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Abstract

Automated seizure detection is of great importance to epilepsy diagnosis and treat-
ment. An emerging method used in seizure detection, stereoelectroencephalography
(SEEG), can provide detailed and stereoscopic brainwave information. However,
modeling SEEG in clinical scenarios will face challenges like huge domain shift
between different patients and dramatic pattern evolution among different brain
areas. In this study, we propose a Pretraining-based model for Patient-independent
seizure detection (PPi) to address these challenges. Firstly, we design two novel
self-supervised tasks which can extract rich information from abundant SEEG
data while preserving the unique characteristics between brain signals recorded
from different brain areas. Then two techniques, channel background subtraction
and brain region enhancement, are proposed to effectively tackle the domain shift
problem. Extensive experiments show that PPi outperforms the SOTA baselines
on two public datasets and a real-world clinical dataset collected by us, which
demonstrates the effectiveness and practicability of PPi. Finally, visualization
analysis illustrates the rationality of the two domain generalization techniques.

1 Introduction

Epilepsy is a chronic disease of brain that affects more than 50 million people worldwide, and a large
proportion of patients have drug resistant epilepsy (DRE) which cannot be controlled by medication.
Actually 70% of them can live seizure-free only if the seizure onset zone (SOZ) can be located and
surgically removed [1].

To diagnose epilepsy, the most direct quantitive data to reflect brain function is the electrical activity
of the patient’s brain. One of the methods to monitor the brain activity is EEG, in which small
sensors are attached to the scalp to pick up the electrical signals produced by the brain. Although
EEG is widely adopted in brain activity recordings due to its simplicity and relatively low cost, as
a non-invasive method, EEG fails to pinpoint the exact seizure focus when the SOZ is located in
the deep structure of the brain. In view of the importance of SOZ localization in the treatment of
patients with DRE [2], an emerging method called SEEG [3] is applied to locate foci by implanting
electrodes in the deep brain. The contacts (also called channels) on the electrodes distribute around
the suspected lesion across several brain areas, which provide stereoscopic recordings of the brain
from both cortical and subcortical structures simultaneously [4].
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Figure 1: Overview of the automated seizure detection pipeline. Firstly, the model is trained utilizing
the SEEG data from existing patients. Then for real-world application, the doctors can upload the
SEEG data of new patients and obtain the results of seizure detection predicted by the model, to
easily enjoy the diagnostic assistance which is helpful for further treatment.

After collecting the SEEG recordings of patients, the process of epilepsy detection and diagnosis
is traditionally treated as a manual task that highly depends on a few experienced neuroscientists,
requiring considerable time and human resources [5]. Thus, automating this process could greatly
improve the efficiency of clinical seizure detection. As shown in Fig. 1, firstly the model is trained
using the labeled data from existing patients, and then the trained model will automatically detect
seizures of the SEEG recordings of any new patient. Doctors can view SEEG waveforms and
model predictions at the same time (shown on the right side of Fig. 1), and refer to the prediction
results for more efficient diagnosis and further treatment. However, existing works for SEEG-based
seizure detection mainly focus on the patient-specific setting [6, 7], which can only be trained and
directly applied on the same patient due to the substantial differences of SEEG data between patients,
resulting in hours even days of training for each new patient. Although a few studies follow the
patient-independent setting, these works require manual sampling and denoising by a small number
of experienced neurosurgeons, leading to a substantial data bias from real clinical data, which is also
time consuming and inapplicable in clinical scenarios.

Figure 2: Different SEEG elec-
trode numbers and locations of two
patients.

In fact, designing a model for patient-independent seizure de-
tection on SEEG data under clinical requirements is quite an
arduous task due to several unique challenges. Owing to the
structural and functional differences of brain neural activities
and the variation of invasive electrode numbers and locations
(see Fig. 2) caused by individual differences in epileptogenic
foci, the seizure patterns of SEEG data are quite different among
individuals [8, 9]. Therefore, it is very difficult to perform
patient-independent seizure detection on SEEG data. In ad-
dition, for epilepsy diagnosis, we have to detect seizures for
each monitored brain areas to assist localization of SOZ. Mean-
while, for the fact that the cerebral is composed of multiple
brain regions that exert a wide variety of functions [10], the
seizure patterns may greatly change across brain areas. Thus, to detect seizures for patients with
different lesions, we should preserve the unique characteristics of brain areas. However, this is usually
overlooked by existing works and is quite a challenging task under patient-independent setting.

To address the aforementioned challenges above, we propose a novel patient-independent seizure
detection model called PPi, which can be successfully applied to clinical SEEG data. PPi adopts a
self-supervised learning approach considering significant discrimination of brain areas and contextual
coherence of SEEG signals to preserve the patterns of different channels and pretrain on large amount
SEEG data. To handle the huge domain shift between patients, we propose channel background
subtraction to align the distribution of the same brain region across different patients and brain region
enhancement to mitigate the distribution shift brought by different brain regions. In the experimental
phase, unlike existing works, we test our model on the real-world clinical data to verify the application
value of our method. In summary, our key contributions comprise:

• To the best of our knowledge, we are the first to conduct patient-independent seizure
detection on a large-scale real-world clinical SEEG dataset under clinical requirements.
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• We propose two novel self-supervised pretraining tasks to preserve the unique patterns of
different channels, and two techniques including channel background subtraction and brain
region enhancement to handle the domain shift between different patients.

• Extensive experiments show that PPi greatly outperforms the SOTA seizure detection
methods (especially on the real-world clinical dataset), demonstrating the application value
of our work.

2 Related Work

SEEG-based seizure detection. SEEG is an emerging method applied in seizure detection, which
can localize the SOZ more precisely than those noninvasive recording methods. However, due to the
low-quality, large-amount, high-dimensionality characteristics of SEEG data, it is still challenging to
develop an automatic approach in SEEG-based seizure detection. Ganti et al. [11] improve seizure
detection by temporal Generative Adversarial Networks (TGAN). Chen et al. [6] adopt a graph
structure to detect epileptic wave. Xiao et al. [12] propose an SOZ localization method via analyzing
the long-term SEEG monitoring for preoperative planning of epilepsy surgery. Although researchers
have explored some possible approaches for SEEG-based seizure detection, almost all of these works
focus on a patient-specific setting, none of which can be applied in actual clinical scenarios.

