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ABSTRACT
Brain signals are important quantitative data for understanding

physiological activities and diseases of human brain. Meanwhile,

rapidly developing deep learning methods offer a wide range of

opportunities for better modeling brain signals, which has attracted

considerable research efforts recently. Most existing studies pay

attention to supervised learning methods, which, however, require

high-cost clinical labels. In addition, the huge difference in the

clinical patterns of brain signals measured by invasive (e.g., SEEG)

and non-invasive (e.g., EEG) methods leads to the lack of a unified

method. To handle the above issues, in this paper, we propose to

study the self-supervised learning (SSL) framework for brain signals

that can be applied to pre-train either SEEG or EEG data. Intuitively,

brain signals, generated by the firing of neurons, are transmitted

among different connecting structures in human brain. Inspired

by this, we propose MBrain to learn implicit spatial and temporal

correlations between different channels (i.e., contacts of the elec-

trode, corresponding to different brain areas) as the cornerstone

for uniformly modeling different types of brain signals. Specifically,

we represent the spatial correlation by a graph structure, which

is built with proposed multi-channel CPC. We theoretically prove

that optimizing the goal of multi-channel CPC can lead to a bet-

ter predictive representation and apply the instantaneou-time-shift
prediction task based on it. Then we capture the temporal corre-

lation by designing the delayed-time-shift prediction task. Finally,

replace-discriminative-learning task is proposed to preserve the

characteristics of each channel. Extensive experiments of seizure

detection on both EEG and SEEG large-scale real-world datasets

demonstrate that our model outperforms several state-of-the-art

time series SSL and unsupervised models, and has the ability to be

deployed to clinical practice.
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1 INTRODUCTION
Brain signals are foundational quantitative data for the study of hu-

man brain in the field of neuroscience. The patterns of brain signals

can greatly help us to understand the normal physiological function

of the brain and the mechanism of related diseases. There are many

applications of brain signals, such as cognitive research [20, 22],

emotion recognition [6, 38], neurological disorders [1, 42] and so

on. Brain signals can be measured by noninvasive or invasive meth-

ods [29]. The noninvasive methods, like electroencephalography
(EEG), cannot simultaneously consider temporal and spatial reso-

lution along with the deep brain information, but they are easier

to implement without any surgery. As for invasive methods like

stereoelectroencephalography (SEEG), they require extra surgeries

to insert the recording devices, but have access to more precise and

higher signal-to-noise data. For both EEG and SEEG data, there are

multiple electrodes with several contacts (also called channels) that
are sampled at a fixed frequency to record brain signals.

Recently, discoveries in the field of neuroscience have inspired

advances of deep learning techniques, which in turn promotes neu-

roscience research. According to the literature, most deep learning-

based studies of brain signals focus on supervised learning [10, 33,

37, 46], which relies on a large number of clinical labels. However,

obtaining accurate and reliable clinical labels requires a high cost.

In the meantime, the emergence of self-supervised learning (SSL)

and its great success [4, 9, 13, 28] makes it a predominant learning

paradigm in the absence of labels. Therefore, some recent studies

have introduced the means of SSL to extract the representations

of brain signal data. For example, Banville et al. [3] directly ap-

plies general SSL tasks to pre-train EEG data, including relative

position prediction [14], temporal shuffling [25] and contrastive
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predictive coding [28]. Mohsenvand et al. [26] designs data augmen-

tation methods, and extends the self-supervised model SimCLR [7]

in computer vision to EEG data. In contrast to numerous works

investigating EEG, few studies focus on SEEG data. Martini et al.

[24] proposes an SSL model for real-time epilepsy monitoring in

multimodal scenarios with SEEG data and video recordings.

Despite the advances on representation learning of brain signals,

two main issues remain to be overcome. Firstly, almost all ex-
isting methods are designed for a particular type of brain
signal data, and there is a lack of a unified method for han-
dling both EEG and SEEG data. The challenge mainly lies in the

different clinical patterns of brain signals that need to be measured

in different ways. On the one hand, EEG collects noisy and rough

brain signals on the scalp; differently, SEEG collects deeper signals

with more stereo spatial information, which indicates more signif-

icant differences of different brain areas [31]. On the other hand,

in contrast to EEG with a gold-standard collection location, the

monitoring areas of SEEG vary greatly between subjects, leading

to different number and position of channels. Therefore, how to

find the commonalities of EEG and SEEG data to design a unified

framework is challenging.

Another issue is the gap between existingmethods and the
real-world applications. In clinical scenarios, doctors typically lo-

cate brain lesions by analyzing signal patterns of each channel and

their holistic correlations. A straight-forward way for this goal is to

model each of the channels separately by single-channel time series

models, which, however, cannot exploit correlations between brain

areas [11, 23]. As for the existing multivariable time series models,

most of them can only capture implicit correlation patterns [8, 45],

whereas explicit correlations are required by doctors for identify-

ing lesions. Moreover, although some graph-based methods have

been proposed to explicitly learn correlations, they focus on giving

an overall prediction for all channels at a time but overlook the

prediction on one specific channel [36, 47]. Therefore, how to ex-

plicitly capture the spatial and temporal correlations while giving

channel-wise prediction is another issue to be overcome.

To address the challenges above, we propose a multi-channel

self-supervised learning frameworkMBrain, which can be generally
applied for learning representations of both EEG and SEEG data.

Specifically, based on domain knowledge and data observations,

we propose to learn the correlation graph between channels as the

common cornerstone for both two types of brain signals. In partic-

ular, we employ Contrastive Predictive Coding (CPC) [28] as the

backbone model of our framework by extending it to handle multi-

channel data. We theoretically prove that the optimization objective

of the proposed multi-channel CPC is to maximize the mutual in-

formation of each channel and its correlated ones, so as to obtain

better predictive representations. Based on the multi-channel CPC,

we propose the instantaneous time shift task to explicitly learn the

spatial correlations between channels, and the delayed time shift

task and the replace discriminative task are designed to capture

the temporal correlation patterns and to preserve the characteris-

tics of each channel respectively. To validate the effectiveness of

our model, we pay special attention to its application in seizure

detection. Extensive experiments show that MBrain outperforms

several state-of-the-art baselines on large-scale real-world EEG

and SEEG datasets for the seizure detection task. Overall, the main

contributions of this work can be summarized as follows:

• We are the first work to design a generalized self-supervised

learning framework, which can be applied to pre-train both EEG

and SEEG signals.

• We proposeMBrain to explicitly capture the spatial and temporal

correlations of brain signals to learn a unique representation for

each channel.

• We validate the effectiveness and clinical value of the proposed

framework through extensive experiments on large-scale real-

world EEG and SEEG datasets.

2 PRELIMINARY: THEORETICAL ANALYSIS
OF MULTI-CHANNEL CPC

We employ Contrastive Predictive Coding (CPC) [28] as the basis of

our framework. The pretext task of CPC is to predict low-level local

representations by high-level global contextual representations 𝑐𝑡 at

the 𝑡-th time step. Theoretically, the optimal InfoNCE loss proposed

by CPC with 𝑁 − 1 negative samples Lopt

𝑁
is a lower bound of the

mutual information between contextual semantic distribution 𝑝 (𝑐𝑡 )
and raw data distribution 𝑝 (𝑥𝑡+𝑘 ), i.e., L

opt

𝑁
≥ −𝐼 (𝑥𝑡+𝑘 ; 𝑐𝑡 ) + log𝑁 ,

where 𝑘 is the prediction step size. CPC is originally designed for

single-channel sequence data only, and there are two natural ways

to extend single channel CPC to multi-channel version. The first

one is to use CNNs with multiple kernels to encode all channels

simultaneously, which cannot offer explicit correlation patterns

for doctors to identify lesions. The second one is to train a shared

CPC regarding all channels as one, which has no ability to capture

the correlation patterns. Taking a comprehensive consideration,

we propose multi-channel CPC in this paper. Our motivation is to

explicitly aggregate the semantic information of multiple channels

to predict the local representations of one channel. Formally, we

propose the following proposition as our basic starting point.

