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Abstract

Knowledge graph alignment aims to link equivalent
entities across different knowledge graphs. To uti-
lize both the graph structures and the side informa-
tion such as name, description and attributes, most
of the works propagate the side information espe-
cially names through linked entities by graph neural
networks. However, due to the heterogeneity of dif-
ferent knowledge graphs, the alignment accuracy
will be suffered from aggregating different neigh-
bors. This work presents an interaction model to
only leverage the side information. Instead of ag-
gregating neighbors, we compute the interactions
between neighbors which can capture fine-grained
matches of neighbors. Similarly, the interactions of
attributes are also modeled. Experimental results
show that our model significantly outperforms the
best state-of-the-art methods by 1.9-9.7% in terms
of HitRatio@1 on the dataset DBP15K.

1 Introduction

DBpedia, Freebase, YAGO and so on have been published
as noteworthy large and freely available knowledge graphs
(KGs), which can benefit many applications such as question
answering and recommendation [Tong et al., 2019]. However,
a single KG is far from complete to support such applications
with sufficient facts, which demands an effective way to align
entities across KGs. To solve the problem, much attention has
been paid to leveraging the graph structures to align entities.
The specific technique has evolved from the traditional KG
embedding models such as MTransE [Chen et al., 2017] and
IPTransE [Zhu et al., 2017] to recent emergent graph neu-
ral networks such as attention-based GCN [Xu et al., 2019],
highway GCN [Wu e al., 2019b], relation-aware GCN [Wu
et al., 2019a] and VR-GCN [Ye et al., 2019].

Despite much effort taken on graph structures, the side in-
formation of entities such as name, description and attributes
may play a more important role on many tasks on KGs, be-
cause: (1) the KGs are usually sparse, with a large number
of long-tail entities whose structural embeddings have low
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Figure 1: A motivating example (Refer to Yang et al., 2019)

expressiveness [Guo ef al., 2019]. For example, in DBpedia-
ZH', the long-tail entities that appear less than 5 times occupy
74.1%; and (2) existing works have demonstrated the effect of
side information on several tasks. For example, HMAN [Yang
et al., 2019] presents that on the task of entity alignment,
when ignoring entity descriptions, HitRatio@1 will drop at
least 30%.

To leverage the side information to align KGs, the most
popular way is to initialize the embedding of each node by
its side information and apply variant GCN models to up-
date a node embedding by aggregating all neighbors’ embed-
dings [Wang et al., 2018; Wu et al., 2019a; Xu et al., 2019].
However, since different KGs are highly heterogeneous, it
is not always the case that equivalent entities share similar
neighbors. Taking an example from HMAN in Figure 1, the
nodes in rectangles are entities to be aligned and the nodes in
ovals are the neighbors. We can see that for the neighbor “En-
glish” in G2, no counterpart can be found from the neighbors
in GG1. In this case, propagating the dissimilar neighbors in
GCN:s, especially the hub entities such as the neighbor “En-
glish” with 832 relations, may introduce noises and thus harm
performance [Yang et al., 2019]. Although some works dis-
tinguish the influence from different neighbors [Cao et al.,
2019; Wu et al., 2019a; Xu et al., 2019], essentially, the GCN-
like models still mix the side information of all the neighbors
to represent an entity. HMAN has been aware of the issue,
thus it thoroughly separates the modeling process of side in-
formation and graph structures. However, it discards the side
information of neighbors. Moreover, similar to aggregating
neighbors, it aggregates all the attributes together to repre-
sent an entity like most of the works did [Sun er al., 2017,
Zhang et al., 2019], which also results in noisy matches be-
tween entities.

To deal with the noisy matches caused by aggregat-
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ing neighbors or attributes, we propose BERT-INT—i.e., a
BERT-based INTeraction model to only leverage the side in-
formation, especially the names/descriptions of current en-
tities and neighbors, and attributes of current entities in a
unified way. Generally, we mimic the cognitive process of
comparing two entities by humans, who usually first compare
current entities and then continue to check whether there are
similar neighbors. Following this, based on the embedding
of any piece of name, description and attribute, we compare
each pair of neighbors or attributes, referred to as interac-
tions henceforth, instead of aggregating them. In this way, we
can capture the fine-grained exact/semantic matches between
neighbors and get rid of the negative influence from the dis-
similar neighbors, as presented on the right of Figure 1.

