
Efficient Web Search Diversification
via Approximate Graph Coverage

Jared Niederhauser
Dept. of Computer Science

ETH Zürich, Switzerland
njared@ethz.ch

Carsten Eickhoff
Dept. of Computer Science

ETH Zürich, Switzerland
carsten.eickhoff@inf.ethz.ch

Aurelien Lucchi
Dept. of Computer Science

ETH Zürich, Switzerland
aurelien.lucchi@inf.ethz.ch

Thomas Hofmann
Dept. of Computer Science

ETH Zürich, Switzerland
thomas.hofmann@inf.ethz.ch

ABSTRACT
In the case of general or ambiguous queries, retrieval sys-
tems rely on result set diversification techniques in order to
ensure an adequate coverage of underlying topics such that
the average user will find at least one of the returned docu-
ments useful. Previous attempts at result set diversification
employed computationally expensive analyses of document
content and query intent. In this paper, we instead rely
on the inherent structure of the Web graph. Drawing from
the locally dense distribution of similar topics across the
hyperlink graph, we cast the diversification problem as op-
timizing coverage of the Web graph. In order to reduce the
computational burden, we rely on modern sketching tech-
niques to obtain highly efficient yet accurate approximate
solutions. Our experiments on a snapshot of Wikipedia as
well as the ClueWeb’12 dataset show ranking performance
and execution times competitive with the state of the art at
dramatically reduced memory requirements.

Categories and Subject Descriptors
H.5 [Information Retrieval]: Retrieval models and rank-
ing—Information retrieval diversity ; F.5 [Streaming, sub-
linear and near linear time algorithms]: Design and
analysis of algorithms—Sketching and sampling

General Terms
Theory, Experimentation

Keywords
Web search, Web graph, Diversification, Sketching

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CIKM Big Network Analytics Workshop 2016, Indianapolis, IN, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
Modern search engines aim to make massive amounts of in-

formation accessible to broad audiences. Search engines rely
on user-specified queries to quickly produce a relevant set of
results. Unfortunately, short keyword queries are imperfect
proxies for the complex nature of a user’s true intent; a fact
that becomes increasingly apparent when looking at broad
or ambiguous queries. In cases where user intent is unclear,
search engines attempt to satisfy multiple possible intents
by producing a result set covering a diverse group of topics.
As a motivating example, consider the query “mercury” il-
lustrated in Figure 1. On its own, “mercury” can represent
one of several different topics. Without additional qualifying
information, it becomes very difficult for search engines to
intuit the user’s true intent. Compounding this difficulty is
the fact that some topics are more popular than others. Serv-
ing all the needs of a broad audience, replete with numer-
ous niche interests, is not as important as presenting typical
users with the most commonly sought results. For exam-
ple, in Figure 1, results relevant to mercury (the element)
and Mercury (the planet) may be more popular than the
now defunct car manufacturer or the archaic Roman God.
This example alludes to the central problem in diversity-
aware search: balancing relevance and diversity. For many
modern search engines, results to ambiguous queries eschew
diversity in favor of maximizing expected topical relevance.
For certain ambiguous queries such as “apple”, hot topics
such as Apple (the company) are very well represented but
there are still numerous other possible interpretations that
are often neglected. The Wikipedia disambiguation page for

“apple” contains 46 potential matches spanning 7 distinct
categories, most of which are under-represented in typical
search results. In this paper, we investigate a novel approach
to diversity-aware search that attempts to improve diversity
by increasing coverage of the collection’s hyperlink-induced
Web graph. Intuitively, one would expect pages located spa-
tially near one another to contain similar content, such that
selecting multiple documents from the same “pocket of top-
icality” would increase redundancy and decrease diversity.
We explore this intuition and produce diverse result sets by
maximizing the number of nodes that can be reached within
a certain number of hops on the Web graph. Since modern
Web graphs can consist of tens of billions of nodes, travers-

Figure 1: Example of the ambiguous query “mercury” with 4 possible interpretations presented.

ing and even storing the complete graph is often infeasible.
As such, this paper makes use of approximate graph sketch-
ing techniques to efficiently measure Web graph coverage at
a small and controllable loss in accuracy.

The novel contributions of this paper are threefold: 1)
For the first time, instead of analyzing document content,
our method diversifies result lists solely on the basis of Web
graph structure. 2) In order to address scalability concerns
we rely on graph sketching techniques that allow for fast and
memory efficient processing. 3) Evaluating on a real-world
dataset, we demonstrate competitive ranking performance
and speed at greatly reduced memory footprints.

The remainder of this paper is organized as follows: Sec-
tion 2 investigates previous work on diversity-aware search,
Subsection 3.1 covers the necessary technical background of
our approach, Subsection 3.2 formally defines the problem
and discusses factors impacting performance, Section 4 dis-
cusses evaluation techniques and our experiments, and Sec-
tion 5 concludes the paper with a summary of our results
and a preview of future work.

2. RELATED WORK
This section gives a brief overview of existing approaches

to diversity-aware retrieval models as well as metrics for eval-
uating diversity-aware search.

Agrawal et al. [1] attempt to “minimize the risk of dissat-
isfaction for the average user” by reranking a set of docu-
ments in accordance with an underlying topic distribution.
The relevance of a document whose topics have already been
represented in the result set is penalized by how well its top-
ics have already been covered. Both Capannini et al. [3]
and Radlinski and Dumais [15] propose approaches that
utilize query logs to examine common user search behav-
ior. These approaches rerank search results by observing
a catalog of typical query “refinements” (e.g., apple → Ap-
ple corporation). Vallet and Castells later revisit this rela-
tionship between diversity and personalization, finding that
both can serve a joint goal rather than taking antagonistic
positions [19]. Gollapudi and Sharma begin from a carefully
selected set of axioms, building towards the core definition
of diversity in search results [11]. Clarke et al. [6] divide
ambiguous queries into a set of sub topics, so-called “infor-
mation nuggets”. The intuition is that if one information
nugget has already been answered by a document, all fu-
ture documents that answer this particular nugget are redun-
dant. Cronen-Townsend et al. [7] do not explicitly address
diversity-aware search in their paper, rather they attempt to