Proposition 1. Introducing the contextual information of the
correlated channels increases the amount of mutual information with
the raw data of the target channel.

𝐼 (𝑥𝑖
𝑡+𝑘 ;Φ(𝑐𝑡 )) = 𝐼 (𝑥

𝑖
𝑡+𝑘 ; 𝑐

𝑖
𝑡 ,Φ({𝑐

𝑗
𝑡 } 𝑗≠𝑖 )) ≥ 𝐼 (𝑥𝑖

𝑡+𝑘 ; 𝑐
𝑖
𝑡 ), (1)

where 𝑖 and 𝑗 are indexes of the channels. Φ(·) represents some kinds
of aggregate function, which has no additional formal constraints
other than the need to retain information of the target channel.

Proof. We use the linear operation of mutual information to ob-

tain: 𝐼 (𝑥𝑖
𝑡+𝑘 ; 𝑐

𝑖
𝑡 ,Φ({𝑐

𝑗
𝑡 } 𝑗≠𝑖 )) = 𝐼 (𝑥𝑖

𝑡+𝑘 ; 𝑐
𝑖
𝑡 ) + 𝐼 (𝑥𝑖𝑡+𝑘 ;Φ({𝑐

𝑗
𝑡 } 𝑗≠𝑖 ) |𝑐𝑖𝑡 ).

According to the non-negativity of the conditional mutual informa-

tion, we complete the proof. □

It seems natural that the predictive ability of multiple channels is

stronger than that of a single channel, which is also consistent with

the assumption of Granger causality [18] to some extent. Therefore,

we choose to approximate the more informative 𝐼 (𝑥𝑖
𝑡+𝑘 ;Φ(𝑐𝑡 )) to

obtain more expressive representations. Specifically, followed by

InfoNCE, we define our loss function L𝑁 as

L𝑁 = −
∑︁
𝑖

E𝑋 𝑖

[
log

𝑓𝑘 (𝑥𝑡+𝑘 ,Φ(𝑐𝑡 ))∑
𝑥 𝑗 ∈𝑋 𝑓𝑘 (𝑥 𝑗 ,Φ(𝑐𝑡 ))

]
, (2)
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where 𝑋 𝑖
denotes the data sample set consisting of one positive

sample and 𝑁 − 1 negative samples of the 𝑖-th channel. We then

establish the relationship between L𝑁 and 𝐼 (𝑥𝑖
𝑡+𝑘 ;Φ(𝑐𝑡 )).

Theorem 1. Given a sample set for each channel𝑋 𝑖 = {𝑥𝑖
1
, . . . , 𝑥𝑖

𝑁
},

𝑖 = 1, . . . , 𝑛 consisting of one positive sample from 𝑝 (𝑥𝑖
𝑡+𝑘 |Φ(𝑐𝑡 )) and

𝑁 − 1 negative samples from
∑

𝑗 𝑝 (𝑥
𝑗

𝑡+𝑘 )/𝑛, where 𝑛 is the number of

channels. The optimal Lopt
𝑁

is the lower bound of
∑
𝑖 𝐼 (𝑥𝑖𝑡+𝑘 ;Φ(𝑐𝑡 )):

Lopt
𝑁

≥
∑︁
𝑖

[
−𝐼 (𝑥𝑖

𝑡+𝑘 ;Φ(𝑐𝑡 )) + log𝑁
]
. (3)

Proof. The optimal 𝑓𝑘 (𝑥𝑡+𝑘 ,Φ(𝑐𝑡 )) is proportional to the divi-
sion of two distributions 𝑝 (𝑥𝑖

𝑡+𝑘 |Φ(𝑐𝑡 ))/(
∑

𝑗 𝑝 (𝑥
𝑗

𝑡+𝑘 )/𝑛), which is

the same as single-channel CPC. And we can directly replace the

data distributions in the proof of single-channel CPC (see details in

Appendix B) to obtain the inequality below:

Lopt

𝑁
≥

∑︁
𝑖

[
E𝑋 𝑖 log

[
1

𝑛

∑
𝑗 𝑝 (𝑥

𝑗

𝑡+𝑘 )
𝑝 (𝑥𝑖

𝑡+𝑘 |Φ(𝑐𝑡 ))

]
+ log𝑁

]
(4)

= E𝑋 1,𝑋 2,...,𝑋𝑛 log

[
[ 1𝑛

∑
𝑗 𝑝 (𝑥

𝑗

𝑡+𝑘 )]
𝑛

Π 𝑗𝑝 (𝑥 𝑗𝑡+𝑘 |Φ(𝑐𝑡 ))

]
+ 𝑛 log𝑁 . (5)

According to the Jensen Inequality and concavity of the logarithmic

function, we obtain that (∑𝑗 log𝑝 (𝑥
𝑗

𝑡+𝑘 ))/𝑛 ≤ log (∑𝑗 𝑝 (𝑥
𝑗

𝑡+𝑘 )/𝑛).
By exponentiating the two equations, we have

Π 𝑗𝑝 (𝑥 𝑗𝑡+𝑘 ) ≤ [ 1
𝑛

∑︁
𝑗

𝑝 (𝑥 𝑗
𝑡+𝑘 )]

𝑛 . (6)

With the help of equation 6, we can further obtain the lower bound

of equation 5:

Lopt

𝑁
≥ E𝑋 1,𝑋 2,...,𝑋𝑛 log

[
Π 𝑗𝑝 (𝑥 𝑗𝑡+𝑘 )

Π 𝑗𝑝 (𝑥 𝑗𝑡+𝑘 |Φ(𝑐𝑡 ))

]
+ 𝑛 log𝑁 (7)

=
∑︁
𝑖

[
−𝐼 (𝑥𝑖

𝑡+𝑘 ;Φ(𝑐𝑡 )) + log𝑁
]
. (8)

Then we complete the proof. □

We next analyze the advantages of multi-channel CPC over

single-channel CPC. Our loss function L𝑁 leads to a better pre-

dictive representation because we approximate a more informa-

tive objective 𝐼 (𝑥𝑖
𝑡+𝑘 ;Φ(𝑐𝑡 )), if the optimal loss function for each

channel has log𝑁 gap with 𝐼 (𝑥𝑖
𝑡+𝑘 ;Φ(𝑐𝑡 )), which is the same in

single-channel CPC. Moreover, with the same GPU memory, the

more channels, the smaller the batch size that can be accommo-

dated. But we can randomly sample negative samples across all

channels, which increases the diversity of negative samples. How-

ever, in order to narrow the approximation gap, equation 6 should

be considered. The equality sign in this inequality holds if and only

if samples from each channel follows the same distribution. In fact,

for many large-scale time series data (e.g., brain signal data used

in this work), by normalizing each channel, they all exhibit close

normal distributions, leading to small gaps in equation 6.