Although we leverage the side information of neighbors,
unlike the variant GCN models, the structural characteristics
of KGs are totally ignored in our model, because we never
propagate the information of neighbors in graphs. From this
point of view, we claim that BERT-INT only leverages side
information. Just because of this, BERT-INT is capable of in-
ductive learning, i.e., we can train BERT-INT on two aligned
KGs and apply it to predict the matches between unseen enti-
ties in other KGs. However, if adopting the variant GCN mod-
els, the test entities should be included in the training KGs.
In summary, we propose an inductive learning-based model
to comprehensively leverage the name/description-view in-
teraction, neighbor-view interactions and attribute-view in-
teractions to align entities. By experiments, we demonstrate
that BERT-INT significantly outperforms the state-of-the-art
models by 1.9-9.7% in HitRatio@1.

2 Problem Definition

Definition 1. Knowledge Graph: We denote a KG as G =
(E,R,A,V), where eache € E, 7 € R,a € Aandv € V
denotes an entity, a relation, an attribute and a value respec-
tively. N7 (e) = {(r;, ei)}y;[l © denotes the set of all the -
hop neighbors of entity e with T as the number of hops, where
each of the i-th neighbor contains a neighboring relation r;
and the corresponding entity e;. A(e) = {(a;, vi)}iﬁ(le)‘ de-
notes the set of the attributes of e, where each of the i-th at-
tribute contains a name a; and the corresponding value v;.
N (e) without T indicates all the neighbors of e. N (e)| and
|A(e)| is the number of N7 (e) and A(e) respectively.

Problem 1. Knowledge Graph Alignment: Given two KGs
G and G’ and a set of already aligned entity pairs I = {(e ~
')}, we aim at learning a ranking function f : E x E' — R
to calculate a similarity score between two entities, based on
which we rank the correctly aligned entity €' to any queried
entity e as high as possible among all the entities in E'.

3 BERT-INT Model

This section introduces the proposed BERT-INT, which con-
sists of a BERT model that is used as a basic represen-
tation unit to embed the name, description, attribute and
value of an entity, and an interaction model built upon the
BERT embeddings to compute the interactions between these
embeddings. The interactions are further divided into the
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Figure 2: The framework of BERT-INT. We use BERT as a ba-
sic representation unit to embed the name/description, attribute and
value of an entity, and build neighbor-view/attribute-view interac-
tion models to compute the interactions between these embeddings.

name/description-view interaction, the neighbor-view inter-
actions, and the attribute-view interactions. A unified dual
aggregation function is applied to extract features from the
neighbor-view and attribute-view interactions to estimate
the matching score of entities. Besides, to build compre-
hensive neighbor-view interactions, the interactions between
the neighboring entities, the corresponding neighboring rela-
tions, and the multi-hop neighbors are also considered. Fig-
ure 2 shows the whole framework.

3.1 Basic BERT Unit

We treat entity alignment as the downstream objective to fine-
tune a pre-trained BERT model. Specifically, we first con-
struct the training data D = {(e,e’",e'~)}, where each
triplet (e, €', e’~) € D contains a queried entity e € F, the
rightly aligned counterpart ¢t € E’ and a negative counter-
part ¢~ randomly sampled from E’. For each entity e in the
dataset, we apply a pre-trained multi-lingual BERT? to accept
its name/description as the input, filter the CLS embedding of
BERT by a MLP layer to obtain

C(e) = MLP(CLS(e)), )

and use a pairwise margin loss to fine-tune BERT:

c= ¥

(e,e’t,e’=)eD

max{0, g(e,e’") — gle,e ") +m)}, ()

where m is a margin enforced between the positive pairs and
negative pairs, and g(e,¢’) is instantiated as [, distance to
measure the similarity between C(e) and C(e’). Negative