quantify how ambiguous a given query is. To this end, the
authors develop a function for calculating a query’s clarity
score by looking at the KL-divergence between a query’s lan-
guage model and the corpus’ language model. They reason
that if the relative entropy between the query and collection
language models is high then the query itself is unambiguous.
There have been several parallel efforts into substituting the
previously used topical scales by a search intent framework
and subsequently trying to maximise coverage across indi-
vidual intent classes [4, 17]. Yin et al. [21] introduce the use
of survival analysis theory for the purpose of search result di-
versification by modelling result list versatility and topic cov-
erage. Dang and Croft [8] propose to balance the mixture of
individual facets on the result page according to their popu-
larity, motivating a proportionality based approach. Rather
than relying on a single given scale (topics, nuggets, intents,
etc.) along which to diversify, Dou et al. [9] present a multi-
dimensional diversification scheme, demanding diversity in
a potentially high-dimensional space.

Traditional information retrieval metrics are often ill-suited
when evaluating the diversity of a set of documents. These
common metrics (e.g., NDCG or MAP) eschew the impor-
tance of diversity and rely solely on relevance judgments
to evaluate a result set. As previously motivated in Sec-
tion 1, algorithms can score highly on these evaluation met-
rics by producing a highly-relevant yet non-diverse result
set. Agrawal et al. [1] introduce a number of intent-aware
(IA) extensions to traditional search metrics (IA-NDCG, IA-
MAP, and IA-MRR). These evaluation metrics incorporate
a topic distribution model in their assessments such that a
result set can be evaluated on the individual document’s rel-
evance to the query terms and the collective set’s coverage of
topics relevant to the query. Clarke et al. propose a modifi-
cation to the standard NDCG evaluation metric which they
label α-NDCG [6]. α-NDCG looks at the cumulative gain
vector of a collection of documents and weights them based
on how well those documents answer a series of informa-
tion nuggets relevant to the query. From 2009 to 2014, the
α-NDCG metric as well as the IA-metrics have been used
as standard evaluation metrics within the TREC Diversity
Track [5]. Rafiei et al. [16] introduce another evaluation
technique which utilizes Wikipedia disambiguation pages to
implicitly link ambiguous terms with a set of relevant pages.
Using this method, the authors quantify diversity as the
number of these relevant pages which are included in the
result set.

In contrast to existing methods, the proposed approach re-

quires no initial preprocessing (e.g., topic model generation),
query logs, or ancillary metadata to run. Instead, we rely ex-
clusively on a hyperlink Web graph, implicitly given by the
document collection, in order to perform diversification. Our
work is similar in spirit to Li et al. [13], who demonstrate
general graph diversification using Flajolet-Martin sketches.
In this paper, we describe a similar setup, relying on Hy-
perLogLog counters, targeting a specific application to Web
search scenarios. To the best of our knowledge, there has
been no previous attempts to diversify search results by us-
ing Web graph coverage information.

3. METHODOLOGY

3.1 Preliminaries
In the following we briefly explain various notation and

background material used throughout the rest of the paper.

3.1.1 Ad-hoc information retrieval
Ad-hoc information retrieval (IR) takes as input a user

query Q = {q1, . . . , qm} comprised of one or more terms and
returns an ordered result set of documents S? = {s?1, . . . , s?n}
that have been taken from a larger corpus of documents
S? ⊆ D = {s1, . . . , sN}. A document’s value, with respect
to the query Q, is given by an objective function V (s|Q),
and the documents that compose the result set are ordered
such that:

∀s?i , s?j ∈ S?, V (s?i |Q) ≥ V (s?j |Q) ⇐⇒ i ≤ j

While there are many different ways to create an objective
function, traditional ad-hoc IR applications assume a doc-
ument independence model wherein a document’s score is
not impacted by the inclusion or exclusion of another docu-
ment in the result set. This, however, is not the case with
diversity-aware IR, in which one document’s inclusion in the
result set can impact the score of all other documents. Put
more generally, a document’s diversity-aware value is given
by some objective function V (s|Q,S). In Subsection 3.2, we
explore in detail the specific diversity-aware objective func-
tion used in this paper.

3.1.2 HyperLogLog counters
Due to their size, exact storage and manipulation of mod-

ern Web graphs is often intractable. To combat this chal-
lenge, various graph sketching techniques exist that store
and perform approximate calculations on large graphs by
sacrificing accuracy in favor of space efficiency. HyperLogLog
counters are one such sketching technique used through-
out this paper, and in this section we preview the Hy-
perLogLog algorithm and subsequently explain what it
accomplishes as well as why it is useful in the context of
diversity-aware search. Before presenting the algorithm, we
first explain some of the notational constructs used in the
calculation:

• h : V → 2∞ is a fixed hash function mapping each
graph node v ∈ V into an infinite binary sequence

• ht(x) denotes, for a given x ∈ 2∞, the sequence made
by the leftmost t bits of h(x), and ht(x) is the se-
quence of remaining bits of x

• ht is identified with its corresponding hash function
integer value in the range

{
0, 1, . . . , 2t − 1

}

Figure 2: An example of two hyperballs surround-
ing a graph node (in black). The hyperball in blue
represents a radius of 1 whereas the green hyperball
represents a radius of 2.

• ρ+(w) is, given a binary sequence w, the number of
leading zeroes in w plus one (e.g., ρ+(01001) = 2)

• p = 2b is the number of registers that compose the
HyperLogLog counter.