3 PROPOSED METHOD
In this section, we introduce the details of the novel self-supervised

learning framework MBrain. For the commonality between EEG

and SEEG, we are inspired by the synergistic effect of brain function

and nerve cells, that is, different connectivity patterns correspond

to different brain states [23]. In particular, for brain signals, nerve

cells will spontaneously generate traveling waves and spread them

out [11], maintaining some characteristics such as shape during

the process. Therefore, the degree of channel similarity implies

different propagation patterns of traveling waves, reflecting the

differences in connectivity patterns to some extent. Both EEG and

SEEG data follow the inherent physiological mechanism. There-

fore, we propose to extract the correlation graph structure between

channels (brain areas) as the cornerstone to unify EEG and SEEG

(Section 3.1). Next, we introduce three SSL tasks to model brain sig-

nals in Section 3.2. We propose instantaneous time shift task based

on multi-channel CPC and delayed time shift task to capture the spa-
tial and temporal correlation patterns. Then Replace discriminative
task is designed to preserve characteristics of each channel.

Notations. For both EEG and SEEG data, there are multiple elec-

trodes with C channels. We use 𝑋 = {𝑥𝑙 ∈ RC, 𝑙 = 1, . . . , L} to
represent raw time series data with L time points. 𝑖 and 𝑗 denote

the index of channels. 𝑌𝑙,𝑖 ∈ {0, 1} is the label for the 𝑙-th time point

of the 𝑖-th channel. We use a W-length window with no overlap

to obtain the time segments 𝑆 = {𝑠𝑡 , 𝑡 = 1, . . . , |𝑆 |} (see details in
Appendix A). The label corresponding to the 𝑡-th time segment of

the 𝑖-th channel is denoted as 𝑌 𝑠
𝑡,𝑖
.

3.1 Learning Correlations between Channels

Figure 1: The normal and seizure correlationmatrices of EEG
and SEEG brain signals. The top row is for SEEG and the bottom
row is for EEG. For clear presentation, we sample some channels in
SEEG data. The leftmost two figures are the base correlationmatrices
on normal data. The two figures in the middle column represent the
matrices after subtracting another normal correlationmatrices from
the base matrices, and the rightmost column includes matrices after
subtracting seizure correlation matrices from the base matrices.

As mentioned above, the correlation patterns between different

brain areas can help us to distinguish brain activities in downstream
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tasks to a large extent. Taking the seizure detection task as an ex-

ample, when seizures occur, more rapid and significant propagation

of spike-and-wave discharges will appear [32], which greatly en-

hances the correlation between channels. This phenomenon is also

verified by data observations in Figure 1. As Figure 1 shows, for

both EEG and SEEG data, we can observe that the correlation matri-

ces are nearly identical on two normal segments without overlap in

the same subject. In contrast, the correlation matrix in the epileptic

states differs greatly from the normal ones. These data observations

verify the conclusion that correlation patterns can help us to dis-

tinguish different brain states, and support us to treat correlation

graph structure learning as the common cornerstone of our frame-

work. However, correlations between brain regions are difficult to

be observed and recorded directly. Therefore, for each time step 𝑡 ,

our goal is to learn the structure of the correlation graph, whose

adjacency matrix is A𝑡 , where nodes in the graph indicate channels

and weighted edges denote the correlations between channels.

Considering that the brain is in normal and stable state most of

the time, we first define the coarse-grained correlation graph as the

prior graph for a particular individual as

Acoarse (𝑖, 𝑗) = E𝑠𝑡 [Cosine(𝑠𝑡,𝑖 , 𝑠𝑡, 𝑗 )], (9)

where the expectation operation averages over all the correlation

matrices computed in only one time segment 𝑠𝑡 , and Cosine(·, ·)
denotes the cosine similarity function.

Next, based on Acoarse
, for each pair of channels, we further

model their fine-grained short-term correlation within each time

segment. We assume that the fine-grained correlations follow a

Gaussian distribution element-wise, whose location parameters

are elements of Acoarse
and scale parameters will be learned from

the data. By means of the reparameterization trick, the short-term

correlation matrix of the 𝑡-th time segment is sampled from the

learned Gaussian distribution:

𝜎𝑡 (𝑖, 𝑗) = SoftPlus(MLP(𝑐self𝑡,𝜏,𝑖 , 𝑐
self

𝑡,𝜏, 𝑗 )), (10)

𝑛𝑡 (𝑖, 𝑗) ∼ N (0, 1), (11)

Afine

𝑡 (𝑖, 𝑗) = Acoarse (𝑖, 𝑗) + 𝜎𝑡 (𝑖, 𝑗) × 𝑛𝑡 (𝑖, 𝑗) . (12)

SoftPlus(·) is a commonly used activation function to ensure the

learned standard deviation is positive. 𝑐self𝑡,𝜏 is the contextual repre-

sentation of raw time segments extracted by encoders (see details

in Section 3.2). To remove the spurious correlations caused by low

frequency signals and enhance the sparsity, which is a common

assumption in neuroscience [41], we filter the edges by a threshold-

based function to obtain the final correlation graph structure A𝑡 :

A𝑡 (𝑖, 𝑗) =
{
Afine

𝑡 (𝑖, 𝑗), Afine

𝑡 (𝑖, 𝑗) ≥ \1,

0, Afine

𝑡 (𝑖, 𝑗) < \1 .
(13)

3.2 Self-supervised Learning for Brain Signals
To capture the correlation patterns in space and time, we propose

two self-supervised tasks: instantaneous time shift that is based
on multi-channel CPC and captures the short-term correlations

focusing on spatial patterns; and delayed time shift for temporal

patterns in broader time scales. Replace discriminative learning is

designed to preserve the unique characteristics of each channel so

as to achieve accurate channel-wise prediction.

Instantaneous Time Shift. For spatial patterns, we aim to lever-

age the contextual information of correlated channels to better

predict future data of the target channel. Therefore, we apply multi-

channel CPC and utilize the fine-grained graph structure A𝑡 ob-

tained in Section 3.1 as the correlations between channels.

Correlation matrices of delayed time shift (SEEG)

Channels

Te
m

po
ra

l s
te

ps
(a) The correlation matrices of delayed time shift of SEEG data.

Correlation matrices of delayed time shift (EEG)

Channels

Te
m

po
ra

l s
te

ps

(b) The correlation matrices of delayed time shift of EEG data.

Figure 2: The correlation matrices of delayed time shift of
SEEG and EEG. For each subfigure, the top figure shows the average
correlation matrix over all clips. And the bottom figure represents
the correlation matrix of one particular sampled clip. We compute
cosine similarity between the first time segment of the first channel
and the time segments of other channels in the next consecutive 7
time steps. For clear presentation, we sample 26 channels for SEEG
data and set correlations below 0.5 to 0 for the bottom figure.

We first use a non-linear encoder 𝑔enc (1D-CNN with 𝑑 ker-

nels) mapping the observed time segments to the local latent 𝑑-

dimensional representations 𝑧𝑡 = 𝑔enc (𝑠𝑡 ) ∈ RT×C×𝑑
for each

channel separately. T is the sequential length after down sampling
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Figure 3: Overview of MBrain. The leftmost is the raw multi-channel brain signals. We use an encoder to map the raw data into a low-
dimensional representation space. To capture the spatial and temporal correlation patterns, we propose three SSL tasks to guide the encoder to
learn informative and distinguishable representations.

by 𝑔enc. Then an autoregressive model 𝑔ar is utilized to summarize

the historical 𝜏-length local information of each channel itself to

obtain the respective contextual representations:

𝑐self𝑡,𝜏 = 𝑔ar (𝑧𝑡,1, · · · , 𝑧𝑡,𝜏 ) . (14)

In this step, we only extract the contextual information of all chan-

nels independently. Based on the graph structure A𝑡 , we instantiate

the aggregate function Φ(·) in equation 5 as GNNs due to their nat-

ural message-passing ability on a graph. Here we use a one-layer

directed GCN [44] to show the process:

𝑐other𝑡,𝜏,𝑖 = ReLU

(∑
𝑗≠𝑖 A𝑡 (𝑖, 𝑗) · 𝑐self𝑡,𝜏, 𝑗∑

𝑗≠𝑖 A𝑡 (𝑖, 𝑗)
· Θ

)
, (15)

whereΘ is the learnable matrix. Considering that we only aggregate

other channels’ information, the self-loop in GCN is removed here.