Domain generalization on brain signals. Our goal is to predict epileptic seizures of SEEG from
unseen patients, which can be abstracted as a domain generalization (DG) problem on brain signals.
Yang et al. [13] develop a new DG method named ManyDG, that can scale to such many-domain
problems for seizure detection task on EEG. Ayodele et al. [14] use transfer component analysis and
LSTM to detect epilepsy on EEG data. Jeon et al. [15] propose a mutual information-driven method
to conduct subject-invariant and class-relevant deep representation learning of EEG. For these current
DG works on brain signals, most of them are conducted on EEG data rather than more informative
SEEG. Although Wang et al. [16] study SEEG-based seizure detection on the patient-independent
setting, they conduct experiments on datasets which are not only much smaller in size than practical
records. The datasets are also manually denoised and sampled to a balanced positive-negative sample
ratio which brings about a huge data bias from the real clinical data, indicating that their work is still
far from clinical requirements.

Self-supervised learning on brain signals. Self-supervised learning is an effective approach when
the labeled data is limited. In the field of neural signal (e.g. SEEG, EEG), the label is often hard
to obtain. Thus, researchers have developed some SSL methods for this field. Banville et al. [17]
utilize relative positioning, temporal shuffling and contrastive predictive coding as the pretext tasks
for EEG. Mohsenvand et al. [18] and Kostas et al. [19] model EEG signal using contrastive learning.
Cai et al. [20] propose a self-supervised learning framework for brain signals that can be applied
to pretrain either SEEG or EEG data. However, these works do not explicitly align the distribution
gaps between different domains, which is crucial under the DG setting, especially for data with large
domain differences such as SEEG.

3 Problem Formulation

Seizure detection on SEEG data can be viewed as a time series classification (TSC) task. The SEEG
recording of a patient is a multivariate time series T ∈ RN×C , where N is the length of series, and C
is the number of channels. According to the existing works on TSC task [21–23], given an SEEG
recording xc = (x1, x2, . . . , xN ) from channel c of a patient, we divide the contiguous data into
small segments to construct data set Sc = {sc,0, sc,1, . . . , sc,K−1} and the corresponding label set
Yc = {yc,0, yc,1, . . . , yc,K−1}, where sc,k = {xl×k+1, . . . , xl×(k+1)} is the k-th segment data on
channel c from T (l is the length of each segment, K = ⌊N/l⌋ is the total number of segments on
channel c), and yc,k ∈ {0, 1} is the label of sc,k, which indicates whether the segment contains a
seizure event (yc,k = 1) or not (yc,k = 0).

The problem is a DG study in epileptic diagnosis scenario, in which each patient is regarded as a
domain. Conceptually, DG deals with a challenging setting where one or several different but related
domain(s) are given, and the goal is to learn a model that can generalize to an unseen test domain.
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Figure 3: Self-supervised pretraining of PPi. The pretraining is mainly performed by the two self-
supervised tasks shown in the figure. In each task, the pairs sampled by contextual pairwise sampling
will be properly processed according to the task and a discriminator is employed to discriminate
the postive and negative samples (Sec. 4.1.1). The pretrained encoder will be used for the seizure
detection (shown in Fig. 4).

Our goal is to utilize the data of labeled patients (source domains) to train a model which can be
directly adopted to the data unseen patients (target domains).

4 Methodology

In this section, we introduce the technical details of PPi. As shown in Fig. 3, under the patient-
independent setting, we first pretrain an encoder by performing two self-supervised tasks (Sec. 4.1.1)
to capture rich information from time domain while preserving unique patterns for each channel,
which is consistent with the physiological mechanism of seizures. The pretrained encoder is then
applied to the seizure detection task (shown in Fig. 4). To further extract information of SEEG
data from a more comprehensive perspective, we also introduce the features from frequency domain
by computing the spectral powers in different frequency bands [24] of each segment (Sec. 4.1.2).
Finally, based on the learned representations, from time and frequency domains, we adopt channel
background subtraction and brain region enhancement techniques to handle the challenge of domain
shift (Sec. 4.2).

4.1 SEEG Representation Learning

4.1.1 Self-supervised Learning Framework

Self-supervised learning is effective in extracting features for time series [6, 25, 26] and robust to
data imbalance [6, 27]. Considering that the SOZ localization is critical for epilepsy diagnosis and
treatment, the seizures should be detected on each channel located in different brain areas. However,
different brain regions exert a great variety of brain functions [10] and often exhibit different seizure
patterns [4]. Therefore, learning representations that preserve the unique patterns of each channel is
more consistent with the physiological mechanism of seizures. Thus we design channel discrimination
and context swapping tasks (shown in Fig. 3) considering significant discrimination of channels and
contextual coherence of SEEG data, respectively.
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Contextual pairwise sampling. It is unreasonable to predict whether a short segment is onset or
not without contextual data because seizure patterns may vary greatly between different patients and
even between different channels of the same patient. To overcome the limitation, we are inspired
by the empirical criteria of neurosurgeons in judging seizures that the waveform characteristics
of the seizure segment are significantly different from those of nearby normal signals, which is
also quantified by Smith [28] as more spikes and sharp waves. Therefore, we introduce the nearby
contextual information of a segment in our self-supervised tasks to enhance the discrimination ability
of segment representations for detecting seizures. Specifically, the input covers not only the target
segment sc,k which will be predicted (defined in Sec. 3), but also the h nearby segments on the left
and right, which are called the context above and context below of sc,k respectively (See Fig. 3).
The whole sequence we sample for the target segments sc,k is denoted as uc,k. Contextual pairwise
sampling is then defined as the operation of randomly sampling two sequences um

c1,k1
,um

c2,k2
from

channel c1 and c2 respectively, where m is the index for the sample set.

Channel discrimination. In order to preserve the unique characteristics of each channel, the model
should identify how channels are different from each other. Motivated by this, we design a task
guiding the model to differentiate whether the given two sequences are from the same channel or not.
Specifically, we first sample a sequence pair um1

c1,k1
,um1

c2,k2
by contextual pairwise sampling, where

the two sequences are sampled from the same or different channels with equal probability. Then
um1

c1,k1
,um1

c2,k2
will be encoded to feature vectors hm1

c1,k1
,hm1

c2,k2
. We next obtain the difference vectors

by computing an element-wise absolute difference:

hm1

cd = abs(hm1

c1,k1
− hm1

c2,k2
). (1)

After that, we utilize a discriminator to predict whether the sampled sequence pair comes from the
same channel or not. We apply the binary cross-entropy, denoted as Lcd, as the loss function of the
channel discrimination task. Meanwhile, to avoid representation collapse and exploit the information
from time domain, we apply a decoder to reconstruct the original sequences, denoted as ûm1

c1,k1
, ûm1

c2,k2
.