• Unless otherwise specified, all logarithms are base 2

A HyperLogLog counter, M , is a probabilistic data struc-
ture composed of an array of p = 2b registers that approx-
imately represents a set. While HyperLogLog counters do
not allow us to answer the question “Is this object contained
in the set?” they do allow us to ask “Approximately how
many distinct objects are contained in the set?” via the
size(M) function. In the context of Web graphs, Hyper-
LogLog counters can be used to approximately represent the
set of neighbors for each node in the graph and the size()
function allows us to approximate that set’s cardinality. For-
mally, for any digraphG(V,E) we can approximate the value
|{u ∈ V |v → u}| for each v ∈ V where v → u is the notation
we use for the directed edge (v, u) ∈ E. As previously stated,
the HyperLogLog algorithm is particularly useful for our
purposes because it allows accurate set cardinality predic-
tion with only scant memory usage. In [10], the authors
explain how HyperLogLog can estimate cardinalities well
beyond 109 with a standard error of 2% using only 1.5 kilo-
bytes of memory. For further mathematical and technical
details, we refer the reader to [10].

3.1.3 HyperBall algorithm
In our proposed approach we want to “cover” as much

of the Web graph as possible. We formalize the notion of
coverage by introducing the hyperball.

A hyperball, as defined by Boldi and Vigna [2], is the ball
of radius r around a given node

BG(x, r) = {y|d(x, y) ≤ r}

Here the function d(x, y) is merely the shortest distance be-
tween two nodes x and y following the directed edges E of
the Web graph G = (V,E). Figure 2 presents an example of
two hyperballs with varying radii. The basic idea used by
the HyperBall algorithm1 is that the hyperball of radius
r satisfies the following properties

BG(x, 0) = {x} (3.1)

1The Hyperball implementation used throughout this pa-
per is part of the WebGraph framework found at http:
//webgraph.di.unimi.it/

http://webgraph.di.unimi.it/
http://webgraph.di.unimi.it/

BG(x, r + 1) =
⋃
x→y

BG(y, r) ∪ {x} (3.2)

Using the preceding properties in conjunction with Hyper-
LogLog counters described in Subsection 3.1.2, the Hyper-
Ball algorithm creates a probabilistic hyperball with radius
r for each node in the Web graph by means of iterative ex-
pansion. The union appearing in Eq. 3.2 is performed by
register-by-register maximization of the corresponding coun-
ters. Note that in Hyperball and throughout the rest of
the paper we adopt the notation Mv to represent the Hyper-
LogLog counter assigned to node v.

3.2 Diversity-aware Web Graph Search
Recall the goal of ad-hoc IR: given a sequence of query

terms we want to provide the user with a result set of doc-
uments ranked in order of decreasing utility. Utility in this
context depends highly on the clarity of the initial query. In
the case of unambiguous queries, equivocating a document’s
value with its relevance to the query is often sufficient and
can produce good results. However, when queries are am-
biguous, and the user’s intent is unclear, a document’s value
can be interpreted not only in terms of how relevant it is
to the query, but also how different it is from other docu-
ments in the result set. This notion leads us to the central
problem of diversity-aware search, namely constructing a re-
sult set whose document values reflect a tradeoff between
relevance and diversity.

3.2.1 Relevance scores
In many IR applications, topical relevance quantifies how

suitable a given document is for a query. This relevance
score can be achieved in a number of different ways and is a
well-researched area of IR. For the purposes of this project,
we rely on the popular open-source IR platform, Apache
Lucene, to estimate topical relevance. Although document
relevance is not the major focus of this paper, it is worth
noting the differences between calculating relevance and di-
versity scores. Common relevance models assume that docu-
ment relevance is independent from other documents added
to the result set. For example, the default scoring function
used by Lucene utilizes a tf-idf approach to calculate rele-
vance. More specifically, its scoring function is given by:

R(s|Q) =
1

ZQ
·
∑
w∈Q

tf(w, d) · idf(w)

Zs
,

where tf(w, d) is the frequency of the word w in document

d and idf(w) = log |D|
|{d∈D:w∈d}| is the inverse document fre-

quency, i.e., the number of documents in the entire corpus
containing w. For the sake of brevity, we omit several tech-
nical details such as the role of the normalization constants
Zs and ZQ; however, a comprehensive description of the
Apache Lucene scoring function is readily available on their
website2. A document’s final score is given by a weighted
mixture of relevance and diversity. This process is explained
in detail in Subsection 3.2.3

3.2.2 Diversity: Increasing Web graph coverage
Recall our initial assumption for increasing diversity, a set

of documents covering a greater portion of the Web graph in-
tuitively suggests that those documents are more widespread
2http://bit.ly/1bLnktw

(a) BG(v, 2) (b) BG({v, a}, 2)

(c) BG({v, b}, 2)

Figure 3: Example of two competing hyperball
unions in 3b & 3c where white nodes are uncovered,
green nodes are covered and non-overlapping, and
blue nodes are covered but overlapping. Despite the
fact that node b’s hyperball contains more elements
than node a’s (12 v. 9), it has fewer distinct nodes
from v (4 v. 6).

throughout the graph and thereby topically more diverse.
We now seek to achieve this goal by counting how many
distinct elements a union of hyperballs contains. The exam-
ple in Figure 3 illustrates the diversity objective wherein we
want to add a new document, a or b, to a pre-existing result
set, v. While document b has the greater overall connectiv-
ity with 12 documents reachable within 2 hops (instead of 9
for document a), document a introduces a greater number
of new distinct documents (6 instead of 4) that were previ-
ously not reachable from v. This section explains how we
use the HyperLogLog and HyperBall algorithms to con-
struct a document diversity function that achieves our goal
of efficiently quantifying Web graph coverage. From Subsec-
tion 3.1.3, the HyperBall algorithm outputs a probabilistic
representation of a hyperball of radius r around each node,
B̂G(v, r), and these hyperballs are stored as an array of reg-
isters (collectively referred to as a counter), Mv. Consider
two nodes in the graph, v & u, and their corresponding hy-
perballs, B̂G(v, r) & B̂G(u, r) respectively. We represent the
set of nodes covered by these two hyperballs by taking their
union. More specifically, the union of two arbitrary node
hyperballs is given by

B̂G(v, r) ∪ B̂G(u, r) = union(Mv,Mu)

Given the preceding formula, we can easily estimate the
number of distinct elements contained in the union of the
hyperballs by simply using the size function presented in
Subsection 3.1.2

|B̂G(v, r) ∪ B̂G(u, r)| = size (union(Mv,Mu))

By extension, the number of distinct elements in the union
of a set of hyperballs can be approximated via

|B̂G(S, r)| =

∣∣∣∣∣⋃
s∈S

B̂G(s, r)

∣∣∣∣∣ = size (union(MS))

Figure 4: The register-by-register maximization of
two HyperLogLog counters. In this example, each
document is represented by 8 registers, however, in
practice, documents have 16 to 1024 registers each.