*https://github.com/google-research/bert




pairs are sampled according to the cosine similarity of two Neighboring entity similarity matrix Neighboring relation mask matrix
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scription is missing. Different from HMAN that directly uses
the embeddings of the descriptions to align entities [Yang et
al., 2019], we use these embeddings as basic units to compose
the following interaction model. Note we can also connect the
basic BERT unit with the following interaction model as an
end-to-end model to fine-tune BERT and train the interac-
tion model simultaneously. In practice, considering the GPU
memory and the running efficiency, we fine-tune the basic
BERT unit beforehand and freeze its parameters in the fol-
lowing interaction model.

3.2 BERT-based Interaction Model

Based on the basic BERT unit, we build the interaction model
which consists of the name/description-view interaction, the
neighbor-view and the attribute-view interactions.

Name/Description-view Interaction

We apply the basic BERT unit on the names/descriptions of
e and €’ to obtain C(e) and C(€’), and then calculate their
cosine similarity as the name/description-view interaction.

Neighbor-view Interactions

We build the interactions between the neighbors A (e) and
N (€'). The general idea is to compare the names/descriptions
of each neighbor pair rather than learning a global represen-
tation for e or ¢’ by aggregating the names/descriptions of
all their neighbors as existing works did [Wu et al., 2019a;
Xu et al., 2019]. This similar idea is widely used in informa-
tion retrieval to capture the exact and soft matches between a
query and a candidate document [Xiong et al., 2017]. Specif-

ically, we apply the basic BERT unit to obtain {C'(e; )}Lﬁf@‘

and {C(e})} Lﬁfe ) for e and €”’s neighboring entities based
on their names/descriptions, compute a similarity matrix be-
tween the two embedding sets and then apply a dual aggrega-
tion function to extract the similarity features from the matrix.
We use S to represent the interactions between the neighbors
of e and €/, with each element ;5 standing for the interac-
. . . T _ C(e)-C(e))
tion, i.e., the cosine similarity s;; = T T Tt
C(ei) and C(ef), where C(e;) and C(e}) are obtained by
Eq.(1) for the i-th neighbor of e and the j-th neighbor of ¢’
respectively.

We apply a dual aggregation function to extract the similar-
ity features along both the rows and columns of S. CNN and
RNN are usually used as the aggregation function to extract
the matching patterns from the similarity matrix between two
sentences. Different from sentences, the neighbors are dis-
ordered and independent from each other. Thus we adopt a
RBF kernel aggregation function [Xiong er al., 2017] to ex-
tract features about the accumulation of similarities.

Before making use of the RBF kernel aggregations, we
first apply a max pooling operation on each row S; =
{Si0,- -+ 8ij, -, Sin} to get the maximal similarity s7***,
i.e., we select the most possibly aligned counterpart from
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Figure 3: The neighbor-view interactions. We compute a similarity
matrix between the neighbors A (e) and A(e’) and apply a dual
aggregation function to extract the features form the matrix.

the neighbors of ¢’ for the i-th neighbor of e. This is be-
cause, following the one-one mapping assumption, we only
care about how similar the most possibly aligned counterpart
is to a given neighbor of e. In another word, a neighbor of e is
not required to be similar to all the neighbors of €/, thus other
similarities except the maximal one are discarded. Next, the
maximal value si*%* is transformed into a row-based feature
vector K" (S;), with each of the [-th element K (s]"*") being
converted by the [-th RBF kernel with mean y; and variance
;. Then K" (S;) of all the rows are averaged into a row-based
similarity embedding ¢" (N (e), N'(e’)):

ST = mAX{Si0, -, Sij, ¢ > Sin} 3)
j=0
mary g [ 68— )
Ki(si"*") = exp[ 507 }
K"(S:) = [Ki(si ), -, Ki(si"*), -, Kp(s7"")]
, 1 [N ()]
O NN = R > log K (S),

where n is the maximal number of neighbors over all the en-
tities. S will be padded zero if the real number [N (e)] is less
than n. The kernels are used to convert the one-dimension
similarity into L-dimension similarities to enhance the dis-
crimination ability, where the kernel with 4y = 1 and o — 0
only considers the exact matches between neighbors, and oth-
ers capture the semantic matches between neighbors.