Based on M1 sequence pairs sampled in the channel discrimination task, the objective function for
the reconstruction task is defined as:

Lrec =

M1∑
m1=1

(∥um1

c1,k1
− ûm1

c1,k1
∥2 + ∥um1

c2,k2
− ûm1

c2,k2
∥2). (2)

Context swapping. Given that the model leverages contextual information to detect seizures, we
also need to enhance the coherence semantic uniqueness of SEEG data. We then propose a task
leading the model to identify whether the context has been replaced by that of other channels. First,
we also adopt contextual pairwise sampling to sample two sequences from different channels. For
the sampled sequence pair, we perform the swapping operation according to the following rules: (1)
swap their context above with a probability of 0.25; (2) swap their context below with a probability
of 0.25; (3) do not swap, otherwise. We do not perform reconstruction task here by reason of possibly
corrupted sequences. After the processed data is fed into the encoder, we concatenate the encoded
representations of the sequence pair to obtain the joint vectors. Finally, an MLP-based discriminator
is utilized to discriminate whether the joint vectors are from swapped sequence pair or not. The binary
cross-entropy, denoted as Lcs, is also employed as the objective function of the context swapping.

Putting the objective functions all together, the overall self-supervised model will be jointly trained
according to the objective function given by Lssl = Lrec + Lcd + Lcs.

4.1.2 Frequency Domain Features

The proposed self-supervised learning tasks have a good capability of extracting features from time
domain. To exploit SEEG data from a more comprehensive view, we adopt PSD (power spectral
density), which has the ability to track the transient changes before and during seizure [29], to extract
features from frequency domain. The PSD of a signal describes the distribution of the signal’s total
average power over frequency. Specifically, we first split the frequency domain into several bands
according to the standard description for rhythmic activity [24]: (1) θ (4-8Hz), (2) α (8-13Hz), (3)
β (13-30Hz), (4) γ1 (30-50Hz), (5) γ2 (50-70Hz), (6) γ3 (70-90Hz), (7) γ4 (90-110Hz), (8) γ5
(110-128Hz). The absolute spectral power of a signal in a frequency band is then computed as the
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Figure 4: Overall architecture of PPi. The representations encoded from the pretrained encoder
and spectral powers (Sec. 4.1.2) are aggregated by a self-attention strategy to obtain the aggregated
representation zc,k. zc,k is then be processed by channel background subtraction and brain region
enhancement to obtain the difference representation z′

c,k for seizure detection (Sec. 4.2).

logarithm of the sum of PSD coefficients within that frequency band. Mathematically, for segment
sc,k, the absolute spectral power in the i-th frequency band is computed as:

P i
c,k = log

∑
ω∈band(i)

PSDsc,k
(ω), i ∈ {1, 2, . . . , 8}. (3)

In order to capture underlying correlations between different frequency bands and local patterns of
contextual segments, the spectral powers will be encoded by a CNN-based encoder to obtain the
representations from frequency domain of SEEG signals.

After obtaining the time domain representations from self-supervised learning tasks and frequency
domain representations from spectral powers, a self-attention strategy is used to adaptively aggregate
them to obtain the segment representations zc,k.

4.2 Patient-independent Seizure Detection

In order to solve the domain shift problem, we propose an assumption from a higher-order perspective
that the differential distribution of normal and seizure segments of channels located in the same brain
region would be similar in different patients. The assumption is reasonable because of the similarity
in structure and function of the same brain region among patients, and the case study in Sec. 5.6
further supports it. Therefore, based on the assumption, we design two techniques called channel
background subtraction and brain region enhancement, which fully consider the characteristics of
SEEG, to align the data distribution between patients.

Algorithm 1 Background Representation Calculation

for c = 0, 1, . . . , C − 1 do
ec,0 ← zc,0

nc ← 1
ŷc,0 ← 0 1

for k = 1, 2, . . . ,K − 1 do
ec,k ← ec,k−1

if ŷc,k−1 < 0.5 then
ec,k ←

ec,k×nc+zc,k−1

nc+1
nc ← nc + 1

end if
z′
c,k ← zc,k − ec,k

Predict the seizure probability ŷc,k using z′
c,k

end for
end for

Channel background subtraction. Channel
background subtraction enables the model to
exclusively focus on the differences between
seizure and normal segments of each channel,
which aligns the distribution of channels within
the same brain region across patients. In the field
of neuroscience, Staba and Worrell [30] prove
that the background brain activity, which refers
to the brain activity when individuals are at rest
or during sleep, contains important information
about brain function and dysfunction in epilepsy.
In our scenario, given the patient’s limited mo-
bility while monitored by SEEG, background is
regarded as the SEEG signal in the absence of
epileptic seizures. Therefore, we calculate the
background representation ec,k for the segment
representation zc,k as the average of all the seg-
ment representations currently (before index k) predicted to be normal in channel c. We show the
details of the iterative updating method in Algo. 1. In channel background subtraction, zc,k will
subtract ec,k to obtain the difference representation z′

c,k. The operation aligns the distribution of
channels located in the same brain region between patients, which is supported by the case study in
Sec. 5.6.

1Since the patient must be in normal state at the start of the SEEG recording, it is reasonable to set ŷc,0 to 0.
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Brain region enhancement. Channel background subtraction has aligned channel representations
with similar latent differential distributions. However, with prior information of brain regions, explicit
supervised learning can further constrain the differential distribution of channels in the same brain
region between different patients, thus enhancing the generalization of PPi. Therefore, we extend
the classification task from binary to multi-class, so that the classifier not only predicts whether the
seizure occurs, but also determines which brain region the seizure locates in2. Specifically, taking
z′
c,k as input, the classifier outputs a tuple (ic,k, yc,k), where ic,k is the index of the brain region

that sc,k locates in and yc,k ∈ {0, 1} is the prediction of whether sc,k is seizure or not. For the
implementation, we construct integer multi-class labels by converting the tuple (ic,k, yc,k) to an
integer y′c,k: y′c,k = ic,k ∗ 2 + yc,k. Therefore, the parity of y′c,k reflects whether the prediction result
corresponds to a normal state or a seizure. We use a cross-entropy loss as the objective function of
brain region enhancement.

5 Experiments

5.1 Dataset

Public datasets. The public datasets used in our paper, MAYO and FNUSA [32], are collected from
two institutions: the Mayo Clinic (Rochester, Minnesota, United States of America) and St. Anne’s
University Hospital (Brno, Czech Republic), respectively. The MAYO dataset has 18 patients in total,
including 56730 normal samples and 15227 seizure samples, respectively. The FNUSA dataset has
13 patients in total, including 94560 normal samples and 52470 seizure samples, respectively. For
each dataset, we first remove the power line noise and down sample the dataset to 500Hz. Then we
divide the patients into 6 groups without overlapping (details in App. B). We randomly choose 5
groups as the source domains (4 of which are used for training and 1 for validation) and the remaining
group serves as the target domain. The experiments are repeated on all groups to test the average
performance.