Finally, by combining both 𝑐self𝑡,𝜏 and 𝑐other𝑡,𝜏 to obtain the global

representations 𝑐𝑡,𝜏 , the model can predict the local representations

𝑘1-step away 𝑧𝑡,𝜏+𝑘1 based on the multi-channel CPC loss:

𝑐𝑡,𝜏 = Concat(𝑐self𝑡,𝜏 , 𝑐
other

𝑡,𝜏 ), (16)

L1 = L𝑁 = −E𝑡,𝑖,𝑘1

[
log

𝑐⊤
𝑡,𝜏,𝑖

𝑊𝑘1𝑧𝑡,𝜏+𝑘1,𝑖∑
𝑧 𝑗 ∈𝑋 𝑖

𝑡
𝑐⊤
𝑡,𝜏,𝑖

𝑊𝑘1𝑧 𝑗

]
, (17)

where 𝑋 𝑖
𝑡 denotes the random noise set including one positive

sample 𝑧𝑡,𝜏+𝑘1,𝑖 and 𝑁 − 1 negative samples.𝑊𝑘1 is the learnable

bilinear score matrix of the 𝑘1-th step prediction.

Delayed Time Shift. For brain areas far apart, there exists de-

layed brain signal propagation, which is confirmed by the data

observations showed in Figure 2. Figure 2 confirms that there still

exist significant correlations between time segments across several

time steps. Unlike instantaneous time shift, delayed correlations

are not stable. This can be concluded from the numerical difference

between the averaged correlation matrix and the sampled correla-

tion matrix in both figures. Therefore, we design a more flexible

self-supervised task to learn the delayed correlations.

Our motivation is that if a simple classifier can easily predict

whether two time segments are highly correlated, the segment rep-

resentations will be significantly different from those with weaker

correlations. We thus define the delayed time shift task to encour-

age more distinguishable segment representations. Similar with

instantaneous time shift, we first compute the cosine similarity ma-

trix based on raw data between time segments across several time

steps. For the 𝑡-th time segment of the 𝑖-th channel, the long-term

correlation matrix B𝑖𝑡 is computed as

B𝑖𝑡 (𝑘2, 𝑗) = Cosine(𝑠𝑡,𝑖 , 𝑠𝑡+𝑘2, 𝑗 ), (18)

where 𝑗 traverses all channels including the 𝑖-th target channel and

𝑘2 traverses at most 𝐾2 prediction steps. Then we construct pseudo

labels 𝑌 𝑖𝑡 according to B𝑖𝑡 to encourage the segment representations

with higher correlations to be closer. A predefined threshold \2 is

set to assign pseudo labels:

𝑌 𝑖𝑡 (𝑘2, 𝑗) =
{
1, B𝑖𝑡 (𝑘2, 𝑗) ≥ \2,
0, B𝑖𝑡 (𝑘2, 𝑗) < \2 .

(19)

With the pseudo labels, we define the cross entropy loss of the

delayed time shift prediction task:

ℎ𝑡 = Pooling(𝑐self𝑡,1 , · · · , 𝑐
self

𝑡,T ), (20)

𝑝 = Softmax(MLP(Concat(ℎ𝑡,𝑖 , ℎ𝑡+𝑘2, 𝑗 ))), (21)

L2 = −E𝑡,𝑖,𝑘2, 𝑗
[
𝑌 𝑖𝑡 (𝑘2, 𝑗) log𝑝 + (1 − 𝑌 𝑖𝑡 (𝑘2, 𝑗)) log(1 − 𝑝)

]
(22)
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where 𝑝 is the predicted probability that the two segments are

highly correlated. In practical application, we randomly choose 50%

labels from each 𝑌 𝑖𝑡 for efficient training.

Replace Discriminative Learning. Consistently exploiting corre-
lation for all channels will weaken the specificity between channels.

However, there are significant differences in the physiological signal

patterns of different brain areas recorded by channels. Therefore,

retaining the characteristics of each channel cannot be ignored for

the modeling of brain signals. For this purpose, we further design

the replace discriminative learning task.

Following BERT [13], we randomly replace 𝑟% local representa-

tions throughout 𝑧𝑡 by 𝑧𝑡 , which is sampled from any T sequences

and any C channels in 𝑧𝑡 . We use the notation I(𝑧𝑡 ) to represent

the new local representations after replacement and the correspond-

ing channel indexes of 𝑧𝑡 in the original sequence. We generate

pseudo labels 𝑌𝑡 of the task as below:

𝑌𝑡 (𝜏, 𝑖) =
{
1, I(𝑧𝑡,𝜏,𝑖 ) ≠ 𝑖,
0, I(𝑧𝑡,𝜏,𝑖 ) = 𝑖 .

(23)

𝜏 and 𝑖 traverse T sequences and C channels of 𝑧𝑡 . After obtaining

𝑧𝑡 , we put it into the autoregressive model to get the new contextual

representations 𝑐𝑡 = 𝑔ar (𝑧𝑡 ). Finally, a simple discriminator imple-

mented by an MLP is utilized to classify whether 𝑐𝑡 are replaced by

other channels or not:

L3 = −E𝑡,𝜏,𝑖 [𝑌𝑡 (𝜏, 𝑖) log𝑞 + (1 − 𝑌𝑡 (𝜏, 𝑖)) log(1 − 𝑞)] , (24)

where 𝑞 is the predicted probability that 𝑐𝑡,𝜏,𝑖 is replaced. When the

accuracy of discrimination increases, different channel representa-

tions output by the autoregressive model are easier to distinguish.

Therefore, the task encourages the model to preserve the unique

characteristics of each channel.

Combining the multi-task loss functions equation 17, equation 22

and equation 24, we jointly trainMBrainwithL = (1−_1−_2)L1+
_1L2 + _2L3. After the SSL stage, the segment representations ℎ𝑡
obtained from equation 20 are used for downstream tasks.

4 EXPERIMENTS
4.1 Datasets and Baselines

SEEG dataset. The SEEG dataset used in our experiment is anony-

mous and provided by a first-class hospital we cooperate with. For

a subject suffering from epilepsy, 4 to 10 invasive electrodes with

52 to 124 channels are used for recording signals. It is worth noting

that since SEEG data are collected in a high frequency (1,000Hz or

2,000Hz) through multiple channels for several days, our data is

massive. In total, we have collected 470 hours of SEEG signals with

a total capacity of 550GB. Professional neurosurgeons help us label

the epileptic segments for each channel.
We obtain the samples for each subject respectively. For the 𝑖-

th subject, we first sample a dataset for self-supervised learning

which is denoted as 𝑆𝑆𝑖 (80% for training and 20% for validation),

then sample training set 𝑇𝑖 , validation set 𝑉𝑖 and testing set 𝐸𝑖 for

the downstream stage. 𝑆𝑆𝑖 , 𝑇𝑖 and 𝑉𝑖 contain 1,000, 800 and 200

10-second SEEG clips respectively, while 𝐸𝑖 contains 510 10-second

SEEG clips with positive-negative sample ratio of 1:50. There is no

overlap among the samples of the three sets. We use a 1-second

window to segment each clip without overlap and our target is to

make predictions for all channels in each 1-second segment.

EEG dataset. We use the Temple University Hospital EEG Seizure

Corpus (TUSZ) v1.5.2 [35] as our EEG dataset. It is the largest pub-

lic EEG seizure database, containing 5,612 EEG recordings, 3,050

annotated seizures from clinical recordings, and eight seizure types.