The above process aggregates the features along the rows,
which reflects how similar each neighbor e; € N (e) is to the
neighbors N (€’) of ¢’. Similarly, we also aggregate the fea-
tures along the columns to capture how similar each neighbor
e’ € N(€') is to the neighbors N (e) of e. Finally, the row-
aggregation vector ¢” and the column-aggregation vector ¢
are concatenated as the final similarity embedding:

SN (e), N () =¢"(N(e), N'(e)) & ¢° (N (e), N(€)),  (4)

where @ indicates the concatenation operation. Figure 3 il-
lustrates the neighbor-view interactions.



Neighboring Relation Mask Matrix

A pair of neighbors are more convincing for supporting the
alignment of two entities, if the corresponding relations are
also similar. In another word, for a triplet (e, r;, €;) of e and a
triplet (e’, 7%, ) of €', if e; is very similar to e/ and r; is also
similar to 77, the two entities e and ¢’ will be more likely to
be aligned. According to this assumption, we not only com-
pute the similarity matrix S between the neighboring entities
but also compute the similarity matrix M between the corre-
sponding neighboring relations. M is viewed as a mask ma-
trix and is multiplied to S, i.e., S;; = Si; ® M;;, where ®
indicates elementwise product. To compute M, we need to
embed each neighboring relation. One popular way is to rep-
resent a relation approximately by its associated head-tail en-
tity pairs based on the assumption that two relations are more
similar if they associate to more similar head-tail pairs [Wu
et al., 2019al. Specifically, we average C(e) of all the associ-
ated head entities and also average those of all the tail entities,
and concatenate them to represent the relation.

Interactions between Multi-hop Neighbors

Intuitively, the one-hop neighbors take the most important
role in aligning two entities. However, as claimed by [Sun
et al., 2020], the multi-hop neighbors also impact the align-
ment results in some situations, as the direct neighbors of
one entity in G will probably appear as the distant neigh-
bors of the counterpart in G’ due to the heterogeneity of two
KGs. Thus, we also consider the interactions between multi-
hop neighbors. Specifically, given one-hop neighbors /! (e)
and N1(e’) and multi-hop neighbors N'™(e) and N (¢’),
we build the interaction matrix between N (e) and Nt (e’),
N1(e) and N™(e’), N™(e) and N'i(e’), and N (e) and
N™(e'), use the same aggregation functions as Eq.(3) and
Eq.(4) to extract the similarity vector respectively, and con-
catenate them as the final neighbor similarity embedding.

Attribute-view Interactions

We also build the interactions between the attributes .A(e) and
A(e’). Different from a unique name or description, attributes
are a set of attribute-value pairs, which is similar to the neigh-
boring relation-entity pairs. Thus similar to the neighbor-view
interactions, we also compare each attribute pair rather than
learning a global representation for e or ¢’ by aggregating
all their attributes as existing works did [Sun ez al., 2017;
Zhang et al., 2019]. Specifically, in Figure 3, we change the
similarity matrix between the neighboring entities into that
between the embeddings {C (Ulv)}ﬁge)l
embeddings {C(v;)}ll“i(f )l of ¢”s values, and change the
mask matrix between the neighboring relations into that be-
tween the embeddings {C(a;)} Lil(le)l of e’s attributes and the

embeddings {C (a;)}!é(f )l of ¢”s attributes. The assump-
tion is a pair of values is more convincing for supporting
the alignment of two entities if the corresponding attributes
are also similar. Then we use the same aggregation functions
as Eq.(3) and Eq.(4) to produce an attribute similarity vector
o(A(e), A(e’)). Note we ignore the attributes of neighbors,
as on one hand, incorporating neighbors’ attributes will result
in nested interactions, which is inefficient. On the other hand,
for aligning e and €', their own attributes are most important.