Clinical dataset. The clinical SEEG dataset we collect is from a first-class hospital. For the patients,
4 to 10 invasive electrodes with 52 to 126 channels are implanted in the brain to obtain 1000Hz
SEEG signals. Since the clinical data are recorded with a high frequency on multiple channels, the
dataset has more than 738 hours of recording and contains 123 patient files with an average size of
7.1 GB each. As for the annotation, professional neurosurgeons participate in seizure labeling. The
positive sample ratio of a single patient in the dataset is around 0.004 on average, which is extremely
imbalanced. We remove the power line noise and down sample the dataset to 250Hz. For the 7
patients in the clinical dataset, we split the patients into training, validation and test set with 5, 1 and
1 patients, respectively. We also repeat the experiments on all patients to obtain an overall results.

5.2 Experimental Setup

To evaluate the performance of the models, we conduct adequate experiments on two public datasets
(MAYO and FNUSA) and the real-world clinical dataset. All experiments run on a Linux system
with 2 CPUs (AMD EPYC 7H12 64-Core Processor) and 4 GPUs (NVIDIA GeForce RTX 3090).
Our code is available at https://github.com/yzz673/PPi_public.

Evaluation Metrics. To comprehensively evaluate the experimental results, we use precision, recall,
F1 and F2 as evaluation metrics. Here the F-score can be calculated by Fβ = (1+β2)×precision×recall

β2×precision+recall .
Usually, F2 is adopted in critical applications that value information retrieval more than accuracy
(i.e., accepting a relatively large number of false positives but virtually guaranteeing that all the true
positives are found). In our medical scenario, F2 is more valued than F1, since ignoring any seizure
is costly in diagnosis.

Baselines. We compare our model with some DG methods for brain signals (SICR [15], SEEG-
Net [16]). Also, we compare with other DG algorithms designed for more general fields

2In our study, brain regions are divided according to a medical standard template called automated anatomical
labeling (AAL) [31], which is a digital atlas of the human brain. AAL defines 116 different regions in total, of
which 90 are in the cerebrum and 26 are in the cerebellum.
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(CDANN [33], CORAL [34], GroupDRO [35], MLDG [36], MMD [37], MTL [38], SANDMask [39],
SD [40], SelfReg [41], TRM [42], VREx [43], IB-ERM [44], IB-IRM [44] ) and adopt two different
feature extractors (TCN [45], MiniRocket [46]) to evaluate their performance based on different
kinds of features. Furthermore, we select some self-supervised learning approaches for brain signals
(BENDR [19]) and time series (Franceschi et al. [47]). More details of the baselines are shown in
App. A.

Table 1: Average performance of patient-independent seizure detection tasks on two public datasets
and our clinical dataset. The v indicates the first in a column, v indicates the second, and *v indicates
the third. The performance with standard deviation is given in App. C.

Model
Dataset MAYO FNUSA Clinical

Pre. Rec. F1 F2 Pre. Rec. F1 F2 Pre. Rec. F1 F2

T
C

N

CDANN 16.13 *68.14 24.74 37.84 32.71 69.62 43.09 54.88 1.42 44.20 2.72 6.08
CORAL 17.01 64.08 25.73 38.30 33.87 65.46 43.63 53.84 1.59 47.24 3.03 6.64
GroupDRO 17.26 64.25 26.02 38.68 33.24 62.14 41.90 51.27 1.53 47.13 2.91 6.35
MLDG 18.88 61.38 27.96 *40.39 32.81 56.81 40.41 48.24 28.85 6.68 2.55 2.58
MMD 15.79 67.41 24.45 37.68 32.87 *69.38 43.51 55.30 1.90 46.84 3.26 6.59
MTL 16.13 51.87 22.56 31.74 32.70 53.10 38.48 44.78 1.43 9.19 2.30 3.73
SANDMask 16.47 68.66 25.00 38.15 32.16 59.46 39.62 48.59 1.34 *47.22 2.60 5.95
SD 15.29 60.70 23.10 34.67 34.30 65.54 43.77 53.88 1.52 46.46 2.91 6.38
SelfReg 9.42 58.65 15.50 26.29 25.35 66.75 35.87 48.79 0.92 44.48 1.76 3.94
TRM 16.94 59.60 24.47 35.67 34.32 62.26 43.39 51.93 1.53 47.34 2.91 6.35
VREx 16.74 60.41 25.06 36.87 33.17 61.75 41.84 51.11 10.98 42.17 2.78 5.33
IB-ERM 17.27 64.29 26.04 38.71 34.34 62.94 42.93 52.22 1.53 47.34 2.91 6.35
IB-IRM 16.75 60.45 25.08 36.90 34.26 63.06 43.10 52.44 1.52 45.65 2.89 6.31

M
in

iR
oc

ke
t

CDANN 16.22 15.44 15.14 15.20 48.73 36.97 38.26 37.02 2.09 45.27 3.98 8.68
CORAL 47.61 25.30 27.57 25.46 68.46 46.55 52.50 48.36 1.68 42.54 3.20 7.08
GroupDRO 41.99 34.02 35.98 34.49 69.79 48.74 55.31 50.83 1.37 46.95 2.64 6.03
MLDG 10.32 50.04 15.35 24.70 34.67 63.56 37.88 46.75 0.52 15.58 1.01 2.29
MMD 22.34 21.82 19.58 20.33 69.33 46.63 50.04 47.06 5.10 39.97 3.95 7.55
MTL 21.67 46.11 27.72 35.03 56.85 59.71 *56.93 58.28 12.57 45.79 4.02 5.15
SANDMask 4.32 33.33 7.40 13.14 12.56 33.33 18.14 24.88 1.49 44.87 2.59 4.73
SD 37.57 30.90 32.46 31.10 68.74 50.59 53.26 50.92 6.40 39.73 9.43 15.29
SelfReg 31.09 14.46 18.02 15.65 61.18 33.26 39.29 34.99 16.33 42.06 *14.51 16.61
TRM 35.97 40.34 35.51 37.15 66.32 53.63 53.50 52.68 5.00 33.31 7.81 12.51
VREx 38.63 33.92 33.37 32.88 65.23 55.20 54.34 53.91 7.47 44.50 11.37 *17.11
IB-ERM 35.02 43.92 36.79 39.62 66.34 53.41 53.17 52.40 4.94 43.01 8.12 13.79
IB-IRM 36.27 43.22 *37.36 39.57 64.67 54.02 53.69 53.00 8.56 44.63 11.18 15.06

BENDR 23.26 45.02 25.90 30.23 40.45 37.22 34.42 34.01 2.48 28.99 3.58 5.79
Franceschi et al. 34.21 40.98 33.94 35.15 43.28 50.56 44.03 48.97 2.62 44.74 4.26 9.65

SICR 10.18 4.56 6.10 5.06 23.51 7.16 9.79 8.01 *25.34 29.22 9.19 9.80
SEEG-Net *45.41 45.62 43.54 44.22 *69.39 53.75 60.02 *55.99 20.06 32.81 20.82 22.92

PPi 49.85 69.67 54.35 61.07 71.73 70.81 70.61 70.55 29.76 47.59 30.92 35.51

5.3 Experimental Result

Tab. 1 summarizes the main results of our model and baselines on the two public datasets and the
clinical dataset. Overall, our model outperforms all baselines on every metric on the three datasets,
which demonstrates the excellent performance of PPi in the patient-independent seizure detection on
SEEG data.