We include 19 EEG channels in the standard 10-20 system. We ran-

domly split the official TUSZ train set by subjects into training and

validation sets at a ratio of 90/10 for model training and hyperpa-

rameter tuning respectively, and we keep out the official TUSZ test

set for model evaluation. Therefore, the training, validation and

testing sets consist of distinct subjects. After dividing the dataset

by subjects, we start to sample EEG clips. For the self-supervised

learning, we randomly sample 3,000 12-second unlabeled EEG clips

for training and validation, with ratios of 90% and 10% respectively.

As for the downstream task, we first obtain 3,000 sampled 12-second

labeled EEG clips (80% for training and 20% for validation). Then,

we sample another 3,900 12-second labeled EEG clips with positive-

negative sample ratio of 1:10 for testing. It is worth noting that the

labels of EEG data are coarse-grained, which means we only have

the label of whether epilepsy occurs in a whole EEG clip.

Baselines. We compare MBrain with state-of-the-art models in-

cluding one supervised classification model MiniRocket [12] and
several self-supervised and unsupervised models: CPC [28], Sim-
CLR [7], Triplet-Loss (T-Loss) [17], Time Series Transformer
(TST) [45], GTS [36], TS-TCC [16] and TS2Vec [43].

4.2 Experimental Setup
For EEG data, as the number of subjects is large while the number

of samples for each subject is very small, we follow the standard

experimental setting to divide the training, validation and testing

sets by subjects. As for SEEG data, since every subject includesmany

samples, it is accessible to sample training, validation and testing

sets for each subject respectively. To demonstrate the effectiveness

of MBrain, we first formally define the seizure detection task. Then

we perform three experiments to show that our model outperforms

the state-of-the-art baselines and has the ability to be deployed to

clinical practice. We also show the ablation study and case study of

the correlation graph in Section 4.6 and 4.7. The hyperparameter

analysis is showed in Appendix E. We report the results of another

downstream task of emotion recognition in Appendix F. In order

to ensure the reliability of the experimental results, we repeat all

the experiments five times with five different random seeds in the

fine-tuning stage and report standard deviation in all tables.

Task 1 (Seizure Detection). Given a time-ordered set including
𝐼S consecutive time segments with the index of the first segment
being 𝑡0: S = {𝑠𝑡0 , . . . , 𝑠𝑡0+𝐼S }, models predict the labels 𝑌 𝑠

𝑡,𝑖
for all

time segments in S (i.e., 𝑡 = 𝑡0, . . . , 𝑡0 + 𝐼S) and all channels in each
segment (i.e., 𝑖 = 1, . . . ,C).

Subject dependent experiment [5]. Due to the larger difference

between subjects in SEEG dataset than that in EEG dataset, we

first perform the subject dependent experiment to obtain the upper

bound of model performance on SEEG dataset. More specifically,

for the 𝑖-th subject, we first perform self-supervised learning of

the model on unlabeled data sampled from itself (i.e., 𝑆𝑆𝑖 ). When
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training the downstream task, the encoder of SSL models will be

fine-tuned with a very low learning rate on labeled data sam-

pled from itself (i.e.,𝑇𝑖 and𝑉𝑖 ). Finally, we test the models on 𝐸𝑖 and

report the average performance over all subjects. For fair compari-

son, we use the same downstream model and experimental
setup for all models (see details in Appendix C).

Subject independent experiments. To meet practical clinical

needs, we design two clinically feasible experiments. The first is
the domain generalization experiment, that is, training the

model on data of existing subjects and directly predicting data

of unknown subjects. This is the standard experimental setting

on EEG dataset. As for SEEG dataset, we follow the 3-1-1 setting,

where 3 subjects are used for training (i.e., SSL on 𝑆𝑆𝑖 , 𝑆𝑆 𝑗 , 𝑆𝑆𝑘 ;

fine-tuning on 𝑇𝑖 ,𝑇𝑗 ,𝑇𝑘 ), 1 subject is used for validation (i.e., 𝑉𝑚)

and 1 subject is used for testing (i.e., 𝐸𝑛). Note that 𝑖 , 𝑗 , 𝑘 ,𝑚 and 𝑛

are indexes for different subjects. We conduct the experiments for

random combinations, pick up the best result for each subject, and

report the average results over all subjects.

The second is the domain adaptation experiment [27]. Dif-
ferent from the ideal domain generalization experiment which does

not use the labeled data of target subjects at all, domain adaptation

experiment allows using a small amount of the data to achieve

better clinical performance of our model. This is because of the

large data size due to the long-time records of the subjects in the

SEEG dataset, and even if the model is fine-tuned with partially

labeled data, it is clinically valuable to predict the large amount

of remaining data in the target subjects. In this experiment, we

first perform SSL on one subject (i.e., source domain 𝑆𝑆𝑖 ) and then

fine-tuning is performed using partially labeled data from another

subject (i.e., target domain 𝑇𝑗 and 𝑉𝑗 ). Finally, we perform seizure

detection on the testing set of the target subject (i.e., 𝐸 𝑗 ). We pick

up four subjects with typical seizure patterns in the SEEG dataset,

and report the results of all one-to-one combinations.

Table 1: The average performance of the subject dependent
experiment on SEEG dataset.

Models Pre. Rec. 𝐹1 𝐹2

MiniRocket 22.98±0.15 66.24±0.26 31.79±0.19 43.58±0.22

CPC 27.65±4.49 55.07±3.52 34.20±3.40 42.73±2.57
SimCLR 11.06±3.95 51.54±5.87 16.60±4.68 25.41±4.95
T-Loss 29.29±2.65 51.55±2.53 36.00±1.97 43.13±1.57
TST 13.60±3.48 44.65±4.21 19.80±3.73 28.41±3.29
GTS 24.29±4.26 40.39±5.80 29.16±2.97 34.17±2.36
TS-TCC 22.10±7.65 49.94±5.41 25.32±8.02 32.74±7.95
TS2Vec 30.56±2.17 52.83±2.89 36.03±1.72 43.35±1.59

MBrain 37.97±2.75 65.07±2.68 46.45±2.25 55.28±1.77

4.3 Subject Dependent Experiment
The average performance of the subject dependent experiment on

the SEEG dataset is presented in Table 1. Since the positive-negative

sample ratio of SEEG dataset is imbalanced, 𝐹 -score is a more ap-

propriate metric to evaluate the performance of models than only

considering precision or recall. Especially in clinical applications,

doctors pay more attention to finding as much seizures as possible,

we thus choose 𝐹1 and 𝐹2 scores in the experiment. Overall,MBrain
improves the 𝐹1-score by 28.92% and the 𝐹2-score by 26.85% on

SEEG dataset, compared to the best baseline, demonstrating that

MBrain can learn more informative representations from SEEG

data. Through this experiment, we obtain the upper bound of the

performance of models on SEEG dataset. We can find that it is still

difficult to achieve high performance even if models are trained,

verified and tested on the same subject. Combined with the anal-

ysis of subsequent experimental results, this reflects that seizure

detection on SEEG data is much more difficult than that on EEG.

4.4 Domain Generalization Experiment
In this experiment, we validate and compare the generalization

ability of all models under a strict setting, in which the models

are trained on source subjects and then directly perform seizure

detection on the unseen target subjects. This is an ideal scenario for

clinical applications and the results are shown in Table 2. For SEEG

dataset, in general, the performance of models under the domain

generalization setting decreases significantly (41.73% on average in

terms of 𝐹2-score) compared with that in subject dependent experi-

ment. The drop for recall metric is more pronounced, confirming

that the distribution shift of subjects in SEEG data is more signifi-

cant than that in EEG. This results from the fact that different brain

regions and different types of epileptic waves have different physio-

logical properties and patterns. Nonetheless, MBrain still improves

𝐹1 and 𝐹2 scores by 21.77% and 27.83% respectively, compared to

the best baseline. The results prove that MBrain has a superior gen-

eralization ability benefiting from rational inductive assumption of

model design. We point out that although GTS is also graph-based

model, it directly learns the graph structure for each segment and

ignores the stable and long-term correlations between different

channels. This implies that our proposed graph structure learning

strategy based on the stable correlations is reasonable and effective.

