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Abstract
Current deep learning approaches for lithium-ion battery analy-
sis are often specialized and limited to specific battery types or
individual tasks. While recent advances in large language models
(LLMs) highlight the potential of pretraining paradigms, existing
time-series pretraining models inadequately address the physico-
chemical complexity and temporal irregularity inherent to battery
operational data. We propose LiPM, a pretrained foundation model
that unifies multi-dataset learning through physics-aware objec-
tives and irregularity-tolerant temporal modeling. LiPM introduces
three key innovations: (1) A Mix-Masked Autoencoder (MMAE)
enforcing electrochemical consistency via joint reconstruction of
temporally masked patches and cross-channel masked variables, (2)
A Coulombic Integration Regression (CIR) task explicitly encoding
charge conservation laws, and (3) A dual-scale temporal encoder
combining irregular intra-patch processing (preserving raw times-
tamps) with regular inter-patch attention (capturing macroscopic
dynamics). Trained on eight heterogeneous battery datasets without
cycle-label annotations, LiPM demonstrates universal applicability
across partial charge-discharge segments and irregular sampling
protocols. Extensive experiments show remarkable improvements
over 9 state-of-the-art baselines in critical downstream tasks.

CCS Concepts
• Computing methodologies→ Artificial intelligence; Neural
networks.
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1 Introduction
The rapid transition towards renewable energy systems has placed
lithium-ion (li-ion) batteries at the forefront of energy storage tech-
nologies, with applications spanning portable electronics to electric
vehicles (EVs) and grid-scale infrastructure [29]. By 2050, the cumu-
lative capacity of in-service and retired EV batteries is projected to
exceed 32–62 terawatt-hours, far surpassing earlier industry fore-
casts [33]. This growth highlights the urgent need for advanced
battery modeling frameworks to address critical challenges such
as performance optimization, safety assurance, and sustainable
lifecycle management. For example, accurate battery modeling is
essential for precise state-of-health (SOH) estimation, a metric that
not only quantifies residual capacity and degradation patterns but
also facilitates the effective reuse of retired batteries in secondary
applications such as grid storage [29], promoting economic sav-
ings and environmental conservation by extending battery lifecycle.
Moreover, remaining useful life (RUL) predictions are crucial for
managing EV insurance risk and ensuring safety, as batteries with
less than 80% SOH exhibit higher failure rates, necessitating proac-
tive maintenance to mitigate potential secure problems [41].

Current research in li-ion battery modeling, despite showing
promise [10, 15, 19, 32, 37], faces significant challenges when ap-
plied to different types of batteries and operational conditions. Dif-
ferent types refer to variations in battery chemistry (e.g., NMC-811
vs. LFP) and specifications, while conditions include diverse opera-
tional scenarios such as fast charging, slow discharge, or varying
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Figure 1: (a) A full charge-discharge cycle illustrating the
complex physical relationships between current (I), voltage
(V), and state-of-charge (SOC). These relationships are ex-
emplified by the equation 𝑉 = 𝐸 (𝑆𝑂𝐶) − 𝐼𝑅, where 𝐸 (𝑆𝑂𝐶)
represents the open-circuit voltage that varies with SOC, and
𝑅 is the battery’s internal resistance, highlighting their cor-
relation. (b) Partial cycle data showing irregular time series
with sampling frequency increasing from sparse (Δ𝑡 = 2.0𝑠)
to dense (Δ𝑡 = 0.5𝑠). (c) The same data as in (b), but ignoring
timestamps, leading to significant errors.

temperature environments. Although various methodologies exist,
they often fail to generalize well beyond the specific scenarios for
which they are designed. For example, models optimized for one
type of battery chemistry can produce highly inaccurate predictions
when applied to another type under similar fast-charging condi-
tions, leading to degradation over 300% in voltage prediction [30].
This highlights significant limitations in creating universally appli-
cable models that can reliably predict battery performance across
diverse settings.

Recent advances in pretraining models for time-series analy-
sis [20, 35, 39, 42] have opened up new opportunities for addressing
the limitations of battery data modeling. The emergence of these
general-purpose pretraining models presents an unprecedented
opportunity to develop more robust and general representations
for downstream tasks of battery. The core idea behind pretraining
is to leverage large-scale, multi-source datasets to learn general-
ized features that can be transferred to various downstream tasks.
However, directly applying these generic time-series pretraining
models to battery data introduces several significant challenges:
Lack of Physics-Aware Representation Learning. Existing pre-
trainingmethods primarily focus on optimizing temporal coherence
while neglecting the inherent physical constraints embedded in
battery data. Specifically, they fail to enforce fundamental relation-
ships between measurable variables such as voltage (V), current
(I), and time (t). As illustrated in Figure 1(a), the relationship be-
tween I, V, and SOC can be governed by the physical principle
𝑉 = 𝐸 (𝑆𝑂𝐶) − 𝐼𝑅, making them almost change synchronously. This
oversight results in representations that capture statistical correla-
tions but lack interpretable physical grounding, making them less
effective for real-world applications.
Assumption of Regular Time Series. Most existing methods as-
sume that the input data is regularly sampled, despite the intrinsic

irregularity of real-world battery measurements. Notably, in our
dataset collection, 7 out of 8 datasets exhibit irregular temporal
sampling. As illustrated in Figure 1(b), voltage measurements dur-
ing early charge stages are sparsely sampled due to stable dynamics,
whereas rapid voltage drops in later discharge phases necessitate
denser sampling. Such irregular temporal patterns, if unaccounted
for, induce temporal aliasing errors in state-of-charge (SoC) estima-
tion, leading to inaccurate predictions as shown in Figure 1(c).
Dependence on Cycle-Labeled Data. To better understand bat-
tery performance, it is essential to analyze cycles. As shown in Fig-
ure 1(a), a complete cycle of a battery refers to the complete process
of charging from 0% SOC to 100% SOC and then discharging to 0%
SOC, presenting a fundamental metric for assessing battery health
and performance. Traditional battery modeling methods heavily
rely on cycle-specific annotations. For example, the method pro-
posed by Attia et al. [2] requires differences in the voltage-discharge
quantity curve between specific cycles (e.g., 10th and 100th). Even
cycle-agnostic methods like [18] need complete cycle data (e.g.,
current cycle plus preceding 29 cycles). However, in practical EV or
smartphone applications, users rarely deplete batteries to 0% SoC
before recharging, resulting in incomplete cycles like Figure 1(b).
Therefore, models pretrained with complete cycles and cycle labels
struggle to generalize to real-world usage and diverse downstream
tasks, where charge-discharge cycles are often incomplete due to
partial charging and discharging events, limiting their applicability
in industrial settings.