On the public datasets, PPi improves the performance3 by 38.10% and 24.98% over the best-
performing baseline model in terms of F2-score respectively, showing that PPi has stronger general-
ization ability in seizure detection than other baselines. On our clinical dataset, PPi improves the
performance by 54.93% on F2-score. Compared with other baselines that treat all channels equally,
our designed self-supervised tasks can preserve more unique characteristics of each channel. These
tasks help our model to learn more informative representations from SEEG data, leading to a much
better performance on channel-level seizure detection. For SEEG-Net [16] which also focuses on
patient-independent seizure detection on SEEG, it can maintain a more balanced precision and recall
than other baselines, and achieves almost the second/third highest F1-score in all datasets. The
possible reason for its good performance is that SEEG-Net also considers the contextual information
of SEEG data like our model. However, PPi still outperforms SEEG-Net by a large margin, as PPi

3Here we calculate the relative improvement.
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not only preserve unique characteristics of each channel, but also introduces the extra information of
brain regions to enhance the generalization ability. In particular, we achieve better improvement on
clinical dataset (54.93% on F2-score) compared with the public datasets (38.10% and 24.98% on
F2-score) mainly because the self-supervised pretraining on unlabeled data reduces reliance on labels,
which makes PPi more adaptive to extremely imbalanced dataset than other supervised methods.

5.4 Ablation Study

To evaluate the effectiveness of each component in our model, we first conduct ablation experiments on
four model variants to verify the effectiveness of the proposed self-supervised framework, including:
(1) PPi-SSL1: PPi without the channel discrimination task; (2) PPi-SSL2: PPi without the context
swapping task; (3) PPi-SSL: PPi without all self-supervised tasks; (4) PPi-reconstruction: PPi
without reconstruction loss. Then we use PPi-power: PPi without features of spectral powers, to
demonstrate the benefits of introducing PSD based features. For the aggregation strategy, we replace
the self-attention with mean pooling (denoted as PPi-self attention). Another two experiments are
conducted to verify the significant generalization ability of our two techniques respectively, which
are denoted as PPi-background and PPi-brain region. Due to the requirement of brain region labeling
in brain region enhancement, the lack of such labels makes brain region enhancement inapplicable to
the two public datasets.

Table 2: Results of ablation experiments on two public datasets and the clinical dataset.

Model
Dataset MAYO FNUSA Clinical

Pre. Rec. F1 F2 Pre. Rec. F1 F2 Pre. Rec. F1 F2

PPi-SSL1 43.69 48.01 31.22 35.37 58.46 59.39 56.05 57.27 20.68 44.23 19.13 24.63
PPi-SSL2 40.69 38.32 34.72 35.74 47.69 50.53 46.79 48.42 20.75 42.82 18.72 23.73
PPi-SSL 35.65 22.89 25.92 23.77 69.00 44.29 53.04 47.29 7.53 30.75 10.94 16.08
PPi-reconstruction 44.01 50.29 34.15 36.89 60.78 62.31 59.48 60.02 22.04 44.84 21.23 25.01
PPi-power 48.60 31.43 29.01 28.31 62.89 54.48 56.77 55.13 28.13 30.48 19.75 20.87
PPi-self attention 48.82 60.20 51.15 55.41 65.14 66.91 62.17 63.98 28.67 46.98 29.56 32.59
PPi-background 46.80 31.31 31.08 30.05 57.83 50.20 51.68 50.28 20.42 35.40 21.83 26.74
PPi-brain region - - - - - - - - 18.01 46.86 21.53 28.33

PPi 49.85 69.67 54.35 61.07 71.73 70.81 70.61 70.55 29.76 47.59 30.92 35.51

The comparison results of the ablation experiments on all the three datasets are presented in Tab. 2. It
shows that PPi beats other model variants on all metrics, proving the contribution of each component in
our model. The performances of the variants that remove the self-supervised tasks drop greatly, which
shows that our designed self-supervised tasks are capable of extracting informative representations
from large amount imbalanced SEEG data. PPi-background and PPi-brain region cannot achieve
performances that are competitive with the full model, validating the strong generalization ability of
PPi to handle the huge domain shift across different patients. The improvement is empowered by the
channel background subtraction and brain region enhancement techniques, which will be explored
further in Sec. 5.6.

5.5 Hyperparameter Analysis

contexts half length h

sc
or

e 
(%

)

Figure 5: Performance on clinical dataset under
different contexts half length h.

The contexts half length h (i.e. the length of
context above or context below) is an important
hyperparameter in PPi. Thus we evaluate the
performance on the clinical dataset under differ-
ent contexts half length (shown in Fig. 5). The
results exhibits an increase of performance as h
becomes larger, which illustrate that introducing
the contexts of the target segment to increase the
receptive field allows the model to compare the
target segment with its nearby waveforms, result-
ing in better performance. However, the increase
of contexts half length is also accompanied by
a higher computational overhead, necessitating
consideration of trade-offs when selecting the
value of h.
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5.6 Case Study

Figure 6: t-SNE plots of aggregated representa-
tions (left) and difference representations (right)
of two channels from the same brain region of pa-
tients pi and pj .

Visual analysis of channel background sub-
traction. To handle domain shift, PPi adopts
channel background subtraction which has the
ability to align the distribution of the same brain
region from different patients. In the visual anal-
ysis, we visualize such ability by comparing the
aggregated representation zc,k (before subtrac-
tion) and the difference representation z′

c,k (af-
ter subtraction) using t-SNE [48] plots. Specifi-
cally, we select two channels which locate in the
same brain region from two different patients
(denoted as pi, pj) (results for more patients are
shown in App. D.1). The t-SNE plots of their
aggregated representations and difference repre-
sentations are shown in Fig 6. The aggregated
representations of pi and pj obviously exhibit
different distributions. After channel background subtraction, the distributions of the samples from
pi and pj are very close, which illustrates that channel background subtraction successfully aligns
the distribution space of the channels located in the same brain region between patients.

Figure 7: Confusion matrix of
brain region enhancement.