Table 2 also shows the results of domain generalization experi-

ment on EEG dataset. Following the common evaluation scheme

on EEG dataset [39], we add Area Under the Receiver Operating

Characteristic (AUROC) metric in our experiment. Our model is

designed to learn the representation for each channel, while there

is only one label for an EEG clip. Therefore, it requires the pool-

ing operation to aggregate representations output by our model

over channels and time segments for seizure detection. This setting

makes the performance improvement of our model not as signif-

icant as that in the SEEG experiment. Nevertheless, MBrain still

outperforms all baselines on 𝐹1-score, 𝐹2-score and AUROC with

an increase of 2.26%, 9.23% and 2.74%, respectively. SimCLR gets

the highest recall but the lowest precision and AUROC, indicating

that it may be not reasonable to regard time segments as indepen-

dent samples without considering the contextual data. The worst

performance for TST shows that mask-prediction SSL paradigm

may not be suitable for non-stationary time series data.

4.5 Domain Adaptation Experiment
According to the results of domain generalization experiment, it is

difficult for MBrain to achieve competitive performance as shown
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Table 2: The average performance of the domain generalization experiment on SEEG and EEG datasets.

Models SEEG EEG

Pre. Rec. 𝐹1 𝐹2 Pre. Rec. 𝐹1 𝐹2 AUROC

MiniRocket 5.85±0.20 39.18±0.59 9.93±0.29 17.24±0.37 22.86±0.84 63.08±1.47 33.56±1.11 46.66±1.33 75.30±0.77

CPC 22.88±5.06 23.92±3.90 20.11±3.27 21.23±2.49 22.81±2.04 58.31±7.55 32.50±1.24 44.02±2.43 74.53±1.00
SimCLR 14.02±3.71 26.36±4.99 11.07±3.49 13.47±4.01 12.63±1.62 74.88±16.77 21.33±1.95 36.78±2.61 55.86±5.36
T-Loss 21.38±4.25 28.50±4.07 23.48±3.30 25.90±3.06 20.72±1.26 69.25±3.99 31.82±1.08 47.00±0.50 75.88±0.49
TST 8.37±3.96 32.48±8.25 11.80±3.91 15.67±3.69 15.65±1.54 28.59±12.93 19.65±4.36 23.87±8.09 58.20±4.27
GTS 24.16±5.91 27.99±4.98 22.77±2.69 24.15±2.79 18.86±1.09 62.51±5.04 28.88±0.88 42.54±1.48 71.69±1.88
TS-TCC 24.24±4.51 26.61±5.96 19.89±5.23 22.11±5.08 15.55±0.88 39.76±11.08 21.89±1.20 29.60±4.64 58.63±1.62
TS2Vec 27.93±5.23 29.49±3.97 26.78±3.29 27.88±3.52 21.40±0.63 58.31±6.14 31.24±1.18 43.24±2.78 73.35±1.02

MBrain 30.69±5.92 38.94±4.34 32.61±3.60 35.64±3.04 22.13±1.03 76.99±4.49 34.32±0.90 51.34±0.97 77.96±0.97

Table 3: The performance of the domain adaptation experiment on SEEG dataset in terms of 𝐹2-score. DA row denotes the
performance ofMBrain in the domain adaptation experiment. Max-base and Non-DA rows represent the best performance of baselines and
MBrain in the subject dependent experiment. We bold the best result and underline the second best result.

Setting Group 𝐴 Group 𝐵 Group 𝐶 Group 𝐷

𝐵→𝐴 𝐶→𝐴 𝐷→𝐴 𝐴→𝐵 𝐶→𝐵 𝐷→𝐵 𝐴→𝐶 𝐵→𝐶 𝐷→𝐶 𝐴→𝐷 𝐵→𝐷 𝐶→𝐷

DA 68.55±4.27 69.14±6.54 68.78±4.12 41.08±2.59 46.06±3.05 46.12±2.04 40.04±3.98 39.34±2.11 48.64±5.48 80.82±0.65 79.90±1.11 80.72±1.31
Max-base 62.49±2.30 39.78±2.04 33.59±2.23 75.35±0.79
Non-DA 70.63±1.41 46.62±2.42 46.09±2.35 83.27±0.95

in Table 1 on SEEG dataset. The results show that seizure detection

on SEEG dataset is much more difficult than that on EEG dataset.

Alternatively, due to the long-time record, clinical SEEG data con-

tains tens or even hundreds of seizures, allowing us to use a small

amount of labeled data to fine-tune our model and then use it to

predict the remaining data. In this way, MBrain can still achieve

great performance, showing good generalization ability and clinical

application value of our model. Table 3 shows the performance

of the domain adaptation (DA) experiment for four subjects with

typical seizure patterns provided by doctors from SEEG dataset.

More specifically, we train MBrain on one subject and fine-tune

it on all other three subjects. 𝐵→𝐴 denotes that the SSL model is

trained on Subject-B, and then fine-tuned and tested on data from

Subject-A. The results of Max-base and Non-DA rows correspond

to the performance of the best baseline and MBrain respectively in

scenarios 𝐴→𝐴, 𝐵→𝐵, 𝐶→𝐶 and 𝐷→𝐷 .

Compared with the results of the setting that the self-supervised

model and downstream model are both trained on the same subject,

the 𝐹2-scores of all 12 cross-domain scenarios reduce by less than

15%. Additionally, it can be observed that in all cross-domain scenar-

ios, MBrain beats the best baseline in the corresponding scenarios

without DA. It is worth noting that 𝐷→𝐶 scenario even outper-

forms corresponding Non-DA result. The possible reason is that

the signal patterns on Subject-D are more significant and recogniz-

able than those on Subject-C. Therefore, the SSL model trained on

higher quality source domain can better distinguish signal states

when performing downstream tasks on target domain. Overall, the

domain adaptation experiment makes MBrain achieve competitive

performance as shown in Table 1 by fine-tuning it on only a small

amount of labeled data from the target domain. The results suggest

that MBrain captures the inherent features and outputs generalized

representations between subjects, because we fine-tune the SSL

model with a very low learning rate (1e-6). From the perspective of

pre-training, the SSLmodel trained on the source subject gives good

initial parameters for the fine-tuning stage on the target subject.

4.6 Ablation Study
Considering the complexity of our model, we conduct sufficient

ablation experiments to demonstrate the effectiveness of each com-

ponent in MBrain. Specifically, we mainly compare MBrain with

three types of different model variants.

(1) Replace the method to aggregate channel information. To
verify the effectiveness of our proposed graph structure learning,

we have proposed two ideas on how to directly implement the

multi-channel CPC in Section 2. For the second idea, we have

reported the results of a shared CPC regarding all channels as

one on the CPC row of Table 1. For the first idea, we design two

strategies to combine multi-channel CNN or MLP into CPC re-

spectively to learn representations for each channel. See detailed

description in Appendix D.

(2) Remove one component. We firstly remove the correlation

graph structure learning module from the instantaneous time

shift task and degenerate the task to single-channel CPC while

still uniformly sampling negative samples in all channels. This

variant is denoted asMBrain -Graph. Next, we respectively remove

the whole instantaneous time shift task, the delayed time shift
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task and replace discriminative task. These variants are denoted

as MBrain -Instant, MBrain -Delay and MBrain -Replace.