To address these limitations, we propose LiPM (Lithium-ion bat-
tery Pretrained foundation model), a transformer-based architec-
ture specifically designed to handle battery data’s unique properties:
physical consistency, temporal irregularity, and cycle-label scarcity.
The framework comprises three key innovations:
Physics-Informed Pretraining Tasks: To ensure that the learned
representations are physically meaningful, we introduce two novel
pretraining tasks grounded in electrochemical principles governing
V − I − t relationships:

• Mix-Masked Autoencoder (MMAE): This method jointly recon-
structs randomlymasked patches across channels (current/voltage)
and time, enforcing cross-variable physical correlations. By doing
so, MMAE ensures that the learned features capture the intrinsic
relationships between voltage, current, and time.

• Coulombic Integration Regression (CIR): To explicitly incorporate
charge conservation laws into our model, CIR predicts cumula-
tive charge transfer 𝑄 (𝑡) =

∫ 𝑡

𝑡0
𝐼 (𝜏)𝑑𝜏 through trapezoidal rule

approximation. This approach not only encodes fundamental
electrochemical principles but also handles real-world opera-
tional patterns more effectively.

Irregularity-Aware Temporal Modeling: Recognizing the intrin-
sic irregularity of real-world battery data, we develop an innovative
temporal modeling approach:

• Intra-patch Irregular Processing: Unlike conventional “patch by
length” segmentation [20] (Figure 3 (a)), LiPM preserves raw
timestamps with “patch by time” (Figure 3 (b)). This allows for ac-
curate representation of variable sampling rates during different
stages of charge/discharge cycles.
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• Inter-patch Regular Attention: We compute cross-patch correla-
tions using normalized relative regular time distances, ensuring
that macroscopic temporal relationships are accurately captured.

Cycle-Agnostic Representation Learning: Given the scarcity of
cycle-labeled data and the fragmented nature of real-world usage,
LiPM is trained on universal variables {V, I} and their correspond-
ing timestamps without requiring cycle labels. This enables seam-
less handling of partial charging/discharging segments, making it
highly adaptable to practical scenarios such as EV and smartphones.

We summarize the contributions of this work as follows:
• To the best of our knowledge, LiPM is first battery foundation
model that unifies multi-dataset pretraining with physics-aware
objectives, eliminating cycle-label dependencies.

• A dual-scale temporal encoder is proposed to natively handle
irregular sampling through hybrid intra-patch and inter-patch
processing.

• LiPM is pretrained on eight diverse datasets and evaluated on 62
downstream tasks, demonstrating an average improvement of
39.2% in MSE compared to state-of-the-art baselines.

2 Methodology
Due to the variety in the types and amounts of variables among
different battery datasets, we focus on current and voltage, which
are present in all datasets. Although some datasets offer variables
such as temperature, charge-discharge energy, etc., these variables
may be absent in other datasets. Thus, we choose the current, volt-
age data that are nearly common to all datasets, along with their
corresponding timestamps, as the input data. Consider a dataset
of li-ion battery currents I = [𝐼0, 𝐼1, · · · , 𝐼𝑁 ], where 𝐼 > 0 in-
dicates charging and 𝐼 < 0 indicates discharging, and voltages
V = [𝑉0,𝑉1, · · · ,𝑉𝑁 ]. Here, 𝐼𝑖 and 𝑉𝑖 are recorded at time 𝑡𝑖 . For
simplicity, we use x = [𝑥1, 𝑥2, · · · , 𝑥𝑁 ] to represent I and V, where
𝑥𝑖 = (𝑉𝑖 , 𝐼𝑖 ). The timestamp series T = [𝑡0, 𝑡1, · · · , 𝑡𝑁 ] is irregular
and 𝑁 is the total number of records.

2.1 Model Overview
As depicted in Figure 2, LiPM starts by partitioning the input x into
patches of equal time spans according to the timestamps T, that is,
patch by time. Subsequently, LiPM conducts irregular time-series
modeling within each patch (intra-patch) to obtain their respective
embeddings. Then, LiPM processes these embeddings through a
transformer encoder (inter-patch) to generate a representation. By
using a Mix-Masked Autoencoder task (MMAE), LiPM models the
underlying physical relationships between currents and voltages.
Furthermore, to explicitly utilize timestamp information and di-
rectly incorporate charge/discharge conservation laws, we designed
a Coulombic Integration Regression (CIR) task based on predicting
cumulative charge/discharge. This enables the current and voltage
representations generated by LiPM to contain temporal features,
providing abundant information for multiple downstream tasks.

2.2 Patching for Irregular Time Series
Transformer architectures have become the cornerstone of mod-
ern time-series modeling, and they are also adopted as the core
of our model design. Recent transformer-based time-series mod-
eling methods commonly segment time-series data into patches.

This approach has several advantages. It not only reduces the com-
putational burden during data processing and improves training
efficiency but also effectively captures and preserves the semantic
information that could be lost if we treat each individual data point
as a separate token. In the context of battery modeling, we follow a
similar approach and divide the time-series data of battery currents
and voltages into multiple patches.

Typically, these patches are generated by sliding a window of a
fixed length, as shown in Figure 3 (a). However, such method can-
not accurately retain the time information of irregular battery time
series. Besides, positional encoding is crucial for capturing both the
sequential and relative relationships. Patches that cover larger time
intervals should have more substantial differences in positional en-
coding compared to those covering shorter intervals. Nevertheless,
the conventional patching technique, which is based on a fixed
number of timestamps, fails to account for these differences.

To address these issues, we propose the “patch by time” strategy,
as shown in Figure 3. Specifically, we define the data points within
each patch based on a fixed time span. Given a time span 𝑡𝑠 , the
𝑖𝑡ℎ patch includes all the data points recorded within the time
range from (𝑖 − 1) × 𝑡𝑠 to 𝑖 × 𝑡𝑠 . Mathematically, we can represent
the 𝑖𝑡ℎ patch as x𝑖 = [𝑥 𝑗 , 𝑥 𝑗+1, · · · , 𝑥 𝑗+𝑘 ] and the corresponding
timestamps as t𝑖 = [𝑡 𝑗 , 𝑡 𝑗+1, · · · , 𝑡 𝑗+𝑘 ], where (𝑖 − 1) × 𝑡𝑠 ≤ 𝑡 𝑗 <

𝑡 𝑗+1 < · · · < 𝑡 𝑗+𝑘 < 𝑖 × 𝑡𝑠 , and the length of the patch is 𝑘 + 1.
However, the length of each patch may vary, which makes it

difficult for the model to perform parallel computations. To over-
come this, we choose a predefined patch length that is long enough
to accommodate all patches. For each patch, we generate a mask
vector t𝑚 = [1, · · · , 1, 0, · · · , 0], which indicates the actual number
of valid data points within the patch. This mask is fed into the
model together with the patch data, enabling parallel processing.