of e’s values and the

The Final Combination

Given the cosine similarity cos(C(e),C'(e’)) between the
descriptions/names of two entities, the neighbor similarity
vector ¢(N(e),N(e’)) and the attribute similarity vector
»(A(e), A(e')), we concatenate them together and apply a
MLP layer to get the final similarity score between e and €’:

ple,e)=[p(N(e), N(e') & ¢(Ale, A(e")) @ cos(C(e), C(e"))],
gle,€') = MLP(¢(e, €)). (5)

Finally, we inject g(e, €’) into the same pairwise loss func-
tion as Eq.(2) to optimize the parameters of MLP. Note that
the parameters of BERT have been fine-tuned by the basic
BERT unit in Section 3.1 and are frozen at this stage.

3.3 Entity Alignment

Given an entity e from G, we first quickly filter top-~ candi-
dates from G’ and then accurately infer the counterpart from
the candidates. Specifically, we apply the basic BERT unit
to obtain an embedding for each entity by Eq.(1), compute
the cosine similarity between the embedding of e from G and
the embedding of each entity from G’, and return the top-x
similar entities as candidates of e. Then for e and each can-
didate, we apply the BERT-based interaction model to infer a
matching score between them and rank all the candidates for
evaluation. The candidate selection process can significantly
improve the alignment efficiency by the interaction model.

4 Experiments

4.1 Datasets and Settings

We evaluate our model on the widely used cross-lingual
dataset DBP15K and the mono-lingual dataset DWY 100K
and use HitRatio@K (K=1,10) and MRR to evaluate
(Cf. [Sun et al., 2018] for details). The dimension of the
BERT CLS embedding is 768. We use a 300-dimension MLP
in Eq.(1) and a 11 plus 1-dimension MLP in Eq.(5). The max-
imal number of neighbors and attributes are both set as 50. In
Eq.(3), we use 20 semantic matching kernels, where y is from
0.025 to 0.975 with interval 0.05 and all ¢ = 0.1, and use an
exact matching kernel with 1 = 1.0 and ¢ = 1073, The
number of the returned candidates by the basic BERT unit,
i.e., k is set as 50, as we find that 99% ground truth can be
included in the top-50 candidates. The margin m in Eq.(2) for
fine-tuning BERT is set as 3, and for training the interaction

model is set as 1. Codes and datasets are online now-.

4.2 Experimental Results

Overall Performance on DBP15K

We compare all the state-of-the-art models with available re-
sults or codes. Some methods such as [Chen et al., 2018;
Trsedya et al., 2019] are not compared due to the code im-
plementation issue. In principle, we divide them into the cat-
egory that only utilizes graph structures and the one that uses
additional side information. We further divide the former cat-
egory into three fine-grained types: variant TransE, variant

3https://github.com/kosugil1037/bert-int



Model

| DBPISKzuen

| DBPISKja-EN

| DBPI5Kprgn

| HR1 HRI10 MRR

| HR1 HR10 MRR

| HR1 HR10 MRR

Only use graph structures by variant TransE

MTransE
[Chen et al., 2017]
IPTransE
[Zhu et al., 2017]
BootEA
[Sun et al., 2018]

0.308 0.614 0.364
0.406 0.735 0.516
0.629 0.848 0.703

0.279 0.575 0.349
0.367 0.693 0.474
0.622 0.854 0.701

0.244 0.556 0.335
0.333 0.685 0.451
0.653 0.874 0.731

RSNs
(Guoor - 2019] | 0508 0.745 0591 | 0.507 0737 0.590 [ 0.516 0.768 0.605
0 TransEdge 0.735 0.919 0.801 | 0.719 0.932 0.795 | 0.710 0.941 0.796
Sun et al., 2019]

MRPEA

[Shi and Xiao, 2019]

