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Abstract

We propose a foundation model named Brant for modeling intracranial recordings,
which learns powerful representations of intracranial neural signals by pre-training,
providing a large-scale, off-the-shelf model for medicine. Brant is the largest model
in the field of brain signals and is pre-trained on a large corpus of intracranial data
collected by us. The design of Brant is to capture long-term temporal dependency
and spatial correlation from neural signals, combining the information in both time
and frequency domains. As a foundation model, Brant achieves SOTA performance
on various downstream tasks (i.e. neural signal forecasting, frequency-phase
forecasting, imputation and seizure detection), showing the generalization ability
to a broad range of tasks. The low-resource label analysis and representation
visualization further illustrate the effectiveness of our pre-training strategy. In
addition, we explore the effect of model size to show that a larger model with a
higher capacity can lead to performance improvements on our dataset. The source
code and pre-trained weights are available at: https://zju-brainnet.github.
io/Brant.github.io/.

1 Introduction

Brain signals are electrical impulses that are generated by brain neurons and transmit through neural
networks. These signals provide important information about brain activity and can usually be
monitored in two ways, namely scalp electroencephalography (EEG) and intracranial electroen-
cephalography (iEEG). The former records the electrical brain activity through electrodes placed on
the scalp, while the latter implants intracranial electrodes into brain tissue directly to derive neural
recordings. Compared with EEG, iEEG manifests significant advantages by providing more abundant,
stereotactic and detailed information about brain wave patterns from deeper brain structures, which
has been the mainstream method to obtain deep brain information, and is essential in the therapies for
some brain diseases (e.g., Parkinson’s disease [1], epileptic seizure [2]).

Modeling intracranial recordings has drawn much research attention, but several issues still remain
unresolved. Currently, studies for modeling intracranial recordings are mainly divided into two
research lines, namely handcrafted feature based methods [3–8] and deep learning based methods
[9–12]. Handcrafted feature engineering requires lots of domain knowledge and may only work on
specific tasks. And most deep learning based methods are fully supervised, which relies heavily on
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labeled data. However, labeling data at scale in medical experiments is often infeasible or expensive,
which underscores the importance of maximizing the label efficiency. To overcome these limitations,
the paradigm of self-supervised pre-training followed by fine-tuning with few samples can greatly
reduce the reliance on labels and enable the model to generalize to various downstream tasks.

Moreover, modeling intracranial recordings requires careful consideration of several key factors. (1)
Long-term dependency. Since intracranial neural signals are time series and gradual changes in brain
activity may only be captured by the long-period analysis [13], long-term temporal dependency is
crucial in modeling intracranial data. (2) Spatial correlation. The electrodes implanted in the brain
contain many contacts (also called channels), which are distributed across various brain regions. Due
to the fact that brain waves propagate through different brain regions [14], signals recorded from
different channels can be spatially correlated, reflecting the underlying neural activity. (3) Time and
frequency domains. For neural recordings, the time domain provides information about the amplitude
and duration while the frequency domain can reveal underlying oscillatory patterns and rhythms [15].
Therefore, modeling neural signals in both domains can provide information more consistent with the
neurophysiological mechanisms [16]. To the best of our knowledge, no existing work on intracranial
recordings considers all the three key factors simultaneously.

Figure 1: The model scale of existing brain signal
models, including RP [17], TS [17], CPC [17],
BENDR [18], MVTS [19], BrainBERT [20],
LGGNet [21], EEG-GCNN [22], BrainNet [23],
SICR [24], SEEG-Net [9], and two works from
Banville et al. [25] and Tang et al. [26].

In view of the unresolved issues above, we pro-
pose a foundation model for intracranial neural
signal named Brain Neural Transformer (Brant).
The design of our model takes all the three key
factors (i.e., long-term dependency, spatial corre-
lation, time and frequency domains) for intracra-
nial signal modeling into account. Moreover,
Brant contains more than 500M parameters and
is pre-trained on a large intracranial dataset with
1.01 TB data, which can be adapted to accom-
plish various downstream tasks. Compared to
other existing methods for modeling brain sig-
nals, Brant can achieve better performance with
far fewer labeled samples, showing the great
benefit of our work in medical scenarios. As
an off-the-shelf model along with the code and
weights, Brant can participate in other medical
research and experiments, which alleviates the
issue of sample and label efficiency.

To sum up, the main contributions of our work comprise:

• We propose a foundation model for intracranial neural signals named Brant, which is the
largest model on brain signals (shown in Fig. 1) and pre-trained on a large intracranial
dataset collected by us, providing a large-scale and off-the-shelf model for medicine.

• To our knowledge, Brant is the first to date that attends long-term dependency and captures
spatial correlation across channels, while combining the information from both time and
frequency domains.

• Extensive experiments show that Brant generalizes well to various downstream tasks, show-
ing the great potential in neural recordings modeling. Further analysis illustrates the
effectiveness of large-scale pre-trained model, demonstrating the medical value of our work.

2 Method

Model overview. As previously mentioned, we propose Brant to capture long-term dependency
and spatial correlation from intracranial recordings, while combining the information from both
time and frequency domains. Our model mainly consists of two Transformer encoders, namely,
temporal encoder and spatial encoder (shown in Fig. 2). The temporal encoder encodes a sequence of
L consecutive patches which focus on the temporal dependency, and the spatial encoder encodes C
patches with the same time indices from all channels to capture their underlying spatial correlation.
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Figure 2: The pre-training framework of Brant. The collected intracranial neural recordings are
first processed to a set of patches p ∈ RNp×C×M as the input. Then each time we mask a subset
of patches pj:j+L−1 and map the input patches to the hidden space while adding positional and
frequency information to derive the input encoding p̃j:j+L−1. The temporal encoder encodes the
input encoding in each channel to derive the temporal representations hj:j+L−1. The spatial encoder
encodes the temporal representations with the same time indices from all channels to obtain the final
representations zj:j+L−1. Then a linear head is used to obtain the reconstructed patches p̂j:j+L−1
from the final representations.