2.3 Irregular Intra-Patch Embedding
After performing the “patch by time” segmentation, LiPM maps
each patch to embeddings of equal lengths. Traditional transformer-
based methods typically use a linear layer for this mapping, ex-
pressed as h = Linear(x). Since each patch is processed indepen-
dently in this step, we omit the subscript indicating the patch se-
quence number here and will continue to do so in the following
descriptions. However, such a direct mapping fails to effectively
utilize the crucial temporal information in irregular time series.
Inspired by the positional encoding mechanism in transformers, we
leverage the timestamps to measure the distances between points
within a patch.

Specifically, we adopt a point-level Multi-Head Self-Attention
(MHSA) mechanism to obtain the embeddings. First, we intro-
duce an embedding token, which is initialized to zero, along with
a corresponding timestamp also set to zero. Thus, the input to
LiPM for each patch consists of x = [0, 𝑥 𝑗 , 𝑥 𝑗+1, · · · , 𝑥 𝑗+𝑘 ], t =

[0, 𝑡 𝑗 , 𝑡 𝑗+1, · · · , 𝑡 𝑗+𝑘 ], and t𝑚 = [1, · · · , 1, 0, · · · , 0]. For each patch,
the timestamps within the patch (excluding the embedding token)
are re-initialized by subtracting (𝑖 − 1) ∗ 𝑡𝑠 . This is because each
patch is processed independently. Additionally, we convert each
timestamp to seconds. In this way, within each patch, the difference
between timestamps represents the relative time difference, which
remains consistent regardless of the starting time of the patch. We
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utilize Rotary Position Embeddings (RoPE) [27] to encode the time
information. First, each data point is linearly mapped to obtain the
representations for queries, keys, and values, denoted as q, k, and v
respectively. In the original RoPE, for a query located at position𝑚,
q𝑚 , and a key at position 𝑛, k𝑛 , the position encoding is defined as:

q′𝑚 = q𝑒𝑖𝑚𝜃 , k′𝑛 = k𝑒𝑖𝑛𝜃 (1)

For our irregular sequences, we replace𝑚 and 𝑛 in the above equa-
tion with 𝑡𝑚 and 𝑡𝑛 , resulting in:

q′𝑚 = q𝑒𝑖𝑡𝑚𝜃 , k′𝑛 = k𝑒𝑖𝑡𝑛𝜃 (2)

The value of 𝜃 is chosen in accordance with that in the original
RoPE to ensure a certain degree of decay over distance.

Subsequently, we employ multi-layer MHSA to obtain the patch
embeddings. The computation for self-attention is given by:

o = 𝐴𝑡𝑡𝑛v = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
q′k′𝑇√︁
𝑑𝑘

, t𝑚

)
v (3)

We select the representation of the last-layer embedding token as
the representation of the current patch, denoted as h.

2.4 Transformer Encoder
The patch embedding sequence obtained from the previous irregu-
lar intra-patch embedding step is then directly input into a trans-
former encoder. To enhance the stability of the model, we employ
RMSNorm (Root Mean Square Layer Normalization) [36] instead of
the traditional layer normalization. RMSNorm’s omission of mean
subtraction can potentially expedite the model training process.

At the inter-patch level, since we model the patches in a regular
manner, we use the standard Rotary Position Embeddings (RoPE).
After stacking multiple layers of transformer encoder layers, we
are able to generate the final representation z. Mathematically, the
process can be described as follows:

h𝑙 = 𝑇𝑟𝑎𝑛𝐸𝑛𝑐 (h𝑙−1), 𝑙 = 1, · · · , 𝐿 (4)

z = 𝐿𝑖𝑛𝑒𝑎𝑟 (h𝐿) (5)

where the superscript 𝑙 represents the 𝑙𝑡ℎ layer of the transformer
encoder, and𝐿 is the total number of layers. The function𝑇𝑟𝑎𝑛𝐸𝑛𝑐 (·)
denotes a single transformer encoder layer, and 𝐿𝑖𝑛𝑒𝑎𝑟 (·) repre-
sents a linear layer. The resulting z is the overall representation.

2.5 Prtraining Task
Mix-Masked Autoencoder (MMAE). The Masked Autoencoder
(MAE) paradigm has demonstrated efficacy in learning robust tem-
poral representations through reconstruction of masked subse-
quences [5, 8, 28]. While conventional MAE implementations typi-
cally employ temporal masking (i.e., masking entire time patches),
we extend this concept to address battery data’s unique physical
interdependencies. Specifically, the inherent relationship between
voltage and current dynamics, where the direction of the current
(charging or discharging) affects voltage changes, requires explicit
modeling of these interactions. To achieve this, we propose a novel
MMAE that integrates both temporal and cross-variable masking
strategies, as illustrated in Figure 2. Our MMAE operates through
two complementary masking mechanisms:

• Cross-time Masking: Randomly masks entire temporal patches to
enforce learning of long-range electrochemical dynamics.

• Cross-channel Masking: Selectively masks individual variables
(current or voltage) within patches to capture their physical cor-
relations.

This dual masking strategy compels the model to reconstruct miss-
ing segments through both temporal continuity and physical con-
sistency constraints. Formally, given input sequence x with times-
tamps t, we generate three binary masks: t𝑚 : Natural sampling
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mask (1=valid measurement). p𝑚 : Cross-time mask (0=patches to
reconstruct). c𝑚 : Cross-channel mask (0=variables to reconstruct).

The effective maskm = t𝑚 ∧ p̄𝑚 ∧ c̄𝑚 determines reconstruction
targets.

x̂ = MMAE(z𝑚, t, t𝑚) (6)

where z𝑚 denotes representations of masked data and x̂ is recon-
structed data.

The reconstruction employs a dual-scale attention mechanism:
Inter-patchMHSA: Restores global electrochemical patterns through
transformer-based cross-patch attention. Intra-patch MHSA: Re-
covers temporal continuity within each irregular segment using
timestamp-aware attention (like Section 2.3). The reconstruction
loss emphasizes physically critical regions:

LMMAE =
1∑𝑁

𝑗=0𝑚 𝑗

𝑁∑︁
𝑖=0

(𝑥𝑖 − 𝑥𝑖 )2 ·𝑚𝑖 (7)

This design ensures three key advantages: i) Channel masking
forces cross-variable reasoning; ii) Hybrid masking preserves both
temporal dynamics and physical constraints; iii) Irregular times-
tamp encoding prevents aliasing artifacts in reconstructed signals.
By simultaneously addressing temporal discontinuities and physi-
cal couplings, MMAE learns representations that inherently respect
battery operational principles while maintaining reconstruction
fidelity, a critical requirement for subsequent SOH/RUL estimation
tasks.
Coulombic Integration Regression (CIR). The fundamental
charge conservation principle (𝑄 (𝑡) =

∫ 𝑡

0 𝐼 (𝜏)𝑑𝜏) governs all bat-
tery operations, where current polarity (positive/negative) directly
reflects charging/discharging states. These bidirectional charge
flows intrinsically correlate with critical battery health indicators,
for instance, voltage hysteresis patterns during charge-discharge
cycles provide essential degradation signatures [21]. To explicitly
encode this physical law into our pretraining framework, we design
a novel CIR task that predicts cumulative charge transfer through
trapezoidal approximation [3].