0.681 0.867 0.748

0.655 0.859 0.727

0.677 0.890 0.755

Only use graph structures by variant TransE plus GCN

[Caohﬁ;‘ij’,fgo]g] 0.494 0.844 0.611 | 0.501 0.857 0.621 | 0.495 0.870 0.621
[zm%?f\zom 0.650 0.867 0.720 | 0.641 0.873 0.718 | 0.673 0.894 0.752
L 551?2019] 0.478 0.835 0.598 | 0.490 0.844 0.610 | 0.486 0.851 0.610
(sun 2‘;7‘?‘2020] 0.539 0.826 0.628 | 0.549 0.831 0.645 | 0.552 0.852 0.657
Only use graph structures by variant TransE plus adversarial learning
(Lin g;*fzmm 0.325 0.703 0.449 | 0.259 0.663 0390 | 0.287 0.681 0.416
(pei :flfzm] 0.424 0.796 0.548 | 0.385 0.783 0.518 | 0.400 0.797 0.533
Combine graph structures and side information by variant GCN
[Wafgcg"ﬁffi‘élg] 0.413 0.744 0.549 | 0.399 0.745 0.546 | 0373 0.745 0.532
[Xfi‘f;fl’_‘"fgm 0.679 0.785 0.740 0.872 - 0.894 0.952
[wu]:z?%«)a] 0.708 0.846 0.746 | 0.767 0.895 0.812 | 0.886 0.957 0.911
e ;‘ng'm%] 0.720 0.857 0.768 | 0.766 0.897 0.813 | 0.892 0.961 0.917
[Fcy'j,iﬁf‘zzozol 0.772 0.897 0.774 0.907 - 0.891 0.967
Combine graph structures and side information by multi-view learning
(sun ;f;‘;}fzom 0.412 0.745 0.490 | 0.363 0.685 0.476 | 0.324 0.667 0.430
MultiKE

[Zhang et al., 2019]
JarKA
[Chen et al., 2020]
HMAN
[Yang et al., 2019]
CEAFF
[Zeng et al., 20201

0.509 0.576 0.532
0.706 0.878 0.766
0.871 0.987
0.795

0.393 0.489 0.426
0.646 0.855 0.708
0.935 0.994 -
0.860 - -

0.639 0.712 0.665
0.704 0.888 0.768
0.973 0.998
0.964

BERT-INT

| 0.968 0.990 0.977 | 0.964 0.991 0.975 | 0.992 0.998 0.995

Table 1: Overall performance of entity alignment on DBP15K.

TransE plus GCN, and variant TransE plus adversarial learn-
ing, and divide the later one into two fine-grained types: vari-
ant GCN and multi-view learning. Table 1 shows the over-
all performance on DBP15K. Generally, we conclude that in-
cluding side information can obtain better performance than
only considering graph structures.

Only using Graph Structures. We analyze the differences
of the methods only using the graph structures. Among vari-
ant TransE methods, BootEA, TransEdge and MRPEA per-
form the best, where BootEA and TransEdge both bootstrap
the labeled alignments iteratively, which is the key technique
to improve the alignment performance. Strictly, MRPEA is
a little far away from TransE, as it changes the subtraction
between entities and relations into multiplications, which is
more friendly to the multi-mapping relations. Several works
combine the advantages of TransE and GCN by convolving

all the neighboring information for an entity as GCN does and
meanwhile keeping the translation relationship among head,
relation and tail as TransE does. Among them, NAEA also
bootstraps the labeled alignments. For other methods without
bootstrapping, we cannot observe significant improvement by
incorporating GCN. This may due to the heterogeneity of
KGs. Two neighboring entities in KGs are more likely to be
translated to each other by their relation, rather than similar to
each other as assumed by GCN. Besides, we notice that based
on TransE, incorporating adversarial learning cannot obtain
expected performance. This is also caused by the high hetero-
geneity of KGs, which results in the difficulty of transferring
from one KG to another by a similar linear mapping function
as transferring between multi-lingual word spaces [Conneau
etal., 2018].

