and complete patterns of seizure improves the performances.

Difference Matrix. Removing DM leads to a significant drop in model performance, indicating the
effectiveness of a fully differencing operation for the implementation of self-comparison.

5.4 Case Study (RQ3)

-1
0

1
(a) (b) (c) (d) (e) (f) (g)

Figure 4: Case study.

To provide a more intuitive demonstration of DMNet, we present the visualization results of difference
matrix throughout the seizure process in Fig. 4 (A full visualization can be found in App. E). The
upper figure shows the raw brain signal containing a full seizure process, with the gray wave
representing the normal signal and the purple wave representing the seizure. The green masked
blocks indicate the segments for detection. Notably, there are clear distinctions between seizure and
normal difference matrices during the seizure evolution. Segments being closer to seizure events show
rougher difference matrices (e.g., segments c, d, and e), while those further away appear smoother
(e.g., segments a, b, f, and g). This case clearly illustrates how the difference matrix captures seizure
activity changes and demonstrates the effectiveness of DMNet.

5.5 Hyperparameters Analysis of DMNet

Number of Segments N . As described in Sec. 4.1, we utilize 2×N segments to form the contextual
reference. Increasing the value of N results in a longer contextual reference, indicating the inclusion
of a greater amount of contextual information. As depicted in Fig. 5(a), the evaluation scores generally
increase as N increases from 8 to 12. This trend is attributed to the fact that a longer contextual
reference can provide more comprehensive information throughout the entire seizure phase.

Segment Length ℓ. We investigate the effects of segment length by varying the segment
length ℓ of contextual reference. The performance of DMNet with different segment lengths
(100, 150, 200, 250, 300) is shown in Fig. 5(b). As ℓ increases, the model precision decreases.
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Figure 5: Hyperparameters Anslysis: (a, b, c) and Computational Efficiency Analysis (d).

In contrast, recall, F1 score and F2-score initially increase when ℓ ranges from 100 to 200 but then
decline. This suggests that shorter segment lengths (ℓ) fail to provide representative semantic infor-
mation, preventing the model from capturing long-term dependencies in the brain signal. Conversely,
excessively long segment lengths can result in coarse-grained temporal representations, leading to the
loss of fine-grained patterns and details.

Number of Clusters K. We vary the number of clusters K in channel-level reference, which controls
the number of generated channel representative features of a specific channel. As we can see in
Fig. 5(c), the evaluation metrics (recall, F1 score, and F2-score) demonstrate an initial increase
followed by a decrease trend as K varies from 6 to 12. However, precision shows an upward trend.
This indicates that introducing global information can reduce false positive samples but it also affects
recall. Therefore, it is necessary to consider trade-offs when selecting the value of K.

5.6 Generalization Ability Analysis

To further assess the generalization capability of DMNet on a broader range of subjects with greater
heterogeneity, we evaluated the model on data of 179 previously unseen subjects from the large
TUSZ EEG dataset [1]. Additional details about this evaluation study are provided in App.F.

5.7 Application Scenario

Model Efficiency. We compare the model efficiency of DMNet and several benchmark models in
terms of parameter count and average inference time per patient file. As shown in Fig. 5 (d), the
parameter count of DMNet is only 19.4% of the model with the smallest parameter count, but its
performance is 109.4% of the best-performing model. Additionally, DMNet has an average inference
time of 45.5 seconds per subject file, which is also the fastest among all models. Overall, DMNet
demonstrates significant advantages in both parameter count and inference time. Therefore, DMNet
is an ideal choice, providing a reliable and high-performance solution for real application scenario.

Figure 6: Online auxiliary diagnosis system.