Formally, given current measurements I with timestamps t, the
ground-truth cumulative charge at time 𝑡𝑖 is calculated as:

𝑄𝑖 =
1
2

𝑖∑︁
𝑗=1

(𝐼 𝑗 + 𝐼 𝑗−1) (𝑡 𝑗 − 𝑡 𝑗−1) (8)

where (𝑡 𝑗 − 𝑡 𝑗−1) is converted to seconds to maintain unit consis-
tency. This numerical integration method preserves current direc-
tionality while handling irregular sampling intervals [6].

Unlike the MMAE task that operates on masked inputs, CIR
utilizes the original unmasked representations z to ensure numerical
stability:

Q̂ = CIR(z, t, t𝑚) (9)

The separation of reconstruction (MMAE) and physical regression
(CIR) heads allows each component to specialize while sharing
foundational representations. The CIR loss focuses on valid mea-
surements through natural sampling masks:

LCIR =
1∑𝑁

𝑗=0 𝑡𝑚 𝑗

𝑁∑︁
𝑖=0

(�̂�𝑖 −𝑄𝑖 )2 · 𝑡𝑚𝑖 (10)

This design provides three key benefits: i) Enforces charge con-
servation laws through explicit current-time integration. ii) Main-
tains temporal causality by processing unmasked sequences. iii)
Naturally handles real-world operational patterns (partial cycles,
variable sampling).

2.6 Objective Function
The composite pretraining objective combines both physical con-
sistency constraints:

L = LMMAE + LCIR (11)

This dual-task formulation ensures LiPM simultaneously learns:
Cross-variable electrochemical relationships through MMAE’s re-
construction. Temporal charge transfer dynamics via CIR’s integra-
tion constraints. Robustness to irregular sampling through these
two pretraining tasks. The synergistic optimization bridges data-
driven learning with first-principles physics, establishing a founda-
tion for generalizable battery modeling across diverse operational
scenarios.

3 Experiment
3.1 Experiment setting
Datasets. Our study integrates eight publicly available lithium-ion
battery datasets: NASA [23], CALCE [12], MATR [1], HUST [18],
HNEI [7], ULPurdue [13], SNLLFP [22], and RWTH [16]. This com-
prehensive collection spans: 382 batteries covering major cathode
chemistries (LiCoO2, NMC, LFP, NCA) and 351 million data points
totally. In addition, different charging and discharging protocols
were used for these battery datasets. To ensure rigorous evaluation,
we adopt a dataset-level separation strategy: i) Pre-training data:
85% batteries from each dataset. ii)Downstream tasks: Remaining
15% batteries held out for downstream tasks. iii) No battery overlap:
All cycles from a given battery exclusively belong to one phase. This
separation protocol prevents data leakage while maintaining chemi-
cal diversity, critical for assessing cross-domain generalization. Full
dataset statistics and details are provided in Appendix.
Baseline Methods. We establish three comparison dimensions to
validate LiPM’s effectiveness:
• Non-pretrained Models: Crossformer [40]. iTransformer [17].
• Time-series Pre-training: GPT4TS [42], PatchTST [20], TS2Vec [35],
TFC [39].

• Irregular Time-series Models: mTAN [26], Contiformer [4],
tPatchGNN [38].
Implementation protocol during dowmstream tasks: i) For pre-

trained baselines: Frozen backbones + task-specific head fine-tuning.
ii) For non-pretrained models: Full model training from scratch.
iii) 10 experimental repetitions with different seeds (mean±std re-
ported).

Methodological Distinction: Unlike conventional battery mod-
eling approaches [2, 18, 25] requiring complete cycle labels or
aligned cycle sequences, LiPM operates under cycle-agnostic con-
ditions—processing arbitrary charge-discharge fragments without
cycle boundary information. This aligns with real-world deploy-
ment constraints where full cycles are rarely observed (e.g., EV
partial charging).
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Table 1: The average experimental result in battery-split setting. The best result is in bold and second is in underlined. “Best”
counts the number of times the method is best (62 in total). “p-value < 0.05” counts the number of times the method outperforms
the second-best model with p-value < 0.05. “ 1

1000 ” indicates that the scale is too small, so the unit of the result is 1
1000 .

Task Metrix Crossformer iTransformer GPT4TS PatchTST TFC TS2Vec mTAN CoutiFormer tPatchGNN LiPM

RUL MSE 2.412 5.083 2.466 2.383 6.608 1.822 9.321 11.797 3.751 1.744
MAE 0.866 1.309 0.971 1.027 1.275 0.779 1.635 1.692 1.259 0.697

SOH MSE 0.004 0.097 0.201 0.006 0.148 0.104 0.498 0.358 0.148 0.002
MAE 0.045 0.256 0.167 0.050 0.201 0.154 0.555 0.419 0.201 0.027

Δ𝑄𝐷
MSE 0.012 0.773 1.306 0.543 1.333 1.212 1.596 1.284 1.259 0.002
MAE 0.057 0.558 0.407 0.278 0.527 0.444 0.835 0.616 0.638 0.015

Δ𝑄𝐶
MSE 0.009 0.238 1.125 0.339 1.209 1.142 2.394 2.110 2.517 0.0002
MAE 0.048 0.345 0.400 0.233 0.515 0.394 1.031 0.866 0.920 0.007

IR( 1
1000 )

MSE 0.206 10.3 0.045 9.119 8.682 0.106 306.3 104.7 0.328 7.25𝑒−04
MAE 10.92 82.58 5.425 72.518 71.09 7.694 441.5 251.8 16.23 0.539

Average MSE 0.488 1.240 1.019 0.656 1.862 0.856 2.823 3.131 1.535 0.350
MAE 0.205 0.510 0.390 0.332 0.518 0.356 0.899 0.769 0.607 0.149

Best 3 0 8 3 0 6 0 0 0 42
p-value < 0.05 1 0 1 2 0 0 0 0 0 37

Table 2: The average experimental result in cycle-split setting.