During pre-training, we randomly mask the input signals recorded from the implanted electrodes,
then linearly map the original signals to the latent space and add positional and frequency information
through input encoding. Then the input encoding is encoded to latent representations and a linear
projection head is added on the top of the spatial encoder which maps the representations to reconstruct
the original signals. The details of our model and pre-training task are described as below.

Patching. Since neural recordings are electrical signals with high sampling rates, we aggregate
timestamps into patches to (1) enhance the locality and extract semantic information; (2) reduce
computation and memory usage; and (3) attend a longer temporal dependency [27]. Specifically, given
a neural signal x ∈ RN×C , where N is the number of timestamps and C is the number of electrode
channels, we divide x with length M and stride S to generate a set of patches p ∈ RNp×C×M , where
Np = ⌊N−M

S ⌋ is the number of patches in each channel.

Frequency encoding. We propose frequency encoding to explicitly inject the information on
frequency domain to the observed data. The frequency encoding is mainly based on power spectral
density (PSD) which describes the distribution of a signal’s total average power over frequency
(details about PSD are in App. A) . To be specific, we split the frequency domain into several bands
according to the standard description for rhythmic activity [28]: (1) θ (4-8Hz), (2) α (8-13Hz),
(3) β (13-30Hz), (4) γ1 (30-50Hz), (5) γ2 (50-70Hz), (6) γ3 (70-90Hz), (7) γ4 (90-110Hz), (8)
γ5 (110-128Hz). For the i-th frequency band, a learnable encoding f i is set as its representation
which is shared across all the patches. Then we compute the absolute spectral power of each patch
pj,c ∈ p, j = 1, ..., Np; c = 1, ..., C in the i-th frequency band:

Pj,c(i) = log
∑

ω∈band(i)

PSDpj,c
(ω), i ∈ {1, 2, . . . , 8}, (1)

which acts as the weight of f i. The frequency encoding Fj,c ∈ RD of patch pj,c is obtained as the
weighted sum of the learnable encodings f i:

Fj,c =

8∑
i=1

exp(Pj,c(i))∑8
i′=1 exp(Pj,c(i′))

f i. (2)

Encoding process. It contains several steps to encode the input signal to latent representations.
Specifically, the input pj:j+L−1 ∈ RL×C×M contains L × C patches and pj:j+L−1,c ∈ RL×M
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denotes the patches in c-th channel. We first map each sequence of patches pj:j+L−1,c, c = 1, ..., C

to the latent space of dimension D by a linear projection Wproj ∈ RD×M , and the projected input
will be added with a learnable positional encoding Wpos ∈ RL×D which monitors the temporal order
of patches and the frequency encoding:

p̃j:j+L−1,c = (Wprojp
T
j:j+L−1,c)

T +Wpos + Fj:j+L−1,c, (3)

where p̃j:j+L−1,c ∈ RL×D denotes the input encoding of the original signals pj:j+L−1,c. The
input encoding will be fed into the temporal encoder to obtain temporal hidden representations
hj:j+L−1,c ∈ RL×D and we denote the temporal representations of the whole input as hj:j+L−1 ∈
RL×C×D. The spatial encoder further captures the spatial correlation across channels, which takes
each of the temporal representations hk ∈ RC×D, k = j, ..., j + L− 1 as the input and outputs the
final representations zk ∈ RC×D, k = j, ..., j +L− 1. Overall, given the input signal pj:j+L−1, the
encoding process returns the corresponding latent representations zj:j+L−1 ∈ RL×C×D.

Self-supervised pre-training. Self-supervised representation learning is a powerful approach
to extract high level abstract representation from unlabelled data. Among those methods to learn
representation via self-supervised pre-training, masked autoencoder (MAE) has been proved to be a
simple but effective way in many fields [27, 29, 30]. We apply this technique to our self-supervised
pre-training, in which the model is trained to reconstruct the whole input given its partial observation.

Given the input patches pj:j+L−1, we mask a subset of patches uniformly at random and encode
the masked patches to the latent representations zj:j+L−1. During the pre-training stage, the repre-
sentations will be fed into a flatten layer with linear head Wrec ∈ RM×D to reconstruct the original
patches. Finally we utilize an MSE loss to measure the discrepancy between the reconstructed patches
p̂j:j+L−1 and the original patches pj:j+L−1.

3 Experimental Setup

3.1 Dataset

Pre-training dataset. Brant is pre-trained on 1.01 TB neural data, a large clinical intracranial
neural signal dataset recorded by stereo-electroencephalography (SEEG) technique from a first-class
hospital. The subjects undergo a surgical procedure to implant 4 to 11 invasive electrodes, each with
52 to 153 channels, in their brain. The dataset contains 2528 hours of 1000Hz recordings with more
than 1 trillion timestamps. More details are in App. E. We down sample the original signals to 250Hz
and generate a set of patches of 6s (1500 timestamps).

Downstream dataset. Another neural dataset collected by us with seizure labels is used to fine-tune
and evaluate our model. It contains 29.39 GB data with 43 hours of 1000Hz intracranial recordings
and we do the same preprocessing (i.e. down sampling and patching) to it as the pre-training dataset.
Professional neurosurgeons participate in the labeling of epileptic seizures and the labels consist of
two categories, namely, seizure and normal samples. More details are in App. E. For each downstream
task, we sample a small subset from the downstream dataset for fine-tuning and evaluation.

3.2 Pre-training

For the model configurations, the temporal encoder contains a 12-layer Transformer encoder with
model dimension 2048, inner dimension (FFN) 3072 and 16 attention heads, and the spatial encoder
contains a 5-layer Transformer encoder with model dimension 2048, inner dimension 3072 and 16
attention heads. During the pre-training, 40% patches in each input sample are masked with zero
values uniformly at random. We take 16 input samples as a minibatch and each minibatch contains
an average of 24k patches. The model is pre-trained on a Linux system with 2 CPUs (AMD EPYC
9654 96-Core Processor) and 4 GPUs (NVIDIA Tesla A100 80G) for about 2.8 days.