Online Deployment. DMNet has been deployed
on an online system (Fig.6), which illustrates the
effectiveness of our method in a real clinical ap-
plication. This system serves as an auxiliary
tool for expert doctors, significantly enhancing
the accuracy and efficiency of the diagnostic
process. The system comprises two important
pages: the overview page and the detail page.
The overview page (Fig.6 (top)) offers a compre-
hensive view of the 12-hour patient file. Each
square on the page represents a 1-minute iEEG
signal segment and is color coded to indicate var-
ious states, including no epileptic waves (gray),
correct predictions (green), incorrect predictions
(blue), and missing predictions (red) made by
our model. By clicking on a square, doctors can
access the detail page (Fig.6 (bottom)), where
they can change the presented time period using
the top toolbar. The page includes a data operation panel and seizure events displayed on the right

9



side. In the center of the page, the purple section represents the true seizure annotations provided by
doctors, while the yellow section showcases our model’s predictions. As depicted in the figure, the
predictions of our model align well with the actual seizures.

6 Related Work

Epileptic Seizure Detection for EEG. Data-driven methods for seizure detection have gained
attention in clinical medicine. [38] combine CNN and SVM, [31] leverage frequency components
and CNN. However, these methods are subject-specific and not suitable for real-world application.
Several efforts have been made in the study of subject-independent methods in EEG. [2] proposed
and investigates a subject-independent seizure detection model that uses stable EEG-based features
obtained by comparing multiple feature selection methods. [44] proposed two subject independent
deep learning architectures with different learning strategies that can learn a global function utilizing
data from multiple subjects. [11] proposed IBA (Information Bottleneck Attribution), a subject-
independent seizure detection model that utilizes multi-view information. It employs adversarial deep
learning to learn seizure-specific feature representations directly from raw EEG data. However, these
methods are based on non-invasive EEG recordings.

Epileptic Seizure Detection for iEEG. iEEG, through the placement of electrodes inside or on the
surface of the brain, offers higher temporal and spatial resolution, enabling more accurate capture
and analysis of brain activity in specific regions, including subtle changes in electrophysiological
signals. Consequently, this has spurred research into epilepsy detection based on iEEG [26]. There
are several seizure detection methods being designed in subject-independent settings, which are more
applicable to real-world scenarios. SEEG-Net [39] and SICR [17] proposed adversarial training to
learn subject-invariant features on iEEG recordings. However, their experiments were carried out
on small, manually denoised datasets with a balanced positive-negative sample ratio, resulting in a
significant data bias that deviates from real clinical requirements. Moreover, [41] proposed a method
that utilizes a series of intricate pre-training strategies to learn general pattern cross subjects, which is
lack of efficiency.

General Domain Generalization. Our work focuses on detecting seizure events in unseen subjects,
which can be framed as the domain generalization (DG) problem [45]. Existing DG studies can
be categorized into two groups: Invariant representation based method [36, 22, 4, 18, 3, 7] and
Learning strategy based method [20, 32, 19, 28]. Invariant representation methods aim to learn
domain-invariant representations. CORAL [36] aligns covariance in feature layers, enhancing the
extraction of domain-invariant features. CDANN [22] introduces adversarial training to encourage
robust and domain-invariant feature learning. IB-ERM [4] minimizes empirical risk across domains
to improve generalization. SelfReg [18] uses self-supervised learning and contrastive loss to capture
invariant information across domains. Learning strategy methods aim to enhance generalization
capability through various learning strategies. GroupDRO [32] achieves higher worst-group accuracy
by coupling robust optimization models with increased regularization. VREx [19] penalizes the
variance of training risks to improve domain extrapolation. Despite prior efforts, DG problems in
time series, like iEEG signals, continue to be a relatively unexplored area and poses considerable
challenges due to the diverse and evolving distribution patterns with time.

7 Conclusion

In this paper, we present a novel seizure detection framework called DMNet. Our model addresses the
challenge of generalization across different subjects by incorporating a self-comparison mechanism to
capture the subject-invariant representation. Extensive experiments conducted on clinical intracranial
EEG dataset and public dataset demonstrate the effectiveness of our model in subject-independent
seizure detection tasks. Moreover, our generated difference matrix effectively captures seizure activity
changes during the seizure evolution process, which is valuable for clinicians to better understand
the seizure event and develop more effective treatment. Furthermore, DMNet outperforms existing
SOTAs while maintaining the high efficiency. Based on these, we deploy our method in an online
system, enhancing clinical applications by assisting physicians in the diagnosis of epilepsy and in
offering optimal treatment strategies. We hope that this work will shed light on the development of a
more robust subject-independent seizure detection system.
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A Baselines

Firstly, we compare our model to other iEEG-based subject-independent epilepsy detection models.
The Details of these baseline models are given here:

• SICR [17]: a framework that learns class-relevant and subject- invariant feature representa-
tions, which shows a promising performance in non-invasive brain-computer interface.