It is important to note that union(MS) returns not just a
single number, but rather an array of registers whose val-
ues correspond to the register-by-register maximization of
all HyperLogLog counters in the set S. Figure 4 presents an
example of how this operation works on a set of two docu-
ments, S = {s1, s2}.

Finally, the equation we use to calculate an individual
document’s diversity when added to an existing set of docu-
ments, S, is

D(s|S;M) = |B̂G(S ∪ s, r)| = size (union(MS ,Ms))

3.2.3 HyperBall-Diversify algorithm
Supposing that users are only interested in the top k re-

sults of a search, the objective becomes:

WebGraph-Search(k): Given a set of documents
S ⊆ D, a set of query terms Q, relevance scores of
the documents R(s), the r-radius hyperball counters
of the documents M , and a mixture parameter λ ∈
[0, 1]. Find a set of documents S? ⊆ S where |S?| ≤
k that maximizes:

V (S?|Q) =
∑
s∈S?

λ ·R(s|Q) + (1− λ) ·D(s|S? \ s;M)

This objective function formalizes the previously stated
problem of diversity-aware search. We want to find a result
set whose overall value is merely the cumulative value of
its composite documents. As one may expect, optimizing
the preceding objective function is NP-hard. Fortunately,
WebGraph-Search(k) falls within the category of submod-
ular functions3 for which theoretical guarantees derived in [14]
ensure that a greedy maximization yields a bounded approx-
imation of the order of (1 − 1/e) to the optimal solution.
Consequently, we propose a greedy algorithm to the problem
titled HyperBall-Diversify whose pseudocode is given in
Algorithm 1.

It is important to note that document diversity is being
normalized by dividing by the maximum possible diversity
value (the number of distinct elements covered by the union
of every document in the result set, Dmax). This additional
step is taken to avoid scaling issues when mixing document
relevance and diversity scores due to their large differences
in magnitude. For example, relevance scores calculated from
Apache Lucene are normalized such that R(s) ∈ [0, 1], how-
ever, the raw document diversity function can estimate car-
dinalities greater than 109, many orders of magnitude larger
than the document’s relevance score. By means of normaliza-
tion, we ensure that both relevance and diversity lie within
the range [0, 1] which greatly improves our ability to analyze

3Intuitively, this follows the principle of diminishing returns
wherein the benefit of adding a document to a larger set is
less than that of adding it to a smaller set.

Algorithm 1 HyperBall-Diversify

Input: set of documents S, set of HyperBall counters
M , Q, k, λ
Output: reranked set of documents S?

1: S? ← ∅
2: Dmax ← size(union(S))
3: while |S?| < k do
4: for s ∈ S do
5: v(s)← λ ·R(s) + (1− λ) · D(s|S?;M)

Dmax

6: end for
7: s′ ← arg max v(s)
8: S? ← S? ∪ s′
9: S ← S \ s′

10: end while

Figure 5: The number of unmodified HyperLogLog
counters after each iteration of the Hyperball algo-
rithm. The maximum hyperball size, r = 17, occurs
when all counters are in a stable state.

results and choose a suitable λ.

3.3 Parameter selection
The two most important parameters that dictate diversi-

fication performance are λ, which governs the tradeoff be-
tween relevance and diversity, and r, the hyperball radius.
While we tune these parameters via empirical analysis in Sec-
tion 4, this section briefly explores why these parameters are
important and how altering them impacts the objective func-
tion V (S|Q). Additionally, we discuss how the number of
registers per HyperLogLog counter, b, impacts the accuracy
of the graph sketching approach as well as the overall mem-
ory usage and execution time of the HyperBall-Diversify
algorithm.

3.3.1 Hyperball radius: r
Recall that HyperBall-Diversify takes, as input, an

array of HyperLogLog counters, M , one for each node in
the Web graph. These HyperLogLog counters represent hy-
perballs with radius r as generated by Algorithm 1. The
importance of this parameter becomes apparent when look-
ing at two opposing extremes. Setting the radius too large
implies that each node’s counter, Mi, becomes nearly identi-
cal and the corresponding hyperballs cover almost the entire
Web graph. Conversely, setting r too small has the opposite
effect meaning hyperballs cover too small a portion of the
Web graph to be meaningful. To help analyze the behav-
ior of r, we look at how the array of HyperLogLog counters
changes when we increase the radius. To this end, we run
Algorithm 1 on the Wikipedia Web graph from 3rd February

(a) Relevance decreases rapidly with rank

(b) Diversity increases rapidly with rank for λ < 0.5

Figure 6: Relevance v. diversity change with docu-
ment rank.

2014 and observe what percentage of the ∼4.5 million coun-
ters were unmodified after each iteration of the algorithm;
the results are presented in Figure 5. The two plateaus in
the chart suggest that hyperball expansion occurs in two
stages. We interpret the first plateau as a period of semi-
stable graph coverage wherein the majority of hyperballs
are sufficiently large such that they cover all nodes in their
immediate vicinity. The second plateau occurs when further
hyperball expansion yields no changes which, in the case of
strongly connected graphs this means that all counters are
identical and cover the graph in its entirety. We previously
analogized regions of the Web graph as“pockets of topicality”
and we interpret this first plateau as the stage when the hy-
perballs have covered these pockets. We thus intuit that the
optimal hyperball size is when this first plateau occurs, i.e.
r = {4, 5, 6}. Indeed, through empirical testing (explained
in more detail in Section 4) we confirm the assumption that
hyperballs with r = 5 ± 1 perform best, depending on the
evaluation metric being used.

The results displayed in Figure 5 seem to follow our initial
intuition that Web graphs are composed of several heavily
interconnected cliques with small diameters and similar con-
tent.