Task Metrix Crossformer iTransformer GPT4TS PatchTST TFC TS2Vec mTAN CoutiFormer tPatchGNN LiPM

RUL MSE 2.603 4.414 2.640 3.101 5.097 1.887 10.164 9.954 3.957 1.329
MAE 0.866 1.309 0.971 1.027 1.275 0.779 1.736 1.684 1.216 0.590

SOH MSE 0.006 0.195 0.126 0.004 0.154 1.609 0.474 0.375 0.098 0.001
MAE 0.048 0.344 0.159 0.044 0.208 0.159 0.538 0.468 0.170 0.021

Δ𝑄𝐷
MSE 0.005 0.296 1.150 0.386 1.095 1.098 1.562 1.230 1.242 0.0003
MAE 0.036 0.366 0.395 0.236 0.479 0.381 0.820 0.686 0.634 0.009

Δ𝑄𝐶
MSE 0.009 0.238 1.125 0.339 1.209 1.142 2.553 2.208 2.495 0.0001
MAE 0.048 0.345 0.400 0.233 0.515 0.394 1.048 0.947 0.919 0.005

IR( 1
1000 )

MSE 0.34 5.201 0.141 0.347 3.926 0.149 305.1 78.08 0.507 4.94𝑒−04
MAE 13.517 54.85 6.857 13.32 44.54 8.098 440.6 215.8 1.98 0.448

Average MSE 0.525 1.030 1.008 0.766 1.512 1.147 3.012 2.769 1.559 0.266
MAE 0.202 0.484 0.386 0.311 0.504 0.344 0.917 0.800 0.592 0.125

Best 0 0 1 3 0 3 0 0 0 55
p-value < 0.05 0 0 0 1 0 2 0 0 0 53

Battery State Estimation Tasks. Accurate state estimation is
fundamental to li-ion battery management, requiring precise quan-
tification of multiple interrelated variables:

• State of Health (SOH): Defined as the ratio between maximum
available capacity at full charge and nominal capacity (manufac-
turer specification), SOH quantifies battery degradation:

SOH =
𝑄max

𝑄nominal
× 100% (12)

where 𝑄𝑚𝑎𝑥 is measured through constant-current discharge
from 100% to cutoff voltage. SOH below 80% typically indicates
end-of-life.

• Remaining Useful Life (RUL): The number of cycles until SOH
reaches 80%, RUL reflects long-term degradation trends critical
for maintenance planning and safety assurance.

• Internal Resistance (IR): Dynamic impedance measurements re-
veal electrochemical changes during operation. We evaluate IR
estimation on MATR dataset.

• Charge/Discharge Quantity: Cumulative charge transfer 𝑄 =∫
𝐼𝑑𝑡 over arbitrary intervals enables state-of-charge (SOC) track-

ing and energy accounting. We separately evaluate charging
(Δ𝑄𝐶) and discharging (Δ𝑄𝐷) quantities to: Explicitly model cur-
rent directionality (charging: 𝐼 > 0, discharging: 𝐼 < 0); Support
flexible operational scenarios (e.g., partial charge-discharge cy-
cles); Support precise monitoring of energy flows in real-world
battery management. This task evaluates the model’s capacity to
integrate temporal dynamics.

We evaluate LiPM on these tasks across two scenarios:
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• Battery-split: Train/test sets contain distinct batteries (no over-
lap). This method ensures that training and testing data are de-
rived from entirely distinct batteries. This is critical because differ-
ent batteries may exhibit varying charging/discharging protocols
(e.g., HUST and MATR datasets have distinct discharge/charge
protocols). Thus, battery-split mimics real-world scenarios where
a model must generalize to unseen batteries.

• Cycle-Split: Train/test sets share batteries but use different cycles.
This method evaluates the model’s ability to predict future behav-
ior of the same battery across its lifespan. Batteries degrade over
cycles, leading to evolving distributions between early and late
cycles. This setup tests the model’s capacity to capture long-term
degradation trends within a single battery.

Given the variation in labels across different downstream tasks of
the datasets, our experiments encompass a total of 62 distinct setups.
Each setup is evaluated based on both Mean Squared Error (MSE)
and Mean Absolute Error (MAE), resulting in 124 experimental
outcomes. Statistical significance is verified via paired t-tests (p <
0.05) across 10 experimental trials. More details can be found in
Appendix.

3.2 Experimental Results
Overall Performance. Table 1 and Table 2 summarizes key find-
ings across all tasks and scenarios, and more specific experimental
results are in the Appendix.. LiPM achieves consistent superiority
over baselines:

• Battery Split: 28.3% MSE reduction (0.350 vs 0.488) and 27.3%
MAE improvement (0.149 vs 0.205) on average.

• Cycle-split: 49.3% MSE reduction (0.266 vs 0.525) with 59.8%
MAE enhancement (0.125 vs 0.311).

• Achieves 97/124 optima across all experiments, of which 90/124
show significant improvements over other baselines (p-value <
0.05).

3.2.1 Task-Specific Analysis. . SOH Estimation: LiPM achieves
50.0% MSE reduction in battery-split (0.002 vs 0.004) compared to
the best baseline Crossformer and achieves 75.0% MSE reduction
in cycle-split (0.001 vs 0.004) compared to best baseline PatchTST.
This validates our model’s capacity to capture battery states.
RUL Prediction: LiPM achieves 4.2% MSE reduction in battery-
split (1.744 vs 1.822) and 29.6% MSE reduction in cycle-split (1.329
vs 1.887) compared to best baseline TS2Vec. The relative gains are
less pronounced than SOH (4.2% vs 50.0% and 29.6% vs 75%). This
is because RUL prediction heavily relies on long-term degradation
patterns, which the partial charge/discharge cycles used in our
dataset do not fully capture. Consequently, LiPM’s improvements
are less significant.
Charge/Discharge Quantity Calculation. LiPM achieves orders-
of-magnitude improvements in cumulative charge quantification,
significantly outperforming both non-pretrained and pretrained
baselines:

LiPM vs non-pretrained (Crossformer): For battery-split setting,
charging MSE 0.002 vs 0.012 (6× improvements) / discharging MSE
0.0002 vs 0.009 (45× improvements). For cycle-split setting, charging
MSE 0.0003 vs 0.005 (16× improvements) / discharging MSE 0.0001
vs 0.009 (90× improvements).

LiPM vs Pretrained method (PatchTST): For battery-split setting:
charging MSE 0.002 vs 0.543 (271× improvements) / discharging
MSE 0.0002 vs 0.339 (1,695× improvements). For cycle-split setting:
charging MSE 0.0003 vs 0.386 (1,287× improvements) / discharging
MSE 0.0001 vs 0.339 (3,390× improvements).