• SEEG-Net [39]: a model that can address the problems of sample imbalance, cross-subject
domain shift, and poor interpretability and realizes high-sensitivity SEEG pathological
activity detection. The source code of SEEG-Net is not released, so we implement it by
ourselves to conduct the experiments.

• PPi [39]: proposed a method that utilizes a series of pre-training strategies to extract rich
information from iEEG data while preserving the unique characteristics between brain
signals recorded from different brain areas.

Secondly, we also compare our model to several EEG-based subject-independent epilepsy detection
models. The Details of these baseline models are given here:

• [2]: they propose and investigates a patient-independent seizure detection model that uses
stable EEG-based features obtained by comparing multiple feature selection methods.

• [44]: they propose two subject independent deep learning architectures with different
learning strategies that can learn a global function utilizing data from multiple subjects.

• [11]: they propose a subject-independent seizure detection model, called IBA (Information
Bottleneck Attribution), that utilizes multi-view information. By employing adversarial
deep learning, the model learns seizure-specific feature representations directly from raw
EEG data.

Moreover, we offer more details on comparisons to other latest domain generalization methods
utilized in this paper:

• CDANN [22]: an end-to-end conditional invariant deep DG approach by leveraging deep
neural networks for domain-invariant representation learning.

• CORAL [36]: an unsupervised domain adaptation method that aligns the second-order
statistics of the source and target distributions with a linear transformation.

• GroupDRO [32]: a model coupling group DRO models with increased regularization, where
DRO allows to learn models that instead minimize the worst-case training loss over a set of
groups.

• MTL [8]: a representative framework for DG, which augments the original feature space
with the marginal distribution of feature vectors.

• SD [29]: a regularization method aimed at decoupling feature learning dynamics, improving
accuracy and robustness in cases hindered by gradient starvation.

• SelfReg [18]: a regularization method for DG based on contrastive learning, self-supervised
contrastive regularization.

• TRM [40]: a robust estimation criterion that is specifically geared towards optimizing
transfer to new environments.

• VREx [19]: a penalty on the variance of training risks as a simpler variant based on a form
of robust optimization over a perturbation set of extrapolated domains.

• IB-ERM [4]: a DG method that improve generalization via minimizes the empirical risk
over multiple domains.

• IB-IRM [4]: a DG method that improve generalization via minimizes the invariant risk over
multiple domains.
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B Indepth Visualization of Difference Matrix

In this section, we present visualizations of the difference matrix (DM) constructed in Section 4.2,
for providing an in-depth analysis of the DM properties. Initially, the difference matrix is constructed
separately for normal and seizure segments of all subjects using the method mentioned in Section
4. Next, we average all difference matrices of normal and seizure segments to obtain the averaged
2-dimensional matrices. These two averaged 2D matrices are shown in the second row of Fig. 7.
The green square with dashed line represents the difference between the channel-level reference
and target segment xf

k . A zoom-in visualization is provided in the first row of the Fig. 7. The left
(normal) shows little difference of xf

k with most of the channel patterns (small cluster index), but
significant difference with a small portion of channel patterns (large cluster index). Conversely, the
right one (seizure) exhibits the opposite pattern, validating the effectiveness of channel-level reference.
Furthermore, the red square with the dashed line represents the difference within xf

k (only containing
contextual reference). The third row of the figure presents a zoom-in visualization, showing a smooth
2-dimensional matrix for normal event and a rough 2-dimensional matrix for seizure event. This
demonstrates the effectiveness of introducing contextual reference.

C Datasets

To evaluate the performance of our model, we conduct extensive experiments on the following two
datasets.