Combining Graph Structures and Side Information. We
analyze the differences of the methods that also incorporate
the side information. Among the methods that model the
graph structures and the side information in a unified GCN
model, GM-Align, RDGCN, and HGCN distinguish the ef-
fects of different neighbors, thus they perform better than the
original GCN-Align model. Among the methods that model
the graph structures and the side information separately and
then combine them by multi-view learning, CEAFF that em-
phasizes the effect of name and HMAN that uses BERT to
embed descriptions, significantly outperform others. DGMC
and CEAFF both solve the global alignment inconsistency
and obtain excellent performance. CEAFF further outper-
forms DGMC by 2.3-8.6% in HR1, which indicates that sepa-
rating the two views can reduce noises and is more reasonable
than mixing the two views in a unified GCN network.

Only using Side Information. Our model BERT-INT only
uses the side information. Despite the missing of graph struc-
tures, BERT-INT outperforms the best baselines by 9.7%,
2.9% and 1.9% in HR1 on ZH-EN, JA-EN, and FR-EN re-
spectively, which indicates that the semantics of the side in-
formation is more powerful than the structural characteristics.
Compared with all the other methods, we directly compare
neighbors or attributes through the interaction mechanism,
which can improve the matching accuracy between entities.

Overall Performance on DWY100K

Since CEAFF [Zeng er al., 2020] has already obtained 100%
HR1 on the mono-lingual dataset DWY 100K, we only com-
pare our model with it. We use the name as the basic rep-
resentation of an entity due to the missing descriptions in
the dataset. On the two datasets of DWY 100K, we obtain
99.2% and 99.9% HRI1 respectively, which are comparable
to CEAFF. However, we also observe that the names for most
of the aligned entities are exactly the same, which demands
more challenging mono-lingual datasets [Zeng et al., 2020].

Ablation Study
We perform ablation study from three aspects and show the
results in Table 2. All the variants are based on BERT-INT.

Remove Components from BERT-INT. When removing
the max-pooling operations from the interaction model?,

“We remove both the row-based and column-based max-pooling.



| DBPISKzuen | DBPI15Kja EN | DBPISKgr.EN
Model | HR1 HRI10 MRR | HR1 HR10 MRR | HR1 HRI10 MRR
BERT-INT 0.968 0.990 0.977 | 0.964 0991 0.975 | 0.992 0.998 0.995

Remove components

-max pooling 0.962 0.989 0.973 0.959 0.991 0.973 0.992 0.998 0.995
-column aggregation 0.960 0.989 0.971 0.959 0.990 0.971 0.991 0.998 0.994
-neighbors 0.947 0987 0.963 | 0937 0.986 0.956 | 0.988 0.998 0.992
-attributes 0919 0984 0.945 | 0938 0.987 0.957 | 0.983 0.998 0.990

-neighbors & attributes| 0.830 0.970 0.883 0.848 0.974 0.897 0.965 0.995 0.978

Change the interaction component to variant GCN

BERT-GCN 0.736  0.950 0.799 0.767 0.960 0.824 0914 0.992 0.936
BERT-RDGCN 0.847 0.974 0.896 0.857 0.969 0.900 0952 0.990 0.967
BERT-HMAN 0911 0.993 0.943 0.937  0.994 0.960 0982 0.999 0.989

Add components

+relation mask 0.966 0.989 0.975
+attribute mask 0.942 0986 0.959
+2-hop neighbors 0.965 0.990 0.975

0.962  0.990 0.973 0.992 0.998 0.995
0.950 0.990 0.966 0.989 0.998 0.993
0.964 0.991 0.975 0.992 0.998 0.995

Table 2: Ablation study on DBP15K.

the performance is reduced by maximal 0.6%, which indi-
cates it is more effective to only capture the most possi-
bly aligned counterpart rather than taking the similarities to
all the neighbors/attributes into consideration. When remov-
ing the column-aggregation’, the performance is reduced by
maximal 0.8%, which indicates that we need to consider the
similarity of each neighbor to all the corresponding neigh-
bors from both the directions. When removing the neigh-
bors or the attributes, the performance is reduced by maximal
2.7% or 4.9% respectively, and significantly reduced by max-
imal 13.8% when removing both of them, i.e., only using the
names/descriptions of entities. The results demonstrate mod-
eling the interactions of neighbors and attributes is effective.