(3) Preserve one SSL task. MBrain -onlyInstant, MBrain -onlyDelay

and MBrain -onlyReplace indicate that MBrain only performs in-

stantaneous time shift task, delayed time shift task and replace

discriminative task respectively.

Table 4: The results of ablation study.

Models Pre. Rec. 𝐹1 𝐹2

CPC 27.65±4.49 55.07±3.52 34.20±3.40 42.73±2.57
CPC-Conv 6.39±0.77 33.21±4.00 10.53±1.07 17.46±1.42
CPC-MLP 25.84±3.07 52.70±3.65 32.18±2.46 40.34±2.05

MBrain -Graph 36.72±4.59 60.48±4.47 43.61±3.08 51.47±2.68
MBrain -Instant 34.49±4.37 55.41±3.90 41.57±3.48 48.38±2.52
MBrain -Delay 35.00±4.49 65.61±2.94 42.97±3.61 52.51±1.93
MBrain -Replace 36.08±5.35 63.67±4.24 43.66±3.66 52.49±2.32

MBrain -onlyInstant 36.43±4.44 63.66±2.12 43.35±3.83 51.82±2.67
MBrain -onlyDelay 31.59±4.24 55.03±5.26 38.56±2.84 46.05±2.26
MBrain -onlyReplace 34.13±6.84 56.06±3.68 40.02±4.47 47.44±2.40

MBrain 37.97±2.75 65.07±2.68 46.45±2.25 55.28±1.77

Table 4 shows the results of ablation study on SEEG dataset. It

can be observed that the complete MBrain achieves the best perfor-

mance on 𝐹1 and 𝐹2 scores, demonstrating the effectiveness of each

component in our model design. For the first type of variants, we

can observe that the performance of CPC-Conv decreases dramati-

cally. We speculate that this is because the channels are relatively

independent, and the correlation between most channels is weak

or even non-existent. Direct adoption of multi-channel convolution

may introduce spurious and noisy correlations. However, the graph

structure learning proposed by us has a sparsity assumption, and

the representation extraction of each channel is relatively inde-

pendent, so it can effectively learn and aggregate more significant

information. For CPC-MLP, we use an MLP to aggregate the rep-

resentations of other channels, and then concatenate it with the

representation of the target channel to predict future data. Unlike

CPC-Conv, which adopts multi-channel convolution for the raw

data to obtain the mixed low-level representations, CPC-MLP, like

MBrain, learns the correlation of channels based on the separate
high-level representations. Therefore, the performance of CPC-MLP

does not drop as dramatically as that of CPC-Conv.

For MBrain -Instant, the significant decrease in performance il-

lustrates that capturing the spatial and short-term patterns is quite

important and is the key to learning the essential representations

in multi-channel brain signals. For MBrain -Graph, the decrease

in performance demonstrates that multi-channel CPC can greatly

help learn more informative representations. Additionally, the per-

formance in MBrain -Delay and MBrain -Replace also decreases sig-

nificantly, illustrating that modeling long-term temporal patterns

and preserving the characteristics of channels can help learn more

distinguishable representations. For the third type of variants, it can

be observed that the instantaneous time shift is the most important

task, and the delayed time shift task and the replace discriminative

task contribute similarly to the performance of the complete model.

4.7 Case Study

38

2

35

(a) Normal correlation graph.

38
2

35

(b) Seizure correlation graph.

Figure 4: Case study on correlation graphs learned byMBrain.

In this section, we study the correlation graphs between the

channels learned by MBrain. We randomly sample normal and

seizure SEEG clips of one particular subject, and visualize their

correlation graphs A𝑡 (defined in Section 3.1) in Figure 4. In this

figure, the thickness of an edge indicates its weight. And the larger

the sum of weights of the edges connected to the node, the larger

the size of the circle of the node. It can be observed that in the

normal state, the correlation is sparser and the weights for edges

are smaller, indicating a holistically weaker correlation between

channels. In contrast, in the seizure state, the connection pattern

between channels varies, where the correlation becomes denser and

the edge weights become larger. Furthermore, in Figure 4(b), edges

with larger weights are usually connected to 2 seizure channels. For

example, Channel-2, Channel-35 and Channel-38 are all in seizure

states and the edge weights between them are large, indicating

that the brain areas recorded by the three channels have a higher

probability of being the focal area. This can help neurosurgeons to

better localize seizure lesions.

5 CONCLUSION
In this paper, we propose a general multi-channel SSL framework

MBrain, which can be applied for learning representations of both

EEG and SEEG brain signals. Based on domain knowledge and data

observations, we succeed to use the correlation graph between chan-

nels as the cornerstone of our model. The proposed instantaneous

and delayed time shift tasks help us capture the correlation patterns

of brain signals spatially and temporally. The replace discriminative

task helps MBrain learn a unique representations for each channel

to achieve accurate channel-wise prediction. Extensive experiments

of seizure detection on large-scale real-world datasets demonstrate

the superior performance and clinical value of MBrain. However,
there are still some limitations of our work. For example, negative

sampling of multi-channel CPC consumes certain memory and

time. As for the future work, we plan to collect more types of brain

signals and extend MBrain to more downstream tasks.
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A PRELIMINARIES

Brain signal data. For both EEG and SEEG data, there are multiple

electrodes with C contacts that are sampled at a fixed frequency to

record the brain signals. We also call these contacts channels. For
every sampling point, each channel records the potential value of

the brain region in which they are located, constituting abstract

multi-channel time series data. A complete record file contains a

total of L time points, for which we use the notation 𝑋 = {𝑥𝑙 ∈
RC}L

𝑙=1
to represent. In this paper, we use 𝑖 and 𝑗 to denote the

indexes of channels, such as 𝑥𝑙 = {𝑥𝑙,𝑖 }C𝑖=1. For every 𝑥𝑙,𝑖 , we assign
a binary label 𝑌𝑙,𝑖 ∈ {0, 1} to it according to the start and end

time of seizure signals marked by doctors. The time points are in

the seizure state with positive labels (𝑌𝑙,𝑖 = 1), while zero labels

(𝑌𝑙,𝑖 = 0) represent the normal data.

Preprocessing. Following the existing time series works [2, 34, 48]

with the common preprocessing of segmentation, we use a W-

length window to divide the original data 𝑋 into time segments

𝑆 = {𝑠𝑡 ∈ RW×C} |𝑆 |
𝑡=1

without overlapping. The number of segments

|𝑆 | = ⌊L/W⌋. The segment label is obtained from the time points

of the whole segment, i.e., 𝑌 𝑠
𝑡,𝑖

= max{𝑌𝑡×W+1,𝑖 , . . . , 𝑌(𝑡+1)×W,𝑖 }.