Clinical Dataset. The clinical dataset in our study is provided by a first-class hospital, and the
intracranial EEG electrode implantation surgery and data collection are approved by the official
ethics committee. For each subject, 4 to 10 invasive electrodes with 52 to 126 channels are implanted
according to clinical needs to obtain brain signals. The dataset is quite massive due to the high
frequency and multiple channels used to record intracranial EEG data, with more than 738 recording
hours and 877.3GB total size. Data are labeled by professional neurologists at point level. Moreover,
the positive sample (seizure event) ratio of a single subject in our dataset is around 0.003 on average,
which is extremely imbalanced. More details can be found in Table 3.
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Public Dataset. The public dataset MAYO and FNUSA [25] used in our paper, is collected from
St. Anne’s University Hospital (Brno, Czech Republic). This dataset is composed of intracranial
EEG data collected in an awake resting state from 38 diagnosed subjects. Specifically, the dataset
comprises a total of 348,300 segments. Each segment spans a duration of 3 seconds and consists
of 15,000 data points, with a sampling frequency of 5000Hz. These segments are labeled into 4
categories, including physiological activity, pathological activity (seizure event), artifacts, and power
line noise. We follow the setup in [39] of omitting invalid data from one subject while retaining the
data from 30 subjects for analysis. More details can be found in Table 3.

Table 2: Basic hyperparameters of DMNet.

Parameter Clinical dataset Public dataset
Length of Segment ℓ 250 500
Number of Segments N 10 7
Number of Clusters K 8 8
Base Filter Number Ch 64 8
Batch Size 24 24
Optimizer Adam Adam
Learning Rate 3× 10−4 3× 10−4

Max Epoch 20 20
Valid Metric F1-score F1-score

Table 3: Details information of the clinical and public dataset.

Dataset Subject ID Time
(hours)

Sample
frequency(Hz) #Electrodes #Channels Positive

sample ratio #Samples gender

C
lin

ic
al

P0 72 1000 10 126 0.003 8,113,760 male
P1 24 512 7 93 0.0002 4,176,200 female
P2 6 512 5 69 0.004 3,698,920 male
P3 21 1000 4 52 0.004 3,460,280 female
P4 114 1000 10 126 0.001 9,664,920 female
P5 36 512 5 63 0.002 3,818,240 female
P6 24 512 7 89 0.009 6,801,240 female
P7 36 1024 4 52 0.001 1,789,800 male

M
A

Y
O

P0 2.2 5000 - - 0 2648 -
P1 7.9 5000 - - 0.1020 9536 -
P2 2.3 5000 - - 2.2231 2788 -
P3 5.6 5000 - - 0 6693 -
P4 2.4 5000 - - 0 2853 -
P5 6.3 5000 - - 0 7585 -
P6 10.7 5000 - - 0 12873 -
P8 2.3 5000 - - 1 2816 -
P9 0.6 5000 - - 0 740 -

P14 3.2 5000 - - 6.8795 3924 -
P16 3.2 5000 - - 0 3876 -
P17 8.5 5000 - - 0 10194 -
P18 4.0 5000 - - 0 4826 -
P19 4.7 5000 - - 0 5613 -
P20 2.3 5000 - - 0 2702 -
P21 2.9 5000 - - 59.1724 3490 -
P23 3.46 5000 - - 1.96 4152 -

FN
U

SA

P0 1.6 5000 - - 1 1912 -
P1 10.3 5000 - - 0.1341 12358 -
P2 6.7 5000 - - 0.9985 8088 -
P3 7.1 5000 - - 0 8463 -
P4 10.0 5000 - - 0.1268 12038 -
P5 2.1 5000 - - 0.6176 2516 -
P6 13.2 5000 - - 0.4884 15843 -
P7 18.9 5000 - - 0.0834 22774 -
P8 5.6 5000 - - 1 6750 -
P9 9.7 5000 - - 0.3675 11591 -

P10 8.6 5000 - - 0.3953 10301 -
P11 39.3 5000 - - 0.1631 47270 -
P12 16.4 5000 - - 0.2708 19635 -
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Table 4: Group information of clinical and public datasets.

Dataset
Group A B C D E F

Clinical 0,7 5,6 2,4 1,3 - -
MAYO 0,18,21 1,9,19 2,5,16 3,4,23 6,8 14,17,20
FNUSA 0,4 1,8 2,3,11 5,6 7,9 10,12

Table 5: Detailed information of dataset setup in the experiment.