We optimize with Adam [31], updating the model parameters every 4 steps, and the model trains
for 750k updates in total. A cyclic scheduler that adopts a basic triangular cycle without amplitude
scaling is utilized to adjust learning rate during pre-training. Specifically, we set the basic learning
rate as 3× 10−6 and the maximum learning rate as 1× 10−5, then the learning rate steps up (down)
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for every 8k updates. We apply mixed precision training with FP32 and BF16 to reduce the memory
usage in GPUs for acceleration.

3.3 Downstream tasks

As Brant is a foundation model for intracranial recordings, we conduct extensive experiments
on several downstream tasks, including short- and long-term signal forecasting, frequency-phase
forecasting, imputation and seizure detection, to verify the high capacity of our model in modeling
intracranial recordings. We conduct each downstream task for Brant on two settings: (1) fine-tune the
model with a learning rate of 1× 10−7; (2) freeze the pre-trained weights. Five random runs were
performed to obtain the mean and standard deviation. The detailed setups of these downstream tasks
are as follows:

Short- and long-term signal forecasting. Predictive observation of the neural signal values is
beneficial for the development of warning systems for patients in need of precautionary measures [32,
33]. Therefore, we adopt short- and long-term signal forecasting, in which the learned representations
are fine-tuned to predict future signals with different lengths given a past sequence. The past sequence
length is set as 15 patches (90s) and the prediction lengths are set as 2 patches (12s) and 20 patches
(120s) in short- and long-term forecasting, respectively. We sample 400 minutes of recordings from
the downstream dataset, then randomly split into 320 minutes for fine-tuning and 80 minutes for
evaluation. A linear prediction head is used to predict the future signals. We adopt MAE and MSE as
the performance metrics.

Frequency-phase forecasting. In medicine, it is essential to predict the physical features like
frequency and phase of brain signals to provide guidance for some treatments. For example, in
a therapy that modulates brain activity called transcranial alternating current stimulation (tACS),
the stimulation control heavily depends on these knowledge about the target brain activity [34].
Therefore, we set up the frequency-phase forecasting task in order for these therapies like tACS to be
most effectively used in the treatment of brain disorders [35].

Given a past sequence, this task is to predict the dominant frequency and phase information (see
details in App. B) of intracranial signals in the future. The past and prediction lengths are set as 15
patches (90s) and 5 patches (30s), respectively. We use the same sampling and split strategy as that in
the short- and long-term signal forecasting to generate the data for the frequency-phase forecasting
task. A linear layer is adopted to predict the dominant frequency and phase of the future signals. As
for the metrics, following the work by Mansouri et al. [34], we use MAE for dominant frequency
forecasting, and phase locking value (PLV) for phase forecasting. The PLV is a value between 0 and
1 calculated by the equation:

PLV =
∥∥∥ 1

T

T∑
t=1

exp(i(ψ(t)− ψ̂(t)))
∥∥∥, (4)

where ψ and ψ̂ are the original signals and the forecasted signals, respectively.

Imputation. During brain signal recordings, measurement problems such as artifact contamination
or electrode impairment are not easily corrected, thus the neural recordings will be incomplete.
Imputation can fill in these contaminated signals so that other medical devices can keep operating
under missing values, making use of available data [36]. For the imputation task, we randomly mask
the timestamps in each patch with the ratio of 40% and fine-tune the model to predict the missing
values. We adopt the same sampling and split strategy to obtain the imputation data as in the short-
and long-term signal forecasting. We add a linear head to make predictions, then apply MAE and
MSE as the evaluation metrics to measure the discrepancy between the masked and predicted values.

Seizure detection. As one of the most important applications of intracranial recordings, seizure
detection task is to evaluate the model ability to distinguish between epileptic seizures and normal
waveforms. We sample 250 minutes of recordings from the downstream dataset with about 10%
positive (seizure) samples, where 200 minutes are randomly selected for fine-tuning and the remaining
50 minutes for evaluation. An MLP is adopted to classify the pre-trained representations. The
evaluation metrics we use are accuracy, precision, recall, F1 and F2 scores. The F-measure is a
metric defined as the weighted harmonic mean of precision and recall, with the following equation
Fβ = (1+β2)×precision×recall

β2×precision+recall .
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3.4 Baselines

As Brant is a pre-training work on neural signals, we extensively compare our model with the
advanced self-supervised or unsupervised pre-training works on all the downstream tasks, including
works designed for brain signals: RP [17], TS [17], CPC [17], BENDR [18], MVTS [19] and
BrainBERT [20]; and for general time series: CoST [37], TF-C [38], PatchTST [27] and TS-TCC [39].
Considering that seizure detection is an important application scenario of intracranial recordings,
we further compare our model with several supervised methods which conduct seizure detection on
EEG or iEEG to evaluate the performance of Brant in detecting epilepsy. These baselines contain
handcrafted feature based methods, including spectral power [28], rhythmicity spectrogram [3] and
amplitude-integrated EEG [40]; and the SOTA deep learning based method on seizure detection,
including SEEG-Net [9]. More details of the baselines are shown in App. C.

4 Experimental Results

4.1 Main Results

Fig. 3 summarizes the results of all the downstream tasks. As a foundation model for intracranial
recordings, Brant achieves consistent SOTA performance on a variety of tasks compared with other
baseline models. We discuss more detailed comparisons of each task in the following paragraphs,
where in all the tables we mark values ranking the first (v), second (v) and third (*v) in each column.
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Figure 3: Performance comparison of our model and other baseline models on all downstream tasks.
Model performances are plotted on three radar subfigures for clarity with the same coordinate range.

Table 1: Performance on forecasting tasks.