This dramatic improvement stems from LiPM’s explicit modeling
of temporal charge dynamics through the Coulombic Integration
Regression (CIR) task. The orders-of-magnitude error reduction
demonstrates that conventional temporal modeling approaches,
even with pretraining, may not fully capture the physical-temporal
interdependencies essential for battery charge accounting. Our
approach with LiPM addresses these challenges, offering a refined
method for charge/discharge monitoring.
Internal Resistance Estimation: Significant performance im-
provement (MSE from 0.45e-04 to 7.25e-07 in the battery-split set-
ting; In the cycle-split setting, MSE drops from 1.49e-04 to 4.94e-07)
confirms LiPM’s effectiveness in learning voltage-current correla-
tions critical for internal resistance dynamics.

3.2.2 Comparative Analysis and Insights. Our experiments reveal
that time series pretraining models (GPT4TS, PatchTST, TS2Vec,
TFC) do not consistently outperform non-pretrained models like
Crossformer. While these pretrained models excel in capturing
temporal dependencies, they may lack the domain-specific knowl-
edge crucial for understanding battery behavior. Specifically, with
their backbones frozen during downstream tasks, these models fo-
cus more on temporal features rather than incorporating physical
constraints relevant to battery dynamics.

LiPM’s success in various battery state estimation tasks and
charge/discharge quantity calculation, stems from its MMAE and
CIR pretraining tasks combined with a dual-scale temporal encoder.
These features allow LiPM to effectively integrate temporal dy-
namics with critical physical insights, resulting in state-of-the-art
performance in downstream tasks.

3.3 Ablation Study

Table 3: Ablation study of pretraining tasks.

Task Metric LiPM Only MMAE Only CIR

RUL MSE 1.744 2.368 2.023
MAE 0.697 0.901 0.772

SOH MSE 0.002 0.007 0.007
MAE 0.027 0.053 0.044

Δ𝑄𝐷
MSE 0.002 0.028 0.007
MAE 0.015 0.078 0.035

Δ𝑄𝐶
MSE 0.0002 0.042 0.007
MAE 0.007 0.090 0.034

IR( 1
1000 )

MSE 7.24e-04 8.71e-04 8.80e-04
MAE 0.539 0.636 0.623

Average MSE 0.350 0.489 0.409
MAE 0.149 0.225 0.177

In this section, we conduct ablation studies to investigate the
impact of different components in proposed LiPM on downstream
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Table 4: Ablation study of irregular time series modeling.

Task Metric LiPM without t with t

RUL MSE 1.744 3.189 2.806
MAE 0.697 0.967 0.772

SOH MSE 0.002 0.122 0.179
MAE 0.027 0.091 0.103

Δ𝑄𝐷
MSE 0.002 0.366 0.065
MAE 0.015 0.156 0.076

Δ𝑄𝐶
MSE 0.0002 0.618 0.149
MAE 0.007 0.223 0.110

IR( 1
1000 )

MSE 7.24e-04 1.35e-03 1.27e-03
MAE 0.539 0.924 0.903

Average MSE 0.350 0.859 0.640
MAE 0.149 0.288 0.212

Table 5: Ablation study of irregular time series modeling.
“0.5, 0” indicates the ratio of cross-channel and cross-time
masking is 0.5 and 0 respectively.

Tasks Metric LiPM 0.5, 0.5 0.5, 0 0, 0.5

RUL MSE 1.744 2.361 2.677 2.207
MAE 0.697 0.778 0.837 0.771

SOH MSE 0.002 0.003 0.002 0.003
MAE 0.027 0.029 0.028 0.028

QD MSE 0.002 0.002 0.004 0.004
MAE 0.015 0.015 0.019 0.021

QC MSE 0.0002 0.0003 0.0004 0.0002
MAE 0.007 0.007 0.010 0.007

IR MSE 7.24E-04 3.22E-03 1.14E-03 9.70E-04
MAE 0.539 0.730 0.709 0.670

Average MSE 0.350 0.473 0.537 0.443
MAE 0.149 0.312 0.321 0.299

task performance. The experiments are mainly conducted under a
battery-split experimental setting.

3.3.1 Impact of Pre-training Tasks. To systematically evaluate the
effectiveness of MMAE and CIR as pre-training tasks, we conducted
ablations by individually excluding one of these tasks while keep-
ing other settings constant for downstream tasks. The results are
summarized in Table 3. Our findings demonstrate that removing
either MMAE or CIR leads to significant performance degradation
in LiPM. Notably, excluding the CIR task increases MSE for both
Δ𝑄𝐶 and Δ𝑄𝐷 tasks by more than tenfold, highlighting its essential
role in predicting battery state changes.

3.3.2 Irregular Time Series Modeling. In order to verify the effec-
tiveness of “patch by time”, we directly remove this part. Consider-
ing that t may carry useful temporal information for irregular time
series modeling, we also consider adding it to the input. Table 4
presents the results, distinguishing between experiments “without
t” (without temporal data) and “with t” (including time data). These
experiments reveal that modeling irregular time series is crucial

size#1 size#2 size#3 size#4 size#5 size#6

Model Size

MAE
MSE

(b)
0 2000 10000 20000 50000

MAE
MSE

Iteration

(a)

Figure 4: (a) Average results on downstream tasks with dif-
ferent pre-training iterations. (b) The average performance
of LiPM on downstream tasks, where size#1 is the smallest
model and size#6 is the largest model.

for each downstream task. Moreover, even when only employing
the “patch by length” approach, incorporating additional temporal
information enhances overall model performance.

3.3.3 MMAE Masking Strategy Analysis. In our proposed LiPM,
each operation randomly masks 30% of the data independently,
resulting in nearly half of the data being masked. To assess the
effectiveness of these strategies, we conducted experiments using
only cross-time masking or only cross-channel masking, setting
the mask ratio to 0.5 to ensure half of the data remains masked.
Additionally, we experimented with increasing mask ratio of both
masking strategies to 0.5 to further challenge the model’s learning
capacity. Results in Table 5 show that relying solely on one masking
strategy reduces the model’s capability. Increasing the mask ratio to
0.5 also decreases performance, likely due to insufficient unmasked
data for effective pre-training.

3.4 Model Analysis
3.4.1 Effect of Pre-training Iterations. Figure 4(a) illustrates the
average performance on downstream tasks at various pre-training
iterations, with detailed results provided in the Appendix. Optimal
performance is marked with a star, showing that the lowest MSE is
achieved at 14,000 iterations, closely followed by 50,000 iterations.
For MAE, the best performance is observed at 50,000 iterations.
Besides, the performance of LiPM is relatively stable from 14,000
iterations to 50,000 iterations, with no significant fluctuations.