Dataset Exp. id Training Validation Test

C
lin

ic
al

0 C+D B A
1 B+D C A
2 B+C D A
3 C+D A B
4 A+D C B
5 A+C D B
6 B+D A C
7 A+D B C
8 A+B D C
9 B+C A D

10 A+C B D
11 A+B C D

Pu
bl

ic

0 A+B+C+D E F
1 A+B+C+F D E
2 A+B+E+F C D
3 A+D+E+F B C
4 C+D+E+F A B
5 B+C+D+E F A

D Experimental Setup

All experiments were run on a Linux system with 2 CPUs (AMD EPYC 7H12 64-Core Processor)
and 4 GPUs (NVIDIA GeForce RTX 3090).

Setup on Clinical Dataset. To conduct the experiment under domain generalization setting, we
divide these subjects in a clinical dataset into 4 groups, each group contains 2 subjects (detailed
grouping information is listed in Table 4). For model training and testing, we adopt a “2-1-1 setting”
for the division of training, validation, and test sets. Specifically, we assign two groups to the training
set and one group to the validation set, collectively forming the source domains. Additionally, we
assign another group as the target domain for testing. For a comprehensive experiment, we conduct
the experiments under 12 different grouping combinations (detailed settings in Table 5). To reduce
computational load, we downsample the data to 250Hz. The length of the patch ℓ is set to 1 second
(250 data points). More experimental details, including model and optimization settings, are listed in
Table 2.

Setup on Public Dataset. For the public dataset, we employ the grouping strategy mentioned in [39].
Specifically, we divide these subjects into 6 groups. We adopt a “4-1-1 setting” for model training,
validation, and testing, respectively: randomly choose 5 groups (4 testing groups and 1 validation
group) as the source domain, while the other one group as the target domain for testing. For the
public dataset, we conduct the experiments under 6 different grouping combinations (detailed setups
in Table 5). Moreover, because the public dataset is sampled data, there is no complete channel data,
so for DMNet with public data, we remove the channel-level reference. More experimental details,
including model and optimization settings are listed in Table 2.

E Full Visualization of Seizure Evolution Process

To additional illustrate the effectiveness of our proposed DMNet, we present the visualization results
of the difference matrix throughout the entire seizure process in Fig. 8. The upper figure shows the
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Figure 8: Illustration of how difference matrices reflect seizure activity changes during seizure
evolution process. Purple line refers to seizure waves, gray line refers to normal waves.

raw iEEG signal that contains a complete seizure process, where the gray wave represents the normal
signal and the purple wave represents the seizure. The green masked blocks indicate the segments for
detection. Notably, distinctions between seizure and normal matrices are evident during the evolution
of the seizure. For segments that are temporally closer to the seizure events, the difference matrices
tend to be rougher (e.g., segments c, d, and e) and vice versa (e.g., segments a, b, f, and g). In
summary, this case clearly illustrates how the difference matrix captures the seizure activity changes
in different frequency bands, and indicates the effectiveness of our proposed method.

F Generalization Ability Analysis

To further evaluate the generalization capability of DMNet across a wider range of subjects with
greater heterogeneity, we assessed the model using data from the extensive TUSZ EEG dataset [1]
which encompasses numerous subjects. After data preprocessing, we retained data from 179 subjects,
dividing them into training, validation, and testing sets in a 6:2:2 ratio, with distinct subjects in
each split. Please refer to Tab. 6 for the results of the experiment. The results indicate that DMNet
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Table 6: Performance of DMNet on TUSZ Dataset.