3.3.2 Relevance and diversity tradeoff: λ
This section focuses on the parameter λ which explicitly

governs the tradeoff between relevance and diversity, R(s|Q)
and D(s|S;M) respectively, as documents are added to the
result set. We observe this tradeoff by looking at the average
relevance and diversity score per document rank for 364 dif-
ferent ambiguous4 queries and with a fixed hyperball radius,

4Explanation of how these queries were chosen is given in
Section 4

r = 4. Such analysis should illuminate the impact of λ and
how these separate components work together to create a di-
versified result set. We start by investigating how document
relevance changes with rank position. Recall that a doc-
ument’s relevance score is precomputed by Apache Lucene
and thus HyperBall-Diversify takes, as input, an already
ordered original result set S. Figure 6a visualizes how rele-
vance scores in the original result set decrease rapidly with
respect to the document’s rank position. Contrast the behav-
ior of document relevance with that of its diversity shown in
Figure 6b. In this particular chart, we are interested in the
percentage of the Web graph covered (diversity) with each
addition to the result set. There are five lines corresponding
to different lambda values, λ = {0, 0.25, 0.5, 0.75, 1}. The
two extreme values, λ = {0, 1}, correspond to greedily se-
lecting documents with the highest diversity and relevance
respectively. In the case where only relevance is considered,
we observe the unsurprising behavior that Web graph cover-
age increases slowly and almost uniformly over time as doc-
uments are added to the result set. However, we notice that
for any λ ≤ 0.5, the first ten documents added to the result
set cover > 80% of the Web graph. From the aforementioned
charts, it is apparent that relevance and diversity follow in-
verse behavior with respect to document rank. Furthermore,
we notice that, for the majority of λ values, the Web graph
is covered very quickly. This quick graph coverage means
1) the objective function will initially favor diversity over
relevance and 2) marginal gains in diversity decrease very
quickly such that the relative difference in diversity between
documents not yet added to the result set becomes negligible.
Neither of these outcomes are very favorable as 1) we still
desire highly relevant documents early in the result rather
than documents that purely increase diversity and 2) when
marginal gains in diversity become too small (i.e. the Web
graph is almost entirely covered), diversity scores between
documents are very similar and diversity in general becomes
irrelevant. To avoid these effects, the lambda value should
be set sufficiently high such that there is a balance between
relevance and diversity as documents are added to the result
set. We verify this through parameter tuning in Section 4
where λ ≈ 0.65 tends to produce the best results.

3.3.3 HyperLogLog registers: b
Recall the HyperLogLog algorithm presented in Subsec-

tion 3.1.2 wherein we define each HyperLogLog counter as
an array of p = 2b registers. While this parameter b is not
explicitly listed in HyperBall-Diversify, it is implicitly
contained in the diversity function D(s|S;M). More specifi-
cally, it is used in the creation of the HyperLogLog counters
M and ultimately impacts the fidelity of our Web graph
coverage approximation with respect to the true Web graph
coverage. Altering b affects our approximation scheme in
three ways: 1) Web graph coverage accuracy, 2) memory
usage, and 3) execution speed.

To quantify Web graph coverage accuracy we look at the
relative error in Web graph coverage between approximate
hyperballs generated via the HyperBall algorithm, B̂G,
and exact hyperballs, BG, for a given graph, G. We cal-
culate this relative error by iteratively choosing a random
node from G and measuring the relative error in Web graph
coverage after each successive iteration. More specifically,
we define the relative error of the i-th iteration with the

Figure 7: Increasing the number of HyperLogLog reg-
isters, b, results in a increased estimate accuracy.

following notation:

E
(i)
G =

|B̂G(S(i), r)| − |BG(S(i), r)|
|BG(S(i), r)|

Where the set S(i) = {s1, . . . , si} contains the first i nodes
selected from G, the value |BG(·)| is the exact number of
nodes covered by the union of selected node hyperballs, and
the value |B̂G(·)| is the approximate number of nodes covered
as defined by the diversity function D(·) presented in Sub-
section 3.2.2. Note, for this experiment and all subsequent
experiments we use a fixed hyperball radius, r = 4. Nodes
are continually selected until the union of hyperballs entirely
covers the graph and the total relative error for graph G is
calculated via:

EG =
1

n

n∑
i=0

∣∣∣E(i)
G

∣∣∣
We perform this experiment and calculate the average rela-
tive error on a collection of 50 subgraphs generated by ran-
domly sampling the 3rd February 2014 Wikipedia dump [20].
Each graph in the set of subgraphs, GS = {G1, . . . , G50},
contains 1.5 to 2 million nodes and 3 to 3.8 million edges as
opposed to the complete Wikipedia dataset which contains
∼4.5 million nodes and ∼40 million edges. We finally calcu-
late the average relative error across all subgraphs using the
following formula:

Ē =
1

|GS |
∑
g∈GS

Eg

We repeat this same experiment for varying values of b. The
results of these experiments are shown in Figures 7 and 8.
As expected, both the average relative error and the stan-

dard deviation decrease as the number of registers per Hy-
perLogLog counter increases. This empirically mirrors the
results of Flajolet et al. [10] who state that the relative stan-
dard deviation (i.e., the ratio between the standard devi-
ation of the estimated cardinality and the true cardinality)

for a given HyperLogLog counter is at most
βp√
p
≤ 1.06√

p
where

p = 2b and βp is a suitable constant. In other words, a larger
value of b produces a better Web graph approximation. In-
deed, Figure 7 suggests that for b = 10 we can expect an
average relative error of 2.38%± 0.93%.