Confusion matrix of brain region enhancement. In order to
demonstrate the effectiveness of brain region enhancement, we cal-
culate the confusion matrix of the multi-classification. Fig. 7 shows
the confution matrix from one of the patients (the confusion matrix
of all the patients are shown in App. D.2), in which the vertical axis
represents the multi-class label and the horizontal axis represents the
multi-class prediction results. In the confusion matrix, most samples
are distributed on the main diagonal, which reflects the good perfor-
mance of the multi-classification task, illustrating the effectiveness
of brain region enhancement.

6 Conclusion

In this paper, we propose PPi to conduct patient-independent seizure detection on SEEG in the clinical
scenario. To detect seizures more accurately, PPi adopts a self-supervised pretraining strategy to
extract information from SEEG signals while preserving the unique characteristics of each channel.
Furthermore, we propose channel background subtraction and brain region enhancement to improve
the generalization ability of PPi. Extensive experiments demonstrate the superior performance of PPi
in the patient-independent seizure detection on two public and a clinical SEEG datasets (Sec. 5.3).
The case study (Sec. 5.6) further illustrate the effectiveness of our proposed two techniques to reduce
the huge domain shift between different patients.

Limitations and future works. Compared with EEG, SEEG is an emerging technique and the
related research is limited. Although our work outperforms other methods by a large margin on the
clinical dataset, in applications, the predicted results of PPi are mainly serve as a reference to assist
doctors to achieve more efficient clinical diagnosis and treatment, rather than completely replace
doctors in seizure detection. For the application, we have reached a cooperation with a first-class
hospital and a related institution that is responsible for the development of an application software. In
the future, our model will be integrated into the software to assist doctors in seizure diagnosis.
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A Details of Baselines

Firstly, we compare our model to some cross-subject methods on brain signals:

• SICR [15]: a framework that learns class-relevant and subject-invariant feature representa-
tions, which shows a promising performance in non-invasive brain-computer interface.

• SEEG-Net [16]: a model that can address the problems of sample imbalance, cross-subject
domain shift, and poor interpretability and realizes high-sensitivity SEEG pathological
activity detection. The source code of SEEG-Net is not released, so we implement it by
ourselves to conduct the experiments.

Secondly, to further compare our model to some DG algorithms in more general areas, experiments
were conducted with methods as follows:

• CDANN [33]: an end-to-end conditional invariant deep DG approach by leveraging deep
neural networks for domain-invariant representation learning.

• CORAL [34]: an unsupervised domain adaptation method that aligns the second-order
statistics of the source and target distributions with a linear transformation.

• GroupDRO [35]: a model coupling group DRO models with increased regularization, where
DRO allows to learn models that instead minimize the worst-case training loss over a set of
groups.

• MLDG [36]: a model agnostic training procedure for DG, which simulates train/test domain
shift during training by synthesizing virtual testing domains within each mini-batch.

• MMD [37]: an adversarial autoencoder framework to learn a generalized latent feature
representation across domains.

• MTL [38]: a representative framework for DG, which augments the original feature space
with the marginal distribution of feature vectors.

• SANDMask [39]: a masking strategy, which determines a continuous weight based on the
agreement of gradients, in order to control the amount of update in each step of optimization
under the notion of Out-of-Distribution (OOD) Generalization.

• SD [40]: a regularization method aimed at decoupling feature learning dynamics, improving
accuracy and robustness in cases hindered by gradient starvation.

• SelfReg [41]: a regularization method for DG based on contrastive learning, self-supervised
contrastive regularization.

• TRM [42]: a robust estimation criterion that is specifically geared towards optimizing
transfer to new environments.

• VREx [43]: a penalty on the variance of training risks as a simpler variant based on a form
of robust optimization over a perturbation set of extrapolated domains.

• IB-ERM [44]: a DG method that improve generalization via minimizes the empirical risk
over multiple domains.

• IB-IRM [44]: a DG method that improve generalization via minimizes the invariant risk
over multiple domains.

Furthermore, we choose some self-supervised learning approaches on brain signals or general time
series as our baselines:

• BENDR [19]: A self-supervised training model that learn compressed representations to
model completely novel raw EEG sequences recorded with differing hardware, and different
subjects performing different tasks.

• Franceschi et al [47]. This work combines an encoder based on causal dilated convolutions
with a novel triplet loss employing time-based negative sampling, obtaining general-purpose
representations for variable length and multivariate time series.
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B Details of Datasets

B.1 Public Datasets

The group dividing strategy and detailed statistics of the two public datasets are shown in
Tab. 3. The datasets are publicly available to use under CC0 license and might be downloaded
from https://springernature.figshare.com/collections/Multicenter_
intracranial_EEG_dataset_for_classification_of_graphoelements_and_
artifactual_signals/4681208.

Table 3: Group dividing strategy and detailed statistics of two public datasets.

Group id
Dataset MAYO

Group id
Dataset FNUSA

Patient id Artifacts Seizure Normal Patient id Artifacts Seizure Normal

Group1
0 2318 0 330

Group1
1 0 1912 0

18 1700 0 3126 5 5059 1527 5452
21 58 3432 0

Total 4076 3432 3456 Total 5059 3439 5452

Group2
1 0 883 8653

Group2
2 2892 1657 7809

9 740 0 0 9 0 6750 0
19 5613 0 0

Total 6353 883 8653 Total 2892 8407 7809

Group3
2 466 1923 399

Group3
3 12 8076 0

5 1002 0 6583 4 8463 0 0
16 3699 0 177 12 1343 7710 38217

Total 5167 1923 7159 Total 9818 15786 38217

Group4
3 4636 0 2057

Group4
6 0 1554 962

4 2063 0 790 7 5416 7738 2689
23 761 2747 644

Total 7460 2747 3491 Total 5416 9292 3651

Group5
6 12873 0 0

Group5
8 18 1896 20860

7 0 0 25951 10 5786 4260 1545
8 0 2816 0

Total 12873 2816 25951 Total 5804 6156 22405

Group6
14 0 3426 498

Group6
11 3339 4072 2890

17 4096 0 6098 13 181 5318 14136
20 1278 0 1424

Total 5374 3426 8020 Total 3520 9390 17026

B.2 Clinical Dataset

The detailed information of the clinical dataset is shown in Tab. 4 and the sample rate of all the
patients is 1000Hz.

Table 4: Details information of the clinical dataset.
Patient id Time (hours) #Electrodes #Channels Positive sample ratio #Timestamps

0 121.4 10 126 0.0028 180632184
1 34.7 4 52 0.0020 21642853
2 167.7 10 126 0.0011 241488147
3 73.7 8 116 0.0077 102649651
4 161.3 8 112 0.0037 195457035
5 54.3 7 93 0.0016 43684998
6 125.2 5 59 0.0167 70605073
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C Experimental Results with Standard Deviation

The average performance with standard deviation of MAYO, FNUSA and clinical dataset are shown
in Tab. 5, Tab. 6 and Tab. 7, respectively.