Model
Dataset TUSZ

Pre. Rec. F1 F2

Abou-Abbas et al. 25.03
±3.881

57.20
±3.382

36.27
±4.528

43.88
±3.181

Zhao et al. 23.74
±4.502

49.73
±3.467

30.28
±4.022

42.41
±3.285

Dissanayake et al. 28.67
±3.294

54.91
±4.492

36.70
±2.587

49.15
±5.128

SICR 32.54
±4.621

61.32
±5.062

40.71
±3.296

50.45
±4.957

SEEGNet 34.16
±4.381

58.20
±5.124

45.34
±4.213

52.63
±5.648

PPi 36.49
±5.682

62.72
±4.482

49.69
±5.107

56.09
±4.784

DMNet 48.87
±2.520

67.59
±4.834

56.56
±3.347

65.86
±2.972

Table 7: Full average performance with standard deviation of of subject-independent seizure detection
tasks on clinical dataset. The v indicates the first in a column and v indicates the second.

Model
Dataset Clinical

Pre. Rec. F1 F2

SelfReg 51.60±3.234 48.74±4.185 51.24±3.138 48.63±2.980

GroupDRO 47.60±1.760 44.74±3.123 45.15±1.920 46.33±1.990

MTL 20.46±3.350 52.33±4.040 28.59±3.128 39.13±2.963

CORAL 38.70±2.455 49.20±3.893 42.01±2.620 47.66±2.680

CDANN 33.43±5.783 40.41±5.050 35.72±5.013 37.58±4.668

SD 18.69±2.475 54.40±3.823 28.78±2.600 40.81±2.645

IB_IRM 29.19±1.948 49.75±3.785 37.91±2.035 42.64±2.208

VREx 44.80±2.213 32.45±3.745 36.33±2.450 35.34±2.613

IB_ERM 40.30±1.668 37.40±3.338 37.59±1.880 37.19±2.125

TRM 34.03±2.023 42.74±4.285 38.93±2.448 41.58±3.003

Abou-Abbas et al. 43.24±5.313 45.84±4.433 43.15±4.718 46.95±4.550

Zhao et al. 30.17±3.630 49.44±5.893 36.16±4.168 42.65±4.943

Dissanayake et al. 40.12±4.853 39.29±6.493 38.30±5.783 40.82±6.160

SICR 46.27±5.655 43.91±6.253 45.65±5.380 43.86±5.695

SEEGNet 44.89±7.073 47.70±4.355 46.25±6.432 47.11±4.570

PPi 51.72±6.847 49.70±5.712 49.78±4.050 51.12±4.293

DMNet 59.58±4.648 55.24±5.120 54.49±3.915 55.93±3.751

DMNet w/o Lcℓ 48.25±4.110 53.30±3.859 49.62±3.858 51.20±3.096
DMNet w/o Lc 51.39±3.820 47.43±4.107 47.32±4.953 47.15±4.120

DMNet w/o DM 43.58±4.562 45.79±3.870 46.72±3.205 43.42±4.823

consistently outperforms existing SOTA models, demonstrating its effectiveness in seizure detection
on EEG dataset with numerous subjects.

G Full Result

H Limitations

There are two main limitations to my approach. Firstly, it lacks a theoretical foundation, which
may call into question the effectiveness and reliability of the method. It becomes challenging to
explain and justify the underlying principles behind the approach. Secondly, although the method is
efficient, it suffers from a limited number of parameters. This limitation can potentially impact the
generalizability of the method. Therefore, while the method may show promising results in specific
contexts, caution should be exercised when applying it to broader or unfamiliar situations.
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Table 8: Full average performance with standard deviation of of subject-independent seizure detection
tasks on MAYO. The v indicates the first in a column and v indicates the second.