3.4.2 Effect of Model Size. Considering LiPM’s Transformer archi-
tecture, understanding the influence of model size on performance
is critical. We adjusted the number of Transformer layers and the
hidden size to vary model parameters, with specific configurations
detailed in the Appendix. Figure 4(b) shows the performance of
different model sizes on downstream tasks. Testing six models rang-
ing from 9 million to 312 million parameters, we find that model
size#4 (48M parameters) achieves the best performance. Further
increases in model size lead to performance degradation, which we
attribute to limitations in the pre-training dataset size, considering
our use of data from only eight datasets. This suggests that current
pre-training efforts may be constrained by the breadth and diversity
of available battery operational data.
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3.5 Efficiency Comparison
We provide a direct comparison of inference time for SOH predic-
tion (100 batches, identical hardware and batch size), the results
are show in Table 11. LiPM ’s efficiency aligns with transformer
baselines (e.g., Crossformer) while incorporating irregular-time
modeling.

Table 6: Comparison of inference time (in seconds) for dif-
ferent methods.

Method Crossformer iTransformer GPT4TS PatchTST TFC
Time (s) 2.51 1.49 0.12 5.87 0.41

Method TS2Vec mTAN CountiFormer tPatchGNN LiPM
Time (s) 1.17 4.60 272.51 2.41 2.44

4 Related Work
Contemporary approaches to battery modeling fall into three cate-
gories: Physics-Based Models. Electrochemical models like the
Pseudo-Two-Dimensional (P2D) framework [9] employ coupled
PDEs to describe electrode interactions. While variants like SPMe [11]
improve electrolyte dynamics, their practical adoption is limited by
computationally intensive parameter identification and overfitting
risks [34]. Equivalent Circuit Models. Ranging from basic Rint
models to fractional-order networks with CPEs [10], these meth-
ods balance accuracy and computational efficiency for real-time
applications. However, they struggle to capture nonlinear degrada-
tion patterns essential for SOH/RUL estimation [19]. Data-Driven
ApproachesModern neural networks [37] and encoder-decoder
architectures [24] bypass physical complexity but require extensive
labeled data. Recent pre-training paradigms like [14, 31, 35, 39]
demonstrate potential for temporal representation learning, yet
remain agnostic to battery-specific physics.

Current pre-training methods face two critical limitations for bat-
tery data: Physical Consistency Gap. Standard temporal models
(PatchTST [20], iTransformer [17]) optimize statistical correlations
rather than electrochemical principles. The inherent 𝑉 − 𝐼 − 𝑡 re-
lationships governed by charge conservation remain unenforced.
Regularity Assumption. Most frameworks [40, 42] presume uni-
form sampling intervals, despite real-world battery data exhibiting
adaptive sampling rates (Fig. 1(a)).

Emerging approaches address temporal irregularities through:
mTAN [26] employs multi-time attention to capture irregular de-
pendencies, while tPatchGNN [38] uses adaptive graph networks
for asynchronous series. However, these generic methods fail to
preserve battery-specific physical constraints during charge inte-
gration. Recent irregular TS models like ContiFormer [4] handle
missing values but lack domain-specific adaptations for partial
charge cycles.

5 Conclusion
We present LiPM, a novel universal pretrained model for li-ion
battery modeling, LiPM, that bridges the gap between data-driven
learning and electrochemical principles. By introducing two physics-
aware pretraining tasks, MMAE and CIR, LiPM achieves superior

performance across multiple downstream tasks. The model’s dual-
scale temporal encoder, combining irregular intra-patch processing
with regular inter-patch attention, effectively handles real-world
operational data with variable sampling rates.

Future work could focus on expanding pretraining datasets to
support larger models for broader applicability, and exploring real-
time online learning to enhance LiPM’s adaptability and robustness
in practical scenarios.
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A Dataset
The datasets used in this paper are as follows. Table 7 shows the
dataset statistics.

• NASA [23]: A National Aeronautics and Space Adminis-
tration (NASA) lithium-ion battery charge and discharge
experimental dataset. The experiment process is as follows:
In charging level, the batteries are charged with a constant
current (CC) of 1.5A until the battery voltage reaches 4.2V,
then they switch to constant voltage (CV) mode until the
charging current drops to 20mA. The cathode material is
lithium cobalt oxide. The dataset contains 7,203,084 records
from 34 cells, each with a rated capacity of 2.0Ah.

• CALCE [12]: Comes from the Center for Advanced Life
Cycle Engineering (CALCE) of the University of Maryland.
This dataset includes two types of batteries: CS2 and CX2.
For CS2 batteries:
– Capacity Rating: 1.1Ah; Cell Chemistry: LiCoO2 cathode,
EDS results also showed trace elements of Manganese.

– Charging Profile: Standard constant current/constant volt-
age protocol with a constant current rate of 0.5C until the
voltage reached 4.2V, then 4.2V was sustained until the
charging current dropped to below 0.05A. Unless specified,
the discharge cut-off voltage for these batteries was 2.7V.

For CX2 batteries:
– Capacity Rating: 1.35Ah; Cell Chemistry: LiCoO2 cathode
(EDS showed trace elements of Manganese).

– Charging Profile: Similar to CS2 batteries but with some
minor variations incorporated in the standard charging
profile for some CX2 cells.

In total, we use 27 batteries from both types, and the dataset
contains 16,852,982 records.

• HUST [18]: A dataset with 77 LFP/graphite cells (1.1 Ah
nominal capacity and 3.3 V nominal voltage). The cells were
cycled with an identical charge protocol but different multi-
stage discharge protocols at a constant temperature of 30°C.
The dataset contains 91,735,853 records.

• MATR [1, 25]: Consists of 185 commercial lithium-ion bat-
teries cycled to failure under fast-charging conditions. All
cells in this dataset are charged with a one-step or two-step
fast-charging policy. This policy has the format “C1(Q1)-C2”,
where C1 and C2 are the first and second constant-current
steps, respectively, and Q1 is the state-of-charge (SOC, %)
at which the currents switch. The second current step ends
at 80% SOC, after which the cells charge at 1C CC-CV. The
upper and lower cutoff potentials are 3.6 V and 2.0 V, respec-
tively. All cells discharge at 4C. The dataset contains four
batches of lithium-ion phosphate (LFP)/graphite cells and
143,576,451 records.

• RWTH [16]: Contains time-series data (time, current, volt-
age, temperature) of a cyclic aging test of 48 lithium-ion
battery cells. The experiment process involves aging 48 cells
of the same type with the same profile under equal condi-
tions. The battery uses a carbon anode and NMC as a cathode
material. The dataset contains 48,625,944 records.