D Full Results of Case Study

D.1 Visual Analysis of Channel Background Subtraction

In order to show that the visual analysis in the case study( 5.6) is consistent across the patients in our
clinical dataset, we plot six groups of t-SNE figures (shown in Fig. 8). In each group, the samples
are from the same brain region of two patients, and the patients involved in these six examples
include all the patients in the clinical dataset. For each group, the left and right are plotted with
the representations before and after channel background subtraction. Overall, in each group of
experiments, channel background subtraction shows a similar effect, indicating that the effect of
channel background subtraction is consistent across patients.

Figure 8: Six visualization examples as a supplement and improvement to the visual analysis of
channel background subtraction.

D.2 Confusion Matrix of Brain Region Enhancement

The confusion matrix of multi-classification on all the patients are shown in Fig. 9. Note that the
total number of classes in the confusion matrix is different for different patients. This is because the
number and positions of electrodes implanted in each patient are different when the SEEG signal is
collected, resulting in different brain regions involved by the SEEG data of different patients, which
is also one of the reasons for domain shift.
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Figure 9: Confusion matrix of brain region enhancement from the multi-classification results of all
patients in the clinical dataset.
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Table 5: Average performance with standard deviation of patient-independent seizure detection tasks
on MAYO. The v indicates the first in a column, v indicates the second, and *v indicates the third.

Model
Dataset MAYO

Pre. Rec. F1 F2

T
C

N

CDANN 16.13 ± 5.80 68.14± 4.17 24.74 ± 7.67 37.84 ± 8.74
CORAL 17.01 ± 5.14 64.08 ± 3.97 25.73 ± 6.63 38.30 ± 7.31
GroupDRO 17.26 ± 5.10 64.25 ± 2.32 26.02 ± 6.43 38.68 ± 6.82
MLDG 18.88 ± 4.22 61.38 ± 4.65 27.96 ± 4.92 40.39± 4.78
MMD 15.79 ± 4.77 67.41 ± 7.21 24.45 ± 6.28 37.68 ± 7.34
MTL 16.13 ± 4.72 51.87 ± 11.96 22.56 ± 5.11 31.74 ± 5.72
SANDMask 16.47 ± 4.84 *68.66± 12.66 25.00 ± 6.62 38.15 ± 8.64
SD 15.29 ± 5.08 60.70 ± 3.01 23.10 ± 6.38 34.67 ± 6.69
SelfReg 9.42 ± 3.80 58.65 ± 14.87 15.50 ± 5.55 26.29 ± 7.81
TRM 16.94 ± 4.82 59.60 ± 5.18 24.47 ± 5.30 35.67 ± 5.36
VREx 16.74 ± 5.18 60.41 ± 3.59 25.06 ± 6.57 36.87 ± 7.01
IB_ERM 17.27 ± 5.10 64.29 ± 2.30 26.04 ± 6.44 38.71 ± 6.82
IB_IRM 16.75 ± 5.19 60.45 ± 3.60 25.08 ± 6.58 36.90 ± 7.03

M
in

iR
oc

ke
t

CDANN 16.22 ± 1.94 15.44 ± 8.29 15.14 ± 5.49 15.20 ± 7.20
CORAL *47.61± 14.14 25.30 ± 9.35 27.57 ± 10.35 25.46 ± 9.55
GroupDRO 41.99 ± 15.59 34.02 ± 13.71 35.98 ± 14.05 34.49 ± 13.70
MLDG 10.32 ± 3.16 50.04 ± 12.47 15.35 ± 5.36 24.70 ± 7.85
MMD 22.34 ± 10.38 21.82 ± 8.95 19.58 ± 6.87 20.33 ± 7.49
MTL 21.67 ± 7.15 46.11 ± 12.08 27.72 ± 7.38 35.03 ± 7.90
SANDMask 4.32 ± 5.24 33.33 ± 0.00 7.40 ± 8.25 13.14 ± 11.81
SD 37.57 ± 7.52 30.90 ± 6.21 32.46 ± 6.00 31.10 ± 5.76
SelfReg 31.09 ± 2.33 14.46 ± 6.28 18.02 ± 6.85 15.65 ± 6.53
TRM 35.97 ± 7.11 40.34 ± 8.15 35.51 ± 5.86 37.15 ± 5.92
VREx 38.63 ± 7.60 33.92 ± 8.63 33.37 ± 6.66 32.88 ± 7.15
IB_ERM 35.02 ± 7.18 43.92 ± 7.49 36.79 ± 6.25 39.62 ± 5.65
IB_IRM 36.27 ± 7.56 43.22 ± 6.55 37.36± 5.92 39.57 ± 4.71

BENDR 23.26 ± 4.23 45.02 ± 8.14 25.90 ± 5.47 30.23 ± 6.01
Franceschi et al. 34.21 ± 4.96 40.98 ± 7.29 33.94 ± 6.33 35.15 ± 6.72

SICR 10.18 ± 6.38 4.56 ± 2.72 6.10 ± 3.75 5.06 ± 3.04
SEEG-Net 45.41± 9.96 45.62 ± 9.56 *43.54± 8.84 *44.22± 8.98

PPi 49.85± 6.93 69.67± 2.82 54.35± 4.72 61.07± 4.69

Table 6: Average performance with standard deviation of patient-independent seizure detection tasks
on FNUSA. The v indicates the first in a column, v indicates the second, and *v indicates the third.

Model
Dataset FNUSA

Pre. Rec. F1 F2

T
C

N

CDANN 32.71 ± 6.42 69.62± 2.77 43.09 ± 5.61 54.88 ± 3.58
CORAL 33.87 ± 6.25 65.46 ± 3.33 43.63 ± 5.78 53.84 ± 4.44
GroupDRO 33.24 ± 6.43 62.14 ± 2.99 41.90 ± 5.24 51.27 ± 3.47
MLDG 32.81 ± 6.61 56.81 ± 2.41 40.41 ± 5.43 48.24 ± 3.71
MMD 32.87 ± 6.48 *69.38± 1.55 43.51 ± 5.98 55.30 ± 4.28
MTL 32.70 ± 6.44 53.10 ± 11.03 38.48 ± 6.63 44.78 ± 7.54
SANDMask 32.16 ± 6.31 59.46 ± 11.63 39.62 ± 5.99 48.59 ± 7.87
SD 34.30 ± 6.11 65.54 ± 1.85 43.77 ± 5.08 53.88 ± 3.16
SelfReg 25.35 ± 7.72 66.75 ± 16.60 35.87 ± 9.95 48.79 ± 12.41
TRM 34.32 ± 6.17 62.26 ± 4.01 43.39 ± 5.10 51.93 ± 3.76
VREx 33.17 ± 6.37 61.75 ± 2.59 41.84 ± 5.25 51.11 ± 3.42
IB_ERM 34.34 ± 6.15 62.94 ± 3.88 42.93 ± 4.93 52.22 ± 3.55
IB_IRM 34.26 ± 6.14 63.06 ± 2.77 43.10 ± 5.05 52.44 ± 3.33