Model
Dataset MAYO

Pre. Rec. F1 F2

SelfReg 60.40±5.788 32.13±4.320 36.13±4.423 32.12±3.988

GroupDRO 48.31±7.228 35.00±9.053 27.82±6.870 28.04±6.823

MTL 46.87±6.840 22.08±7.813 15.68±4.915 16.31±5.003

CORAL 62.17±7.843 29.86±9.835 20.41±7.335 22.01±7.430

CDANN 36.79±5.453 79.55±4.335 45.49±5.578 56.60±4.843

SD 47.73±6.518 55.59±4.735 46.97±4.825 50.35±4.485

IB_IRM 47.57±7.173 57.17±5.315 46.86±6.093 50.71±5.490

VREx 51.21±6.155 59.95±5.323 51.19±5.738 54.85±5.503

IB_ERM 46.29±6.553 57.36±4.405 47.21±5.303 51.44±4.725

TRM 47.55±7.498 58.97±4.785 43.96±4.788 47.87±3.473

Abou-Abbas et al. 48.47±4.898 51.40±5.690 50.69±4.985 48.86±5.290

Zhao et al. 37.07±4.344 56.06±4.686 26.17±4.367 38.48±4.870

Dissanayake et al. 50.39±6.033 68.99±4.323 57.69±3.838 64.82±3.173

SICR 79.01±3.980 63.29±3.058 69.88±2.208 66.17±2.623

SEEGNet 71.82±7.341 60.50±3.091 64.87±3.421 63.15±3.340

PPi 74.49±8.550 70.21±2.725 72.28±3.915 71.02±3.070

DMNet 68.82±7.168 90.06±1.270 73.08±3.738 81.54±3.283

DMNet w/o Lcℓ 47.10±4.055 89.15±3.688 62.63±2.243 76.43±5.543
DMNet w/o Lc 58.34±4.825 76.73±4.608 64.28±4.553 71.79±4.823

DMNet w/o DM 49.67±5.303 71.54±4.553 60.63±4.825 66.57±2.808

Table 9: Average performance with standard deviation of of subject-independent seizure detection
tasks on FNUSA. The v indicates the first in a column and v indicates the second.

Model
Dataset FNUSA

Pre. Rec. F1 F2

SelfReg 62.54±4.373 48.19±6.663 49.20±4.413 47.73±5.630

GroupDRO 53.48±4.318 71.44±3.943 60.47±3.728 66.38±3.665

MTL 60.04±4.088 52.64±5.173 53.90±4.298 52.83±4.780

CORAL 65.13±3.615 53.23±5.395 55.93±4.283 53.88±4.930

CDANN 64.37±5.103 54.85±5.558 54.35±4.608 53.86±4.520

SD 56.99±4.583 57.97±4.970 55.42±3.688 56.45±4.240

IB_IRM 54.22±4.985 63.26±4.608 55.96±3.503 59.47±3.768

VREx 54.74±4.923 60.15±5.458 54.64±4.010 57.12±4.553

IB_ERM 54.64±4.948 55.26±5.363 52.68±4.178 53.70±4.690

TRM 60.68±4.240 58.46±6.150 56.00±4.325 56.74±5.213

Abou-Abbas et al. 49.83±4.215 56.90±4.368 52.33±3.923 57.53±4.123

Zhao et al. 41.64±3.050 44.20±2.168 40.62±0.798 42.12±1.123

Dissanayake et al. 63.85±6.980 76.01±3.873 63.75±4.368 67.94±2.598

SICR 63.78±3.238 66.77±4.078 64.25±3.363 65.10±3.748

SEEGNet 62.23±4.070 72.35±2.620 66.81±4.337 68.92±3.832

PPi 59.53±4.823 75.42±3.021 65.83±4.981 71.59±4.515

DMNet 62.30±5.475 85.39±2.623 67.80±3.795 75.15±2.460

DMNet w/o Lcℓ 52.57±6.623 78.49±5.323 60.99±3.995 70.75±3.908

DMNet w/o Lc 49.28±6.155 73.48±4.418 58.12±3.723 65.23±4.686

DMNet w/o DM 46.98±6.225 66.89±4.206 56.21±4.195 62.18±4.846
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In this paper, abstract and introduction accurately reflect the paper’s contribu-
tions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in Appendix H.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The private dataset so one may cannot reproduce the experiments on the private
dataset. However, we also use another two public datasets, and the code of our work is fully
provided too, which could help you understand our work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The private dataset so one may cannot reproduce the experiments on the private
dataset. However, we also use another two public datasets, and the code of our work is fully
provided too, which could help you understand our work.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We give a detailed description of our experiment setting in Appendix D. We
also do a hyperparameter analysis in the Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The standard derivation is shown in the Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information about Experiments Compute Resources such as CPU,
GPU, etc. in the Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All authors reviewed and conducted the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: There is no social impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the existing assets are properly referenced.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our code is provided as a supplement.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [No]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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