As one may expect, increasing the number of registers
per HyperLogLog counter results in an increased memory
footprint. To illustrate this impact on memory, we run the

(a) b = 4

(b) b = 10

Figure 8: The relative iteration error, E
(i)
G (·), ac-

crued during the first 200,000 iterations for b = 4
and b = 10. Although both charts reach a somewhat
asymptotic state, the relative error for b = 4 lies in a
much larger range than the error for b = 10

HyperBall algorithm on the subgraph G1 with varying val-
ues of b and measure how much memory is required to store
the resultant set of probabilistic Web graph hyperballs. As
previously stated, the total number of registers for a Hy-
perLogLog counter p is equal to 2b and thus increasing the
value of b results in an exponential increase in the mem-
ory required when constructing Web graph hyperballs. The
results of this experiment are presented in Figure 9 and con-
firm an exponential increase. Additionally, Figure 9 presents
the memory required to store the exact representation of G1.
Exact memory use falls between b = 4 and b = 5, and for
all b ≥ 6 the approximate solution’s memory requirements
greatly outstrip those of the exact solution. It is worth
noting that for the subgraph G1, the average degree of a
node is ∼2, meaning G1 is much sparser than the complete
Wikipedia Web graph it was derived from which has an aver-
age node degree of ∼9. This distinction is important as the
exact solution’s memory use is determined by the number of
nodes and edges in the Web graph whereas the approximate
solution’s memory use is dictated by the number of nodes
and the parameter b. Thus Web graph density plays a large
role in the amount of memory required by the exact solution
but not the memory use of the approximate solution.

Finally, we are interested in how b impacts HyperBall-
Diversify’s execution speed. To observe this, we use the
same experimental setup as when calculating average rela-
tive error. Namely, we take the collection of 50 subgraphs,
GS , and calculate the average time required to completely
cover each subgraph for differing values of b. The results of
this experiment are shown in Figure 10 where we can see an
exponential increase in the time required to cover a graph
as the parameter value b increases. This is again unsurpris-

Figure 9: Increasing the number of registers per
counter results in an exponential increase in mem-
ory. The memory usage of the exact solution is given
by the dashed horizontal line. Note, the chosen sub-
graph being stored, G1, consists of 1,648,614 nodes
and 3,310,091 edges.

Figure 10: Increasing the number of registers per
counter results in an exponential increase in execu-
tion time.

ing because, at every iteration step, the cardinality estima-
tion function performs a register-by-register maximization,
thus doubling the number of registers should double the ex-
ecution time. Finally, we are interested in comparing the
execution time required to generate a probabilistic approx-
imation with the execution times of calculating the exact
solution. Because calculating the exact solution does not
depend on the number of HyperLogLog registers b, its exe-
cution time remains fairly constant with an average value of
∼98,000 ms. From Figure 10 we note that the slowest prob-
abilistic approach tested, b = 10, completed in ∼3,670 ms,
approximately 2,700% faster than the exact solution. It is
worth noting that the exact solution used throughout these
experiments is an unoptimized, naive solution and more so-
phisticated algorithms and data structures could undoubt-
edly improve its execution speed. However, it is unsurpris-
ing that the approximate solution is significantly faster as
the exact solution relies on traversing large Web graphs, an
operation that is very time consuming and, for the purposes
of ad-hoc IR where generating a result set quickly is impor-
tant, exact solutions seem impractical. Finally, we note a
difference between the exact and approximate approaches
with regard to execution time. For the approximate Hyper-
LogLog approach, speed is dictated primarily by the number
of registers per counter, b, and is unaffected by the choice
of hyperball radius, r. For a fixed radius and Web graph,
the HyperBall algorithm is performed once at which point

the resulting array of HyperLogLog counters, M , does not
change. Consequently, for a fixed value of b, we expect
HyperBall-Diversify to have similar execution times re-
gardless the choice of hyperball radius, r. However, this is
not the case for the exact approach wherein the choice of
r greatly impacts the amount of time spent traversing the
Web graph and covering nodes. As mentioned previously,
we fix r = 4 for all experiments performed in this section,
however for use cases when an even larger hyperball radius
is required, the disparity in execution time between the ex-
act and approximate solutions becomes significantly more
pronounced. In summary, we demonstrate through a series
of experiments how the number of HyperLogLog registers,
b, impacts speed, memory usage, and Web graph coverage
fidelity. For the duration of this paper, we assume the value
b = 10 as we find it provides favorable results while keeping
both speed and memory usage reasonably small. Further
details on speed and memory use will be explained in Sec-
tion 4.

4. EXPERIMENTS

4.1 Datasets
We use two sizeable datasets as the basis of our empirical

evaluation: Wikipedia [20] as well as the ClueWeb’12 collec-
tion. In the case of Wikipedia, we filter out all non-article
pages (e.g., discussion pages, category pages, etc.) result-
ing in a corpus of ∼4 million articles and ∼40 million edges.
We further gather a collection of query/relevance set pairs,
(Q,R), from the set of disambiguation pages containing at
least 10 links to different articles. This approach follows
Rafiei et al. [16] who assume query terms to be given by
a disambiguation page’s title and the relevance sets to be
derived from the set of linked articles.

For ClueWeb’12, no additional preprocessing was required
and we used the TREC Web Track topics and relevance
judgements from the years 2013 and 2014.

4.2 Evaluation metrics
We evaluate HyperBall-Diversify using a collection

of standard diversity-aware evaluation measures: α-NDCG,
NDCG-IA, & MAP-IA. α-NDCG relies on a set of informa-
tion nuggets, ni ⊆ N relevant to a query. While the notion
of nuggets is a fairly broad concept, we define information
nuggets using Wikipedia categories. Each Wikipedia page
belongs to a set of manually-annotated categories. Thus,
for an ambiguous query, Q, we define its set of relevant in-
formation nuggets, N , by the set of categories specified in
the relevance set, R. The intent-aware measures, NDCG-IA
and MAP-IA rely on a topic model to compute topic distri-
butions for queries as well as documents [1]. For these met-
rics we generate an LDA topic model with 20 topics using
the most current version of the DMOZ dump5 as a training
set. Each experiment is run on an identical 16-core, 128 GB
machine.

4.3 Baseline methods
Throughout our experiments, we compare the performance

of HyperBall-Diversify with two alternative approaches
as well as the original non-diversified ranking produced by
Apache Lucene’s default search algorithm.