Model
Task Short-term signal forecasting Long-term signal forecasting Frequency-phase forecasting

MAE MSE MAE MSE ph. PLV freq. MAE

RP [17] 0.7569±0.0016 1.1769±0.0103 0.6774±0.0017 1.0579±0.0010 0.4929±0.0002 0.4197±0.0042

TS [17] 0.6142±0.0012 0.8771±0.0076 0.6286±0.0014 0.9771±0.0011 0.5609±0.0002 0.0245±0.0008

CPC [17] 0.6318±0.0012 0.8886±0.0088 0.6324±0.0013 0.9604±0.0010 0.5608±0.0003 0.1036±0.0014

BENDR [18] 0.6002±0.0014 0.8720±0.0081 0.5948±0.0020 0.8535±0.0013 0.5685±0.0002 0.0604±0.0017

MVTS [19] 0.6868±0.0019 1.1859±0.0102 0.5867±0.0026 0.8381±0.0014 *0.5843±0.0004 0.0320±0.0014

BrainBERT [20] 0.6161±0.0010 0.8857±0.0094 0.7214±0.0014 1.4727±0.0012 0.5712±0.0002 0.1065±0.0015

PatchTST [27] 0.5050±0.0010 0.6482±0.0062 *0.5792±0.0014 *0.8235±0.0006 0.5905±0.0002 0.0267±0.0006

TS-TCC [39] 0.6042±0.0012 1.0244±0.0096 0.5938±0.0018 0.8506±0.0008 0.5743±0.0002 0.0061±0.0003

TF-C [38] 1.2530±0.0025 2.9441±0.0146 1.0683±0.0030 2.2491±0.0016 0.5493±0.0004 0.1593±0.0029

CoST [37] 0.5531±0.0011 1.0922±0.0092 0.5955±0.0012 0.8546±0.0005 0.5728±0.0003 0.1152±0.0018

Brant-Freeze *0.5352±0.0008 *0.7161±0.0111 0.5780±0.0004 0.7869±0.0007 0.5777±0.0002 *0.0113±0.0003

Brant 0.4007±0.0014 0.4626±0.0048 0.5693±0.0012 0.7676±0.0005 0.6004±0.0001 0.0041±0.0002

Short- and long-term signal forecasting. The results of short- and long-term signal forecasting are
shown on the left and middle of Tab. 1, respectively. Not only does Brant achieve SOTA performance,
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but the results of Brant-Freeze are also better than most baselines. Especially on long-term forecasting,
Brant-Freeze defeats all the baseline methods, showing the ability to capture long-term dependency
of our model. Among the baselines, PatchTST [27] performs well compared to other methods, mainly
because it also adopts a patching strategy to attend longer temporal dependency.

Frequency-phase forecasting. Forecasting physical features like frequency and phase of neural
signal is essential in some medical techniques (see Sec. 3.3). The results of frequency-phase
forecasting are shown on the right of Tab. 1, which shows that our model outperforms all the methods,
demonstrating that Brant facilitates effective implementation of therapies for some brain disorders.

Imputation. As a mitigation for measurement problems, imputation can fill in the incomplete
neural signals, allowing other medical devices to continue operating even when data is missing (see
Sec. 3.3). From Tab. 2, Brant and Brant-Freeze achieve the best and the second best results among all
the methods, which demonstrates the ability of our model in capturing underlying temporal patterns
with partially observed neural recordings to imputate the contaminated neural signals.

Table 2: Performance on the imputation task.

Model
Task Imputation

MAE MSE

RP [17] 0.5953±0.0008 0.9158±0.0038

TS [17] 0.5225±0.0008 0.7476±0.0032

CPC [17] 0.5663±0.0006 0.8271±0.0034

BENDR [18] 0.4849±0.0008 0.6492±0.0031

MVTS [19] 0.5946±0.0009 0.8903±0.0032

BrainBERT [20] 0.6083±0.0008 0.9790±0.0026

PatchTST [27] 0.4282±0.0007 0.5506±0.0012

TS-TCC [39] 0.6144±0.0008 1.0558±0.0029

TF-C [38] 1.1876±0.0014 3.0179±0.0042

CoST [37] *0.2652±0.0005 *0.1638±0.0007

Brant-Freeze 0.1963±0.0005 0.0865±0.0004

Brant 0.1912±0.0003 0.0814±0.0002

Seizure detection. As seizure detection is
an important medical application of intracranial
recordings, we not only compare our model with
the pre-training based baselines, but also fur-
ther select 4 supervised method designed for
seizure detection. From Tab. 3, Brant outper-
forms all the other methods and Brant-Freeze
achieves second best on most of the metrics.
BrainBERT [20] achieves the best accuracy, pre-
cision and F2 score among all the baseline meth-
ods, primarily due to it provides contextualized
neural embeddings and combines the informa-
tion from time and frequency domains like our
model. However, Brant still improves the F2
score by 29.59% over BrainBERT, because our
temporal encoder obtains a wider receptive field
and the spatial encoder captures the spatial cor-
relation across channels, which are both critical
in modeling intracranial recordings.

Table 3: Performance on the seizure detection task.

Model
Task Seizure detection

Accuracy Precision Recall F1 F2

Spectral Power [28] 89.01±0.12 72.77±1.98 36.07±1.23 48.23±0.57 40.12±1.02

Rhythmicity Spectrogram [3] 88.58±0.16 70.31±2.09 37.07±1.39 48.55±0.60 39.10±1.09

Amplitude-integrated EEG [40] 88.82±0.19 71.21±2.01 35.73±1.50 47.58±0.61 39.68±1.12

SEEG-Net 88.97±0.14 70.45±2.20 38.44±1.47 *49.74±0.60 42.28±1.10

RP [17] 67.65±1.21 18.62±2.45 34.71±2.11 24.24±1.87 29.59±1.97

TS [17] 85.90±0.36 54.68±3.65 31.66±1.97 40.10±0.81 34.57±1.66

CPC [17] 84.72±0.40 48.31±2.80 36.03±0.92 41.28±0.66 37.96±1.42

BENDR [18] 88.14±0.68 71.49±3.42 29.83±2.03 42.10±1.84 33.77±1.81

MVTS [19] 88.35±0.22 69.43±3.19 32.03±2.08 43.84±1.96 35.90±1.94

BrainBERT [20] *89.59±0.12 77.86±3.10 39.28±0.88 52.21±0.39 *43.60±0.98

PatchTST [27] 81.13±0.22 38.71±3.64 21.16±2.21 27.37±0.42 23.27±1.26

TS-TCC [39] 88.13±0.29 89.61±2.08 23.81±1.50 37.62±0.40 27.91±1.19

TF-C [38] 75.05±0.61 18.75±2.41 19.09±2.02 18.92±0.41 19.02±1.24

CoST [37] 81.05±0.15 30.98±2.59 *43.19±1.88 36.08±0.79 40.03±1.88

Brant-Freeze 90.53±0.33 *77.26±3.16 48.92±0.72 59.87±0.62 52.87±0.47

Brant 91.17±0.15 79.25±2.32 52.74±1.43 63.29±0.37 56.50±1.08
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4.2 Model Analysis.