• HNEI [7]: Consists of 14 commercial 18650 cells with a
graphite negative electrode and a blended positive electrode

composed of NMC and LCO. The cell was cycled at 1.5C to
100% depth of discharge (DOD) for more than 1000 cycles at
room temperature. The dataset contains 7,497,493 records.

• SNLLFP [22]: Consists of 18 commercial 18650 LFP cells cy-
cled to 80% capacity (although cycling is still ongoing) from
Sandia National Labs. This study examines the influence
of temperature, depth of discharge (DOD), and discharge
current on the long-term degradation of the commercial
cells. The dataset contains 6,904,086 records. Additionally,
datasets SNLNCA and SNLNMC are also available from the
same source; however, due to their insufficient data length
for our input requirements, they have not been included in
this study.

• ULPurdue [13]: Consists of 22 commercial 18650 cells with
a graphite negative electrode and an NCA positive electrode.
The cells were cycled at 0.5C at 2.7-4.2V (0-100% SOC) or
2.9-4.0V (2.5-96.5% SOC, when the cells are fresh) at room
temperature to various levels of capacity fade (10%, 15%, and
20%). The dataset contains 6,246,486 records.

Table 7: Dataset Statistics

Dataset Number of Cells Number of Records

NASA 34 7,203,084
CALCE 27 16,852,982
HUST 77 91,735,853
MATR 185 143,576,451
RWTH 48 48,625,944
HNEI 14 7,497,493
SNLLFP 18 6,904,086
ULPurdue 22 6,246,486

B Experiment Setting
The implementation protocol during downstream tasks is as fol-
lows:
(1) For pretrained baselines: Frozen backbones + task-specific head

fine-tuning.
(2) For non-pretrained models: Full model training from scratch.
(3) 10 experimental repetitions with different seeds (mean±std re-

ported).
The implementation protocol during pretraining is as follows:

For both our proposed LiPM and the baseline models requiring pre-
training, we use the same dataset for pretraining. For baselinemodel
pretraining, we follow their recommended settings. We ensure that
all pretraining models reach convergence.

For LiPM, our default settings are as follows: a learning rate of
1e-04; using the AdamW optimizer with a weight decay set to 1e-03;
a batch size of 256; a pretraining iteration count of 50,000; a ratio of
cross-time masking set to 0.3; and a ratio of cross-channel masking
set to 0.3. In the transformer encoder, the hidden layer dimension
is set to 512, with 12 layers.

For input data settings, all baselines and our proposed LiPM
maintain consistency as much as possible: the input data length
is 256. If there is a need to split patches, the patch length is set to
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16. Since LiPM splits patches by time, it cannot use a fixed sliding
window method. Due to varying conditions across datasets, we set
different time spans for each dataset to split patches, ensuring an
average patch length close to 16. The maximum patch length is set
to 64, and we use a masking method to indicate which values are
valid, as described in Section 2.2.

B.1 Battery State Estimation Tasks
Given the variation in labels across different downstream tasks
of the datasets, our experiments encompass a total of 62 distinct
setups, as shown in Table 8.

Table 8: Dataset Usage for Different Tasks

Task Datasets

RUL NASA, MATR, HUST, HNEI
ULPurdue, SNLLFP, RWTH

SOH NASA, MATR, HUST, HNEI
ULPurdue, SNLLFP, RWTH

Δ𝑄𝐶
NASA, MATR, HUST, HNEI

ULPurdue, SNLLFP, RWTH, CALCE

Δ𝑄𝐷
NASA, MATR, HUST, HNEI

ULPurdue, SNLLFP, RWTH, CALCE

IR MATR

C Experimental Result
C.1 Effect of Model Size

Table 9: Experimental results with different model size.

s1 s2 s3 s4 s5 s6

MSE

RUL 2.73E+00 2.74E+00 2.39E+00 1.74E+00 2.25E+00 2.44E+00
SOH 3.19E-03 3.32E-03 3.52E-03 2.19E-03 2.89E-03 4.60E-03
QD 4.82E-03 2.36E-03 3.15E-03 1.50E-03 7.45E-03 8.88E-03
QC 6.87E-04 9.95E-04 8.19E-04 2.33E-04 1.72E-03 4.38E-03
IR 1.33E-06 1.10E-06 8.82E-07 7.24E-04 9.89E-07 8.71E-07
AVG 5.48E-01 5.50E-01 4.79E-01 3.50E-01 4.52E-01 4.92E-01

MAE

RUL 9.37E-01 9.01E-01 8.25E-01 6.97E-01 7.55E-01 8.25E-01
SOH 3.46E-02 3.50E-02 3.26E-02 2.70E-02 3.06E-02 4.36E-02
QD 2.60E-02 1.64E-02 2.09E-02 1.51E-02 2.79E-02 4.00E-02
QC 9.68E-03 1.07E-02 9.40E-03 7.10E-03 1.39E-02 2.91E-02
IR 6.84E-04 6.85E-04 6.28E-04 5.39E-01 6.69E-04 5.74E-04
AVG 2.02E-01 1.93E-01 1.78E-01 1.49E-01 1.66E-01 1.88E-01

Considering LiPM’s Transformer architecture, understanding
the influence of model size on performance is critical. We adjusted
the number of Transformer layers and the hidden size to vary model

Table 10: Model Settings and number of parameters. d_model
denotes the hidden layer dimension. n_layer denotes the
number of hidden layers. n_head denotes the number of
heads of the MHSA; n_param indicates the number of pa-
rameters in million (M).

s1 s2 s3 s4 s5 s6

d_model 64 128 256 512 768 1024
n_layer 2 3 6 12 18 16
n_head 4 4 8 8 12 24
n_param (M) 9.7 10.3 15.9 47.6 137.5 312.4

parameters. Table 9 and Table 10 show the performance of different
model sizes on downstream tasks. Testing six models ranging from
9 million to 312 million parameters, we find that model size#4 (48M
parameters) achieves the best performance. Further increases in
model size lead to performance degradation, which we attribute
to limitations in the pre-training dataset size, considering our use
of data from only eight datasets. This suggests that current pre-
training efforts may be constrained by the breadth and diversity of
available battery operational data.

C.2 Experiment Compute Resource.

Table 11: Pretraining time cost.

Model S1 S2 S3 S4 S5 S6

Time (s) 10742 11191 12519 18767 39027 55253

The CPU we used is two Intel(R) Xeon(R) Gold 6226R, and the
GPU used is two NVIDIA GeForce RTX 3090, and the training time
is shown in Table 11.

D More Details
Owing to space constraints, additional information regarding the
experimental methodology, detailed results, and comprehensive
analysis is available at https://github.com/JuRenGithub/LiPM.
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