Change Interaction Model in BERT-INT to GCN. We
initialize each node e by C(e) in Eq.(1), and update node
embeddings by the original GCN or RDGCN [Wu er al.,
2019a]. Compared with BERT-INT, HR1 is reduced by maxi-
mal 23.2%, and is even 1.3-9.4% worse than -neighbors & at-
tributes, i.e., our model that only uses the names/descriptions
of entities. The results indicate that when the side informa-
tion is powerfully modeled by BERT, introducing them in
GCNs may lose effect, and even introduce noises. For fair
comparison, we change the BERT embeddings in HMAN by
ours [Yang er al., 2019]. The result of BERT-HMAN also
under-performs BERT-INT by maximal 5.7% HR1, which re-
veals the effectiveness of the interaction part in BERT-INT.

Add Components into BERT-INT. BERT-INT does not
include the relation/attribute mask matrix and the multi-hop
neighbors. We add each of them to BERT-INT to validate the
effect. Unfortunately, none of them present an improvement
on BERT-INT. We analyze the reasons as follows. Follow-
ing [Wu et al., 2019al, we represent a relation by all its as-
sociated head-tail entities, which is too general to reflect the
exact meaning of the relation. We also tried to represent a re-
lation by its name but obtained the similar results, as names
are too short to represent a relation completely. Attributes can
be explained in the same way. To test the effect of multi-hop
neighbors, we take 2-hop neighbors as an example. As some

SRemoving row-aggregation obtains the similar results.

1.0 €2 Train on FR-EN X Train on FR-EN EEBIHMAN
I Train on JA-EN I Train on JA-EN MEBCEAFF
.0 | EETrain on ZH-EN 1.0 { W= Train on ZH-EN
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(b) BERTINT
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(a) The basic BERT unit

Figure 4: Inductive learning on DBP15K. Different colors indicate
the models are trained on the datasets in different languages. HMAN
and CEAFF both train and test on the datasets in the same language.

entities have a large number of 2-hop neighbors, to reduce
the noises, for each pair of entities, we select top-k similar 2-
hop neighbor pairs based on their BERT embeddings®. As the
BERT-based neighbor/attribute interactions are already pow-
erful, it limits the effect of the 2-hop neighbors. Although
AliNet [Sun et al., 2020] shows the effectiveness of the multi-
hop neighbors, it only uses the structure embeddings, which
are not as powerful as BERT embeddings, thus it needs more
structural information from the multi-hop neighbors.

Inductive Learning

We train the basic BERT unit and BERT-INT on one dataset
of DBPI15K, directly transfer and evaluate them on the other
two datasets, and show the results in Figure 4(a) and Fig-
ure 4(b). When training BERT-INT on ZH-EN/JA-EN and
testing on JA-EN/ZH-EN, the results are even better than
HMAN and CEAFF, which reveals ZH and JA are easier to
be transferred between each other. No matter training on any
dataset, the test performance on FR-EN is comparable to the
normal one (i.e., train and test on FR-EN), because FR is sim-
ilar to EN, making the alignment avoids the affect of different
languages. We also observe that the basic BERT unit also has
the inductive capacity. However, on the basis of the normal
performance on JA-EN, the reduced HR1 by the transferred
BERT-INT is 18.8% less than that by the the transferred basic
BERT unit, which reveals the inductive capacity is not only
caused by multi-lingual BERT, but also caused by the pro-
posed interaction model.

5 Conclusions

This paper solves knowledge graph alignment by building the
interactions between neighbors or attributes based on their
BERT embeddings, which can obtain fine-grained matches of
neighbors or attributes. The proposed model can achieve the
best performance among all the state-of-the-art models and
can enable inductive learning compared with other models.
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