Low-resource labeled data evaluation. In medical scenarios, collecting labeled data for even
small experiments is a huge investment. To demonstrate the practical value of our work, we evaluate
Brant on seizure detection where the amount of labeled data is limited. Specifically, the pre-trained
model is fine-tuned on 200 minutes, 60 minutes and 20 minutes of labeled data that sampled from the
downstream dataset (Sec. 3.1), respectively. After fine-tuning, models are evaluated on the same 50
minutes of labeled data which is also sampled from the downstream dataset but non-overlapped with
the fine-tuning data.

From Tab. 4, the performances of supervised methods decrease rapidly compared to the self-
supervised or unsupervised methods, showing that the representations learned on unlabeled data
can improve low-resource settings. Among the pre-training works, our model maintains the most
stable performance on 20-minute labeled data. Note that the F2 score of our model on 20-minute
labeled data (51.03%) is even higher than the F2 score of the best baseline on 200-minute labeled
data (43.60%), demonstrating that Brant fully captures the patterns and semantic information from
the intracranial data during pre-training and adapts to downstream tasks more easily.

Table 4: Low-resource labeled data evaluation on the seizure detection task and the relative decrease
of the F2 score on 60-minute and 20-minute labeled data versus 200-minute labeled data.

Model 200 minutes 60 minutes 20 minutes

F2 F2 Decrease F2 Decrease

Spectral Power [28] 40.12±1.02 25.95±1.92 35.32% 5.06±1.67 87.39%
Rhythmicity Spectrogram [3] 39.10±1.09 21.87±2.33 44.07% 2.81±0.87 92.81%
Amplitude-integrated EEG [40] 39.68±1.12 18.42±2.34 53.58% 2.05±0.95 94.84%
SEEG-Net [9] *42.28±1.10 35.54±1.90 15.94% 12.76±2.13 69.82%

RP [17] 29.59±1.97 27.62±2.03 *6.66% 25.05±1.98 15.34%
TS [17] 34.57±1.66 30.15±3.05 12.79% 29.61±3.34 *14.35%
CPC [17] 37.96±1.42 30.55±3.01 19.52% 29.57±3.74 22.10%
BENDR [18] 33.77±1.81 25.37±3.12 24.87% 22.18±4.09 34.32%
MVTS [19] 35.90±1.94 26.62±3.11 25.85% 24.39±4.01 32.06%
BrainBERT [20] 43.60±0.98 41.93±2.09 3.84% 36.35±3.23 16.63%

PatchTST [27] 23.27±1.26 18.02±2.23 22.55% 17.07±2.11 26.64%
TS-TCC [39] 27.91±1.19 25.35±2.07 9.17% 20.36±1.90 27.05%
TF-C [38] 19.02±1.24 15.97±1.23 16.04% 13.66±2.10 28.18%
CoST [37] 40.03±1.88 *39.18±3.02 2.12% 36.10±4.12 9.82%

Brant 56.50±1.08 52.30±2.04 7.43% 51.03±2.74 9.68%

Representation analysis. As classification task can verify the model capacity in high-level
representation learning [41], we visualize the pre-trained representations of Brant and 3 best pre-
training based methods on seizure detection task using t-SNE (shown in Fig. 4). Compared to other
methods, the representations of seizure and normal signals learned from Brant are separated more
clearly during pre-training, which intuitively illustrates our SOTA performance on low-resource label
settings. Furthermore, the results explain the good performance of Brant-Freeze on seizure detection.

Figure 4: Pre-trained representation visualization of Brant and 3 best baselines on seizure detection
task. The representations of seizure and normal samples are plotted in red ( ) and yellow ( ).
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Model scale analysis. To explore the effect of model size on performance, we additionally pre-
train three variants of Brant with smaller size: Brant-tiny, Brant-small and Brant-medium (detailed
configurations are in App. F) on the same dataset as Brant. All models are pre-trained with an Adam
optimizer and a cyclic scheduler. Brant-medium adopts the same learning rate as Brant (Sec. 3.2); for
Brant-tiny and Brant-small, the basic and maximum learning rates are 6× 10−6 and 3× 10−5.

We evaluate these smaller size variants on all the downstream tasks (results shown in Fig. 5). As the
model size increases, the performances on the downstream tasks show an overall upward trend, where
Brant is ahead of the other three variants in all metrics. Also, the decrease in the standard deviation
indicates more stable performance for larger models. On such a huge neural dataset, a larger model
with a higher capacity results in better generalization ability to a wide range of downstream tasks.

Short- & long-term Signal Forecasting Frequency-phase Forecasting Imputation Seizure Detection

Figure 5: Performance on all the downstream tasks across Brants with different model size: Brant-
tiny (70M), Brant-small (100M), Brant-medium (250M) and Brant (500M).

Ablation study. We perform ablation experiments to assess the effectiveness of each individual
component in our model. Specifically, we remove the following components from our model to
examine their respective effects on performance: the temporal encoder (Brant-temporal), the spatial
encoder (Brant-spatial), and the frequency encoding (Brant-frequency).

The experimental results of ablation study are given in Tab. 5 and Tab. 6. The results indicate that
Brant outperforms other model variants across all metrics, providing evidence for the contribution
of each component in our model. Among the different variants, Brant-temporal exhibits the most
substantial decrease in performance compared to the full Brant model, emphasizing the significance
of long-term dependency in modeling brain signals. The performance degradation observed in Brant-
spatial demonstrates the role of considering channel spatial correlation in learning representations of
intracranial recordings. Furthermore, the decline of Brant-frequency suggests that simultaneously
extracting information from both the time and frequency domains proves beneficial for effectively
modeling brain signals.