B SINGLE-CHANNEL CPC
Contrastive Predictive Coding (CPC), a pioneering model for self-

supervised contrastive learning, sets the pretext task to predict

low-level local representations by high-level global contextual in-

formation 𝑐𝑡 . In this way, the model can avoid learning too many

details of the raw data and pay more attention to the contextual se-

mantic information. The InfoNCE loss proposed in CPC has become

the basic design of the contrastive learning loss function. Formally,

given a raw data sample set 𝑋 = {𝑥1, . . . , 𝑥𝑁 } consisting of one

positive sample from 𝑝 (𝑥𝑡+𝑘 |𝑐𝑡 ) and 𝑁 − 1 negative samples from

the noisy distribution 𝑝 (𝑥𝑡+𝑘 ), InfoNCE will optimize:

L𝑁 = −E𝑋

[
log

𝑓𝑘 (𝑥𝑡+𝑘 , 𝑐𝑡 )∑
𝑥 𝑗 ∈𝑋 𝑓𝑘 (𝑥 𝑗 , 𝑐𝑡 )

]
. (25)

In order to obtain the best classification probability of the positive

sample with the cross entropy loss function, the optimal 𝑓𝑘 (𝑥𝑡+𝑘 , 𝑐𝑡 )
is proportional to 𝑝 (𝑥𝑡+𝑘 |𝑐𝑡 )/𝑝 (𝑥𝑡+𝑘 ). Furthermore, the optimal

loss function is also closely related to mutual information, as below:

Lopt

𝑁
= −E𝑋

[
log

𝑝 (𝑥𝑡+𝑘 |𝑐𝑡 )/𝑝 (𝑥𝑡+𝑘 )
𝑝 (𝑥𝑡+𝑘 |𝑐𝑡 )/𝑝 (𝑥𝑡+𝑘 ) +

∑
𝑥 𝑗 ∈𝑋neg

𝑝 (𝑥 𝑗 |𝑐𝑡 )/𝑝 (𝑥 𝑗 )

]
≥ E𝑋

[
log

𝑝 (𝑥𝑡+𝑘 )
𝑝 (𝑥𝑡+𝑘 |𝑐𝑡 )

𝑁

]
(26)

= −𝐼 (𝑥𝑡+𝑘 ; 𝑐𝑡 ) + log𝑁 . (27)

Therefore, we can conclude that while minimizing the loss function

L𝑁 , we are also constantly approximating the mutual information

of raw data distribution 𝑝 (𝑥𝑡+𝑘 ) and contextual semantic distribu-

tion 𝑝 (𝑐𝑡 ). It turns out that InfoNCE is indeed a well-established

loss function designed for self-supervised contrastive learning.

C IMPLEMENTATION DETAILS OFMBRAIN
The non-linear encoder 𝑔enc used in MBrain is composed of three

1-D convolution layers and a one-layer LSTM model [19] is used as

the autoregressive model 𝑔ar. The model is optimized using Adam

optimizer [21] with a learning rate of 2e-4 and weight decay of

1e-6 for the self-supervised learning stage. And for the downstream

training stage, the downstream model is optimized with a learning

rate of 5e-4 and weight decay of 1e-6 while the SSL model is fine-

tuned with a low learning rate of 1e-6. For the hyperparameters of

MBrain, we set \1 = 0.5 and \2 = 0.5. We set the maximum value of

𝑘1 in instantaneous time shift task as 8. As Figure 5 shows, we set

𝐾2 = 7 so as to take into account the step with the most significant

correlation in delayed time shift task. Lastly, we build our model

using PyTorch 1.8 [30] and train it on a workstation with 4 NVIDIA

GeForce RTX 3090.
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Figure 5: The data observation of how to choose hyperparam-
eter 𝐾2. We first average the correlations between each channel and
all other channels in each time step. Then we average those of all
channels in the same time step.

For the downstream task, we first utilize an LSTM model [19]

to encode the segment representations of each channel in chrono-

logical order independently. One-layer self-attention [40] is then

adopted to all channels within the same time step. Finally, a two-

layer MLP classifier is used to predict whether seizure is occurring

in the time segments. All baselines share the same downstream

model in our experiments.

D DETAILS OF ABLATION STUDY
Replace the method to aggregate channel information. We

design two strategies to combine multi-channel CNN or MLP into

CPC respectively to learn representations for each channel.

• Directly use 1-Dimension CNN to encode the whole time series

data and the number of channels during the process is C →
256 → 256 → C×256, and split the output intoC representations,

each of which is a 256-dimensional representation. Then an LSTM

is implemented to it. Then we execute the self-supervised task

and the downstream task of CPC based on the representations for

each channel asMBrain does, this variant is denoted as CPC-Conv.
• We use the contextual representations of all 𝑛 channels as input

to an MLP in a fixed order, but we set the representation of the

target channel to 0 tensor when we aggregate them. By using
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the output of MLP as the aggregated representation of other

channels, we perform subsequent experiments following exactly

the same steps as MBrain. We name this variant as CPC-MLP.

E HYPERPARAMETER ANALYSIS
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Figure 6: Sensitivity analysis on loss weights.

Sensitivity analysis on loss weights. Our loss function is defined
as:L = (1−_1−_2)L1+_1L2+_2L3, whereL1,L2 andL3 are the

loss of instantaneous time shift prediction task, delayed time shift

prediction task and replace discriminative task respectively, and

_1 and _2 are hyperparameters to balance the three pre-training

tasks. We search both of the weights of _1 and _2 in the set {0.1, 0.2,

0.3, 0.4, 0.5} and report the tuning results with 𝐹2-score for seizure

detection task on subject-A from SEEG dataset. In 6(a) and 6(b), we

can see that _1 = 0.5 and _2 = 0.3 lead to the optimal performance. In

addition,MBrain consistently performs better than the best baseline.

Sensitivity analysis on replace ratio. We perform sensitivity

analysis on replace ratio 𝑟% from replace discriminative task. We

search the replace ratio from 5% to 95% and report the tuning results

with 𝐹2-score for seizure detection task on subject-A from SEEG

dataset. As Figure 7 shows, when the replace ratio is set as 45%,

MBrain has the best performance of 71.06±3.41. While MBrain gets

the smallest standard deviation and the second best performance

of 70.63±1.41 when the replace ratio is set as 15%.
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Figure 7: Sensitivity analysis on replace ratio 𝑟%.

F EMOTION RECOGNITION TASK
To measure the performance of our model on different downstream

tasks, we use the SJTU Emotion EEG Dataset (SEED) [15] to test

the model’s performance in the emotion recognition task. In SEED,

fifteen Chinese film clips (positive, neutral and negative emotions)

were chosen from the pool of materials as stimuli used in the exper-

iments. The duration of each film clip is approximately 4 minutes.

We divide each EEG segment into 24-second segments without over-

lapping. For experimental efficiency, we downsample the segments

to half the original frequency for each 24-second EEG segment. We

randomly split the SEED dataset by subjects into train set, valid set

and test set at a ratio of 3:1:1. We sample 3500 and 2000 EEG clips

from the training patients for SSL and downstream task. We then

sample 500 clips as validation set. Finally, we use all the data from

the testing patients to evaluate models.

Table 5: The performance of models on SEED dataset.

Models Acc. AUROC

MiniRocket 49.80±0.60 75.28±0.17

CPC 48.23±4.36 73.48±1.51
SimCLR 44.84±5.82 63.05±6.52
T-Loss 47.90±3.99 68.56±5.96
TST 35.13±0.34 53.49±1.26
GTS 39.85±0.34 60.18±1.30
TS-TCC 40.10±5.50 66.38±3.39
TS2Vec 48.75±2.74 71.60±2.16

MBrain 52.44±1.21 75.52±1.27

Table 5 shows the results of MBrain and all baseline models on

the emotion recognition task on SEED dataset. Since this is a 3-

class classification task with balanced samples for each class, we

only report the two metrics of Accuracy (Acc.) and AUROC. As can

be seen from the table, MBrain improves the Accuracy by 5.30%

and the AUROC by 0.32% on SEED dataset compared to the best

result of baseline methods, demonstrating that MBrain still has a

good performance on other downstream tasks of brain signals. It

is worth noting that, like the TUSZ dataset, the SEED dataset only

has coarse labels for each EEG clip, but our proposed MBrain aims

to learn fine-grained representations. Therefore, the performance

improvement on the SEED dataset is not as obvious as that on the

SEEG dataset, but MBrain still outperforms all baseline models.
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