5http://rdf.dmoz.org/

http://rdf.dmoz.org/

4.3.1 Topic model diversification
The first baseline method we compare against, proposed

by Agrawal et al. [1], relies on a topic model to construct a re-
sult set that covers many different topics in the topic model.
Formally put, this approach attempts to find a set of docu-
ments, S, that maximizes the following objective function:

P (S|Q) =
∑
c

P (c|Q)

(
1−

∏
s∈S

(1− V (s|Q, c))

)

The function P (c|Q) is the probability distribution of cate-
gories for the given query and the function V (s|Q, c) is the
retrieval status value of a document given the query and cat-
egory (i.e., a document’s relevance to the query weighted by
categorical importance). The topic model used to predict
topic distributions for this baseline is the same LDA topic
model described in Subsection 4.2.

4.3.2 Language model diversification
The second baseline method, proposed by Cronen-Townsend

et al. [7], relies on the construction of language models to
quantify how ambiguous the query is given a set of docu-
ments. It is formally given by the following formula:

clarity score =
∑
w∈V

P (w|Q)log2

P (w|Q)

P (w|S)

Cronen-Townsend argues that queries with a higher clarity
score are less ambiguous (i.e., higher clarity scores are bet-
ter). While Cronen-Townsend propose the preceding for-
mula as a means of identifying vague queries, we instead im-
plement a greedy algorithm that constructs a result set via a
tradeoff between document relevance and maximizing clarity.
Language models in this baseline are simple unigram models
created in accordance with the methods outlined in [18, 12,
7].

4.4 Results
Table 1 presents the results of each experiment. The rows

correspond to the four methods being evaluated: HyperBall-
Diversify (HBALL), the two baseline methods topic model
(TM) and language model (LM), and the original ranking
obtained from Lucene (ORIG). Statistically significant im-
provements over all competing methods are determined by
means of a two-tailed t-test at α < 0.05 level and are de-
noted by an asterisk.

For Wikipedia, the best diversification method changes
from metric to metric, but there are a few notable takeaways.
First, every diversification method outperformed the origi-
nal ranking, confirming that each method is indeed improv-
ing result set diversity. Secondly, there is no best-performing
algorithm across all evaluation metrics. Indeed, each diver-
sification scheme is the best performing in one of the three
metrics although only the HyperBall and language model ap-
proaches outperform their competitors at significance level.

In the case of the ClueWeb corpus, the picture is much
clearer. The HyperBall approach significantly outperforms
all baseline methods across the three metrics by a solid
margin. We assume that the considerably greater size and
less uniform connectivity of the ClueWeb graph help graph-
coverage methods in unfolding their full potential. This is
encouraging especially with respect to applicability for di-
versification on the Web.

(a) Average Rerank Time (b) Memory Usage

Figure 11: Reranking speed and required memory for
each of the three diversification methods.

4.5 Speed and memory usage
Throughout the experiments we measure the maximum

memory requirements and average re-ranking speed of the
three diversification schemes. Figure 11 presents these mea-
sures when performing diversification on the entire 4 million-
node Wikipedia Web graph (The same tendencies are ob-
served on The ClueWeb’12 collection). We note that Hyper-
Ball-Diversify requires the least amount of memory (5.46
GB) whereas the topic model and language model approaches
require approximately 227% and 53% more memory respec-
tively as storing a node’s HyperLogLog counter is more effi-
cient than storing its topic distribution or language model.
With regards to reranking time, the topic model approach is
slightly faster than HyperBall-Diversify while the other-
wise well-performing language models are prohibitively slow.
When taken as a whole, we see that HyperBall-Diversify
provides the best scalability in terms of memory whereas
the topic model approach has the fastest re-ranking per-
formance. While there is no clear victor in terms of both
speed and memory usage, we conclude that 1) the language
model approach is not viable for standard IR applications
as it is too slow (execution times of several seconds) and 2)
as Web graphs expand, memory usage favors HyperBall-
Diversify whereas re-ranking time remains constant. This
implies that, among all methods proposed, HyperBall-
Diversify is the most scalable option if slightly slower re-
ranking times are permissible.

4.6 Qualitative differences
Apart from the quantitative assessments, there are a num-

ber of qualitative differences between HyperBall-Diversify
and the other diversification methods. Most notably, we ob-
serve that HyperBall-Diversify poses no additional data
requirements in that it relies solely on the properties inher-
ent to the dataset. There is no need to train a model or
pre-process supplementary query logs which can add signifi-
cant complexity in terms of parameter selection and tuning.
Additionally, due to its lean memory footprint and struc-
ture, HyperBall-Diversify is scalable and lends itself well
to distributed environments and parallelization since each
Web graph node is encapsulated entirely within an indepen-
dent HyperLogLog counter. The baseline methods discussed
in this paper require a much greater degree of redundancy
across parallel nodes. Furthermore, changes to the underly-
ing graph structure can be quickly accounted for via a simple
update to the offending node’s HyperLogLog counter.

In spite of its simplicity, HyperBall-Diversify does re-
quire that the chosen data source can be represented as a
graph. While this requirement can be met by most Web cor-
pora, it nonetheless means that this method cannot be ap-

Table 1: Intent-aware ranking performance.
Wikipedia ClueWeb’12 (WT’13) ClueWeb’12 (WT’14)

Method MAP-IA NDCG-IA α-NDCG MAP-IA NDCG-IA α-NDCG MAP-IA NDCG-IA α-NDCG
HBALL 0.000199 0.2554* 0.0853 0.000137* 0.3782* 0.1684* 0.000141* 0.3594* 0.1494*
TM 0.000248 0.2324 0.1017 0.000094 0.3295 0.1255 0.000096 0.3121 0.1104
LM 0.000197 0.2365 0.1164* 0.000089 0.3386 0.1493 0.000093 0.3299 0.1229
ORIG 0.000196 0.2324 0.0685 0.000089 0.3195 0.1107 0.000092 0.3077 0.0868

plied to any and all data sets. This Web graph dependency
is not present for the two baseline methods (topic model and
language model). Finally, HyperBall-Diversify is blind
to changes in user search behavior and individual user prefer-
ence. Section 2 discusses other diversification schemes that
incorporate query logs to track user search behavior and in-
corporate personalization in their result sets. However, as
query logs are not always available, the detriment of not
personalizing results comes with the benefit of fewer dataset
requirements.