Table 5: Results of ablation experiments on forecasting tasks.

Model
Task Short-term signal forecasting Long-term signal forecasting Frequency-phase forecating

MAE MSE MAE MSE ph. PLV freq. MAE

Brant-temporal 0.5356 0.7021 0.5777 0.7876 0.5800 0.0094
Brant-spatial 0.5403 0.7521 0.5827 0.7990 0.5780 0.0092
Brant-frequency 0.4762 0.5676 0.5726 0.7741 0.5645 0.0143

Brant 0.4007 0.4626 0.5693 0.7676 0.6004 0.0041

Table 6: Results of ablation experiments on the imputation and seizure detection tasks.

Model
Task Imputation Seizure detection

MAE MSE Acc. Prec. Rec. F1 F2

Brant-temporal 0.2798 0.1797 88.56 67.39 40.25 50.40 43.78
Brant-spatial 0.2770 0.1741 89.93 84.77 36.88 51.40 41.57
Brant-frequency 0.2495 0.1406 90.16 78.41 44.03 56.39 48.26

Brant 0.1912 0.0814 91.17 79.25 52.74 63.29 56.50
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Generalization ability analysis. To further verify the generalization ability of Brant on more
subjects with more heterogeneity, we evaluated the model on data of 31 unseen subjects from two
public datasets named MAYO and FNUSA [42]. More details about this study are shown in App. G.

5 Related Work

Intracranial recordings modeling. With the development of iEEG technique to obtain deep
brain information from both cortical and subcortical structures, modeling intracranial recordings
has attracted the attention of many researchers. Wang et al. [9] extract time domain features of
iEEG signals from multiple receptive fields by utilizing multiscale CNN and LSTM. Guo et al.
[10] introduce a hypergraph learning approach to model iEEG signals by detecting high frequency
oscillations. Yu and Hu [11] propose EDANN to learn domain-invariant representations of iEEG
data from multiple subjects by domain adversarial training. Jiang et al. [8] develop a novel method
using short-time resting-state connectivity to identify the seizure onset zone (SOZ) from interictal
EEG signals. Wang et al. [12] conduct cross-subject iEEG seizure detection based on adaptive
feature fusion of brain network features and single-channel features. However, these works are all
supervised that relies heavily on labeled data, which is often difficult and expensive to obtain at scale.
Furthermore, most works for intracranial data modeling process each channel independently, ignoring
the spatial correlation. Although Chen et al. [23] propose BrainNet which contains a graph diffusion
component which measures the brain wave diffusion among channels, their work only focus on the
information in time domain and is limited to an individual subject.

Pre-training on brain signals. Pre-training on time series [37, 38, 27, 39] has shown good
performance in many scenarios (e.g., weather, traffic flow, exchange rates), including some works
designed for brain signals. Banville et al. [17] learn representations from EEG signals by a self-
supervised temporal context prediction task, revealing clear latent structures related to physiological
and clinical phenomena. Kostas et al. [18] address the problem of limited labeled data on EEG
by using a contrastive self-supervised learning task to pre-train a model named BENDR, which
is then fine-tuned for downstream tasks. Potter et al. [19] propose an unsupervised approach to
model EEG signals using a transformer-based model with a signal reconstruction task. Cai et al.
[43] propose to study the self-supervised learning framework for brain signals that can be applied
to pre-train either scalp or intracranial EEG data. Wang et al. [20] propose a pre-training work
named BrainBERT for intracranial recordings and conduct experiments on iEEG data. They adopt
time-frequency representations but ignore the spatial correlation between channels, which is critial
in modeling intracranial recordings (additional commentary on differences between our work and
BrainBERT is in App. D).

6 Conclusion

We propose a task-agnostic foundation model, Brant, which learns powerful representations of
intracranial recordings. Brant is the largest pre-training model on brain signals, whose design (1)
attends a long temporal dependency; (2) captures the spatial correlation between channels; and
(3) extracts information from both time and frequency domains. Experimentally, Brant achieves
consistent SOTA performance on various downstream tasks w.r.t. medical scenarios. Further analysis
shows the effectiveness and benefit of a large-scale pre-trained model in the field of medicine. Brant
is an off-the-shelf model with its code and weights, which significantly alleviates the issue of sample
and label efficiency and can directly participate in other medical research and treatment.

Limitations and future works. By pre-training on a large amount of intracranial data, Brant
contains over 500M parameters, far more than other existing works on brain signals. However,
compared to other fields such as CV and NLP in which the models can reach billions of parameters
and achieve good performance on a variety of tasks by zero-shot learning, there is still potential for
further improvement of our work. In the future, by scaling up our dataset, the scale of our model can
be further expanded to capture higher-level semantic information from neural data, revealing more
complicated brain activities and dynamics, to provide assistance for more healthcare applications.
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A Intuition of Using PSD as Weights

PSD displays the spectal power distribution in different frequencies of brain signals. The power
distribution in different frequency bands is associated with different brain functional states. For
example, during wakefulness, α and β waves are more active; during sleep, δ and θ waves are more
prominent; and γ waves will become significant during epileptic seizures. Therefore, in medical
research, the power distribution in different frequency bands is often used as a feature reflecting the
functional state of the brain.

In our work, we treat the power distribution as the weights of learnable representations fi, i = 1, ..., 8
in 8 standard frequency bands. The intuition is that the frequency bands with higher power are
more representative of the brain’s physiological state, and should be given more weight in their
representations. In this way, the model can focus more on the frequency bands where the main power
of the brain signals resides.

B Details of the Dominant Frequency and Phase

Dominant frequency. Dominant frequency is defined as the frequency related with the greatest
power or amplitude in the brain signal. Dominant frequency can be calculated from Fourier Transform
spectrum. Mathematically, given a brain signal series s(t), t ∈ (t0, t1), the amplitude A(ω) on
frequency ω is:

A(ω) = |F (ω)| =
∣∣∣ ∫ t1

t0

s(t)e−iωtdt
∣∣∣, (5)

and the dominant frequency ωD is:

ωD = argmax
ω

A(ω) (6)

Phase. The instantaneous phase of a complex-valued function signal s(t) is the real-valued function:

ψ(t) = angle(s(t)), (7)

where angle(·) is the angle between the positive real axis and the direction of complex number s(t).