M
in

iR
oc

ke
t

CDANN 48.73 ± 12.53 36.97 ± 9.74 38.26 ± 6.56 37.02 ± 8.43
CORAL 68.46 ± 7.01 46.55 ± 11.81 52.50 ± 8.63 48.36 ± 10.57
GroupDRO 69.79± 5.37 48.74 ± 11.65 55.31 ± 8.35 50.83 ± 10.35
MLDG 34.67 ± 10.16 63.56 ± 16.37 37.88 ± 5.75 46.75 ± 7.83
MMD 69.33 ± 6.50 46.63 ± 15.10 50.04 ± 8.88 47.06 ± 12.62
MTL 56.85 ± 5.25 59.71 ± 10.71 *56.93± 6.94 58.28± 9.00
SANDMask 12.56 ± 4.47 33.33 ± 4.02 18.14 ± 4.72 24.88 ± 3.59
SD 68.74 ± 11.63 50.59 ± 12.30 53.26 ± 6.88 50.92 ± 10.09
SelfReg 61.18 ± 17.04 33.26 ± 11.38 39.29 ± 10.66 34.99 ± 10.86
TRM 66.32 ± 12.14 53.63 ± 12.07 53.50 ± 5.78 52.68 ± 9.35
VREx 65.23 ± 9.83 55.20 ± 9.33 54.34 ± 5.36 53.91 ± 7.58
IB_ERM 66.34 ± 12.17 53.41 ± 12.38 53.17 ± 5.82 52.40 ± 9.57
IB_IRM 64.67 ± 11.99 54.02 ± 11.29 53.69 ± 5.41 53.00 ± 8.55

BENDR 40.45 ± 7.02 37.22 ± 6.44 34.42 ± 6.23 34.01 ± 6.10
Franceschi et al. 43.28 ± 5.90 50.56 ± 8.39 44.03 ± 7.11 48.97 ± 7.68

SICR 23.51 ± 14.12 7.16 ± 5.66 9.79 ± 7.87 8.01 ± 6.37
SEEG-Net *69.39± 9.23 53.75 ± 7.62 60.02± 8.05 *55.99± 7.73

PPi 71.73± 4.06 70.81± 2.14 70.61± 2.82 70.55± 2.28
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Table 7: Average performance with standard deviation of patient-independent seizure detection tasks
on clinical dataset. The v indicates the first in a column, v indicates the second, and *v indicates the
third.

Model
Dataset Clinical

Pre. Rec. F1 F2

T
C

N

CDANN 1.42 ± 0.51 44.20 ± 13.85 2.72 ± 0.98 6.08 ± 2.21
CORAL 1.59 ± 0.64 47.24 ± 2.12 3.03 ± 1.20 6.64 ± 2.53
GroupDRO 1.53 ± 0.60 47.13 ± 1.40 2.91 ± 1.12 6.35 ± 2.35
MLDG 28.85± 9.34 6.68 ± 3.92 2.55 ± 0.58 2.58 ± 0.89
MMD 1.90 ± 0.70 46.84 ± 8.69 3.26 ± 1.16 6.59 ± 2.52
MTL 1.43 ± 0.56 9.19 ± 0.59 2.30 ± 0.85 3.73 ± 1.18
SANDMask 1.34 ± 0.34 *47.22± 4.77 2.60 ± 0.65 5.95 ± 1.40
SD 1.52 ± 0.60 46.46 ± 3.56 2.91 ± 1.13 6.38 ± 2.38
SelfReg 0.92 ± 0.62 44.48 ± 5.04 1.76 ± 1.18 3.94 ± 2.52
TRM 1.53 ± 0.60 47.34± 1.42 2.91 ± 1.12 6.35 ± 2.35
VREx 10.98 ± 5.60 42.17 ± 8.25 2.78 ± 0.67 5.33 ± 1.25
IB_ERM 1.53 ± 0.60 47.34± 1.42 2.91 ± 1.12 6.35 ± 2.35
IB_IRM 1.52 ± 0.60 45.65 ± 2.69 2.89 ± 1.13 6.31 ± 2.38

M
in

iR
oc

ke
t

CDANN 2.09 ± 0.83 45.27 ± 15.67 3.98 ± 1.58 8.68 ± 3.47
CORAL 1.68 ± 0.66 42.54 ± 19.84 3.20 ± 1.30 7.08 ± 3.04
GroupDRO 1.37 ± 0.62 46.95 ± 7.15 2.64 ± 1.19 6.03 ± 2.63
MLDG 0.52 ± 0.91 15.58 ± 21.61 1.01 ± 1.75 2.29 ± 3.92
MMD 5.10 ± 5.16 39.97 ± 19.12 3.95 ± 1.19 7.55 ± 2.90
MTL 12.57 ± 9.03 45.79 ± 15.03 4.02 ± 3.79 5.15 ± 2.87
SANDMask 1.49 ± 2.48 44.87 ± 10.27 2.59 ± 4.19 4.73 ± 7.06
SD 6.40 ± 2.66 39.73 ± 14.38 9.43 ± 4.26 15.29 ± 7.22
SelfReg 16.33 ± 6.81 42.06 ± 14.84 *14.51± 8.98 16.61 ± 8.87
TRM 5.00 ± 3.44 33.31 ± 11.40 7.81 ± 5.22 12.51 ± 7.75
VREx 7.47 ± 4.73 44.50 ± 10.18 11.37 ± 6.68 *17.11± 8.94
IB_ERM 4.94 ± 2.78 43.01 ± 13.13 8.12 ± 4.46 13.79 ± 7.10
IB_IRM 8.56 ± 5.49 44.63 ± 11.52 11.18 ± 6.41 15.06 ± 7.38

BENDR 2.48 ± 0.91 28.99 ± 6.80 3.58 ± 1.44 5.79 ± 2.33
Franceschi et al. 2.62 ± 1.02 44.74 ± 8.79 4.26 ± 2.03 9.65 ± 3.91

SICR *25.34± 15.68 29.22 ± 20.08 9.19 ± 4.89 9.80 ± 4.41
SEEG-Net 20.06 ± 5.56 32.81 ± 8.50 20.82± 5.70 22.92± 5.96

PPi 29.76± 5.45 47.59± 5.16 30.92± 3.45 35.51± 2.35
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