5. CONCLUSION
In this paper, we introduced a novel ranking scheme that

incorporates diversity into result sets by maximizing Web
graph coverage. Due to the massive scale of modern Web
collections, exact solutions are intractable at query time. In-
stead, our implementation named HyperBall-Diversify
utilizes graph sketching techniques to deliver an approxi-
mate solution that is fast and memory efficient, yet accurate.
The submodular nature of our implementation guarantees a
mathematically bounded, worst-case result through a simple
greedy algorithm. We evaluated our algorithm against two
state-of-the-art diversification approaches using a range of
standard evaluation metrics and two sizeable Web corpora.

Our experimental results conclude that the re-ranking per-
formance of all competing methods was closely tied, with a
significant improvement for HyperBall-Diversify on the
ClueWeb collection. In a second set of experiments, the lan-
guage model approach was shown to be prohibitively slow in
execution while our proposed method approaches the time
efficiency of the topic model scheme. Finally, we showed that
HyperBall-Diversify has the smallest memory footprint
of all compared approaches, resulting in up to 200% reduced
space requirements even at high accuracy (b = 10). This is
especially interesting for applications in distributed settings
since our method represents each document entirely by its
HyperLogLog counter, requiring no additional redundancy
as compared to the single-machine setting.

In this first exploratory analysis, we relied on a straight
forward linear combination of relevance and diversity scores
in order to understand the general dependencies at play in
the domain. In the future, we aim to explore alternative
objective functions for combining the two constituent scores
in a more principled way. Additionally, the Web graph cov-
erage framework gives us an exciting set of yet untapped
tools for search result diversification. Relying on the ap-
propriate sketching methods, notions such as degree central-
ity can more accurately describe the coverage and location
of the topical pockets relative to the center of graph mass.
Lastly, we hope to explore improved personalized search via
a user-defined or dynamic lambda value.

6. REFERENCES
[1] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and

Samuel Ieong. Diversifying search results. In WSDM 2009.
ACM.

[2] Paolo Boldi and Sebastiano Vigna. In-core computation of
geometric centralities with hyperball: A hundred billion nodes
and beyond. CoRR, 2013.

[3] Gabriele Capannini, Franco Maria Nardini, Raffaele Perego,
and Fabrizio Silvestri. Efficient diversification of web search
results. VLDB Endowment 4, 2011.

[4] Olivier Chapelle, Shihao Ji, Ciya Liao, Emre Velipasaoglu,
Larry Lai, and Su-Lin Wu. Intent-based diversification of web
search results: metrics and algorithms. Information Retrieval
6, 2011.

[5] Charles L Clarke, Nick Craswell, and Ian Soboroff. Overview of
the trec 2009 web track. Technical report, DTIC Document,
2009.

[6] Charles L Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga
Vechtomova, Azin Ashkan, Stefan Büttcher, and Ian
MacKinnon. Novelty and diversity in information retrieval
evaluation. In SIGIR 2008. ACM.

[7] Steve Cronen-Townsend, Yun Zhou, and W. Bruce Croft.
Predicting query performance. In SIGIR 2002. ACM.

[8] Van Dang and W Bruce Croft. Diversity by proportionality: an
election-based approach to search result diversification. In
SIGIR 2012.

[9] Zhicheng Dou, Sha Hu, Kun Chen, Ruihua Song, and Ji-Rong
Wen. Multi-dimensional search result diversification. In WSDM
2011. ACM.

[10] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and et al.
Hyperloglog: The analysis of a near-optimal cardinality
estimation algorithm. In Proceedings of the 2007 Interntaional
Conference on Analysis of Algorithms.

[11] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic
approach for result diversification. In WWW 2009. ACM.

[12] Victor Lavrenko and W. Bruce Croft. Relevance based language
models. In SIGIR 2001. ACM.

[13] Rong-Hua Li and Jeffery Xu Yu. Scalable diversified ranking on
large graphs. IEEE Transactions on Knowledge and Data
Engineering, 25(9):2133–2146, 2013.

[14] George L Nemhauser, Laurence A Wolsey, and Marshall L
Fisher. An analysis of approximations for maximizing
submodular set functions-i. Mathematical Programming, 14(1),
1978.

[15] Filip Radlinski and Susan Dumais. Improving personalized web
search using result diversification. In SIGIR 2006. ACM.

[16] Davood Rafiei, Krishna Bharat, and Anand Shukla.
Diversifying web search results. In WWW 2010. ACM.

[17] Rodrygo LT Santos, Craig Macdonald, and Iadh Ounis.
Intent-aware search result diversification. In SIGIR 2011.

[18] Fei Song and W. Bruce Croft. A general language model for
information retrieval. In CIKM 1999. ACM.

[19] David Vallet and Pablo Castells. Personalized diversification of
search results. In SIGIR 2012. ACM.

[20] Wikipedia. Wikipedia english offline edition 2014-02-03. 2014.

[21] Xiaoshi Yin, Jimmy Xiangji Huang, Zhoujun Li, and Xiaofeng
Zhou. A survival modeling approach to biomedical search result
diversification using wikipedia. Knowledge and Data
Engineering, IEEE Transactions on, 25(6), 2013.

	Introduction
	Related Work
	Methodology
	Preliminaries
	Ad-hoc information retrieval
	HyperLogLog counters
	HyperBall algorithm

	Diversity-aware Web Graph Search
	Relevance scores
	Diversity: Increasing Web graph coverage
	HyperBall-Diversify algorithm

	Parameter selection
	Hyperball radius: r
	Relevance and diversity tradeoff:
	HyperLogLog registers: b

	Experiments
	Datasets
	Evaluation metrics
	Baseline methods
	Topic model diversification
	Language model diversification

	Results
	Speed and memory usage
	Qualitative differences

	Conclusion
	References