C Details of Baselines

Firstly, we compare our model to the existing self-supervised or unsupervised pre-training works on
brain signals. The Details of these baseline models are given here:

• RP, TS, CPC: Three self-supervised learning approaches with three self-supervised learning
pretext tasks of relative positioning (RP), temporal shuffling (TS) and contrastive predictive
coding (CPC) to learn representations of EEG signals based on StagerNet.

• BENDR: A self-supervised training model that learn compressed representations to model
completely novel raw EEG sequences recorded with differing hardware, and different
subjects performing different tasks.

• MVTS: An unsupervised transformer-based anomaly detection approach to train an autoen-
coder with a masking strategy on non-seizure signals.

• BrainBERT: A reusable transformer for intracranial field potential recordings enables classi-
fying complex concepts and decoding neural data.

Secondly, we compare our model with the advanced self-supervised or unsupervised pre-training
works designed for general time series, including:
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• CoST: A time series representation learning framework for long sequence time series
forecasting, which applies contrastive learning methods to learn disentangled seasonal-trend
representations.

• TF-C: A decomposable pre-training model, where the self-supervised signal is provided
by the distance between time and frequency components, each individually trained by
contrastive estimation.

• PatchTST: An efficient design of Transformer-based models for multivariate time series
forecasting and self-supervised representation learning, based on the segmentation of time
series into subseries-level patches.

• TS-TCC: An unsupervised time series representation learning framework to learn robust
temporal and discriminative representations by designing a tough cross-view prediction task
and a contextual contrasting module.

Furthermore, as seizure detection is the most important application scenario of intracranial recordings,
to evaluate Brant’s ability in seizure detection, we compare our model with some seizure detection
methods on EEG or iEEG. These baselines include handcrafted feature based methods and a deep
learning based method:

• Spectral Power: The spectral power in a particular frequency band means the power of a
signal in that frequency band. The rhythmic activity on brain signals is typically described
in terms of the spectral power or its ratio on some standard frequency bands.

• Rhythmicity Spectrogram: This feature displays a density spectral array of frequency and
power characteristics of brain signals, providing a graphical depiction of the amplitude of
primary rhythmic EEG components present in four frequency bands.

• Amplitude-integrated EEG: A trace of electrical activity displayed on a semilogarithmic
graph of peak-to-peak amplitude over time, which can be used to monitor and diagnose
seizure activity.

• SEEG-Net: A model that can address the problems of sample imbalance, cross-subject
domain shift, and poor interpretability and realizes high-sensitivity SEEG pathological
activity detection. Since the source code of SEEG-Net is not released, we re-implement it to
conduct experiments.

D Detailed Differences between Brant and BrainBERT

BrainBERT is also a pre-training work conducted on intracranial recordings, but our work is different
with them in the following aspects.

Data and model scale. Pre-training often requires a large amount of data by which the model fully
learns the distributions, and the pre-trained model usually contains a huge quantity of parameters to
fit the data. According to the paper of BrainBERT and the model weights released by its authors [20],
the total amount of data and parameters in BrainBERT is 43.7 hours and 43.18M, respectively. Brant
is pre-trained on 2528 hours of data and the scale of Brant reaches to 505.69M parameters.

Method. As discussed in the main paper, Brant considers long-term dependency, channel corre-
lation, time and frequency domains when modeling intracranial recordings. BrainBERT provides
contextualized neural embeddings and adopts time-frequency representations, but ignores the channel
correlation which reflects the propagation of brain waves.

Downstream tasks. BrainBERT is evaluated on four classification tasks related with the audio
listened from the subjects, which mainly focus on a particular stimulus, i.e., passive movie viewing.
Brant is evaluated on various downstream tasks, including signal forecasting, frequency-phase
forecasting, imputation and seizure detection, all of which are medically valuable (described in
Sec. 3.3).

E Details of the Datasets

Pre-training dataset. The pre-training dataset contains 1.01TB data with a sampling rate of 1000Hz.
The details of the pre-training dataset are given in Tab. 7.
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Downstream dataset. The downstream dataset contains 29.39 GB data with a sampling rate
of 1000Hz. The details of the downstream dataset with seizure labels are given in Tab. 8. For
each downstream task, we sample a small subset from the downstream dataset for fine-tuning and
evaluation. The sampling and split strategies are described in the setup of downstream tasks in
Sec. 3.3.

Table 7: Details of the pre-training dataset.

Subject id Recording hours #Electrodes #Channels #Sample points

1 235.34 10 124 105,055,776,000
2 82.39 4 52 15,423,408,000
3 393.09 10 120 169,814,880,000
4 137.45 10 133 65,811,060,000
5 214.22 8 116 89,458,272,000
6 386.70 8 101 140,604,120,000
7 111.55 7 67 26,905,860,000
8 207.42 5 47 35,095,464,000
9 759.80 11 134 366,527,520,000

Table 8: Details of the downstream dataset.

Subject id Recording hours #Seizure timestamps #Normal timestamps

A 3.46 3,298,000 383,154,000
B 4.63 539,000 216,288,000
C 5.23 2,129,000 563,091,000
D 6.00 3,427,000 622,977,000
E 6.00 1,311,000 544,090,000
F 6.00 496,000 361,282,000
G 5.92 7,278,000 243,255,000
H 5.98 3,330,000 717,831,000

F Details of Brant with Different Scales

To explore the effect of model scales on performance, we additionally pre-train three variants of
Brant with smaller size: Brant-tiny, Brant-small and Brant-medium on the same dataset. Detailed
configurations of Brant and its variants are shown in Tab. 9.

Table 9: Configurations of different scales of Brant.

Model
Config Temporal/Spatial

Encoder Layer
Model

Dimension
Inner

Dimension
Parameter
Number

Brant-tiny 8/4 768 2048 68.49M
Brant-small 8/4 1024 2048 103.90M
Brant-medium 12/5 1280 3072 249.22M
Brant 12/5 2048 3072 505.68M

G Details of the Generalization Ability Analysis

As a supplement to the experiments on downstream dataset in the main text, to further verify the
generalization ability of Brant on more subjects with more heterogeneity, we evaluated the model on
data of 31 unseen subjects from two public datasets named MAYO and FNUSA [42]. The MAYO
dataset includes intracranial neural signals of 18 subjects collected from Mayo Clinic (Rochester,
Minnesota, United States of America). The FNUSA dataset comprises intracranial data of 13 subjects
recorded from St. Anne’s University Hospital (Brno, Czech Republic).
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Table 10: Performance on the short- and long-term forecasting tasks on two public datasets.

Model

Task &
Dataset

Short-term signal forecasting Long-term signal forecasting

MAYO FNUSA MAYO FNUSA

MAE MSE MAE MSE MAE MSE MAE MSE
RP 1.3881 3.0642 1.3786 3.0317 1.4025 3.1277 1.3839 3.0562
TS 0.9464 1.4572 0.9505 1.4846 0.8318 1.1138 0.8353 1.1213
CPC 0.8009 1.0311 0.7922 1.0306 0.7979 1.0254 0.7898 1.0249
BENDR 0.9673 1.4950 0.9507 1.4585 1.0943 2.4782 1.0921 2.4325
MVTS 1.1027 1.7043 1.0838 1.6627 1.2475 2.8251 1.2450 2.7731
BrainBERT *0.7971 1.0110 0.7829 0.9971 *0.7943 *1.0183 *0.7872 *1.0202

PatchTST 0.7969 *1.0227 *0.7879 *1.0237 0.7479 0.9815 0.7498 1.0183
TSTCC 1.4434 2.7430 1.4532 3.0083 1.7217 2.7587 1.7246 2.8697
TFC 2.1544 4.0941 2.1689 4.4900 2.5697 4.1174 2.5741 4.2831
CoST 0.8812 1.2783 0.8935 1.2895 0.7996 1.0299 0.8094 1.0582

Brant 0.6860 0.8064 0.6915 0.8249 0.7329 0.8856 0.7374 0.9118

Table 11: Performance on the frequency-phase forecasting task and the imputation task on two
public datasets.

Model

Task &
Dataset

Frequency-phase forecasting Imputation

MAYO FNUSA MAYO FNUSA

ph. PLV freq. MAE ph. PLV freq. MAE MAE MSE MAE MSE

RP 0.2194 1.0222 0.2232 1.0225 0.7025 0.8340 0.7079 0.8556
TS 0.5064 0.0501 0.5076 0.0517 0.7381 0.8935 0.7427 0.9215
CPC *0.5601 0.1183 *0.5616 0.1119 0.7725 0.9623 0.7737 0.9796
BENDR 0.5459 0.0638 0.5486 0.0639 0.8906 1.0880 0.9001 1.1510
MVTS 0.5389 0.0672 0.5397 0.0674 0.8097 0.9891 0.8187 1.0463
BrainBERT 0.5075 0.0355 0.5091 0.0356 0.7908 1.0045 0.7812 1.0039

PatchTST 0.5627 *0.0455 0.5640 *0.0470 0.4934 0.4753 0.5073 0.4896
TSTCC 0.1285 0.2756 0.1288 0.2752 0.7411 0.9201 0.7451 0.9488
TFC 0.0714 0.5367 0.0712 0.5366 0.7640 0.9486 0.7681 0.9781
CoST 0.5279 0.0482 0.5292 0.0484 *0.4964 *0.4783 *0.5088 *0.4914

Brant 0.5824 0.0304 0.5814 0.0305 0.4887 0.4622 0.5020 0.4835

Table 12: Performance on the seizure detection task on two public datasets.

Model

Task &
Dataset

Seizure detection

MAYO FNUSA

Acc. Prec. Rec. F1 F2 Acc. Prec. Rec. F1 F2

Spec Power 58.79 38.77 44.27 41.34 43.05 58.08 38.48 46.42 42.08 44.58
Rhythm Spec 58.06 31.23 *45.06 36.89 41.39 56.27 30.53 47.64 37.21 42.84
aEEG 58.36 31.19 43.98 36.50 40.65 57.83 36.52 38.70 37.58 38.25
SEEG-Net 57.92 38.38 46.72 *42.14 44.77 58.21 39.12 *49.29 *43.62 *46.85

RP 86.51 46.19 20.29 28.20 22.86 70.19 59.29 19.88 29.78 22.93
TS 72.55 48.72 17.72 25.98 20.30 69.00 52.88 22.64 31.70 25.56
CPC *87.29 52.90 24.01 33.03 26.96 68.34 50.40 24.98 33.40 27.78
BENDR 80.95 23.95 21.11 22.44 21.62 62.28 5.70 34.04 9.76 17.06
MVTS 69.19 53.30 24.99 34.03 27.96 67.11 49.66 19.68 28.19 22.38
BrainBERT 85.39 44.13 44.92 44.52 *44.76 68.31 44.96 49.50 47.12 48.52

PatchTST 87.39 53.02 29.42 37.84 32.29 *69.94 *55.81 26.08 35.55 29.19
TSTCC 77.26 10.47 9.16 9.77 9.40 63.83 24.40 11.36 15.50 12.71
TFC 82.09 11.41 4.91 6.87 5.54 68.71 29.36 5.05 8.62 6.05
CoST 87.39 *53.02 29.42 37.84 32.29 65.92 36.34 33.65 34.95 34.16

Brant 89.40 58.78 70.80 64.23 68.02 83.51 83.60 54.18 65.75 58.28
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The results of generalization study are given in Tab. 10, Tab. 11 and Tab. 12. Compared to other
baseline models, Brant holds the consistent SOTA performance on these downstream tasks on
the unseen 31 heterogeneous subject data collected from different hospitals in different countries,
highlighting the generalization ability of